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Algorithm 1 Association Graph Learning (TRAINING TIME)

Require: {D}"}T_,: Training sets of all tasks; 7: Number of tasks; C: Number of all classes; &:
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A A A

Shared feature extractor; W, We: Parameters of metric functions in the association graph;
L: Number of GNN layers; {W!}L | : Parameters of all GNN layers; {f;}7_,: Task-specific
classifiers; A: Learning rate.
Initialize the feature extractor &.
Initialize all task and class nodes {v;}7_;, {k.}<_,.
while not done do

Sample a batch of each task, and embed each instance into the feature space £(x).

fort =1toT do

Collect instances from the ¢-th task in the mini-batch {x,}i\[:’1 .
Aggregate the task representation in the mini-batch v (pini—patch) N%fr ZZV:‘I E(x;).
Compute the task node by moving average vy <= 0.9 * v¢ + 0.1 * Vi(mmini—batch)-

end for

Construct the task graph G with edge weights in equation (2).

forc=1toC do

tr
Collect instances from the c-th class in the mini-batch {Xm}an:l-

tr
Aggregate the class information in the mini-batch K (yini—patcn) < N% ZNO E(Xm).

m=1
Compute the class node by moving average k. <= 0.9 x k¢ + 0.1 * Ko (mini—patch)-
end for
Construct the class graph G¢ with edge weights in equation (4).
Compute the edges between all three different types of nodes and construct the association
graph in equation (6).
for!=1to Ldo
Apply GNN with the parameter W' on the association graph G and update all nodes in the
graph.
end for
Compute the assignment entropy for each class node in equation (8).
Update parameters by &, Wr, We, {WH | {31, — AVe wr we fwiye | (£17, L.
end while

In this paper, we propose to learn an association graph to address category shifts in multi-task
classification. For clarity, we provide the algorithms during training and test in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 2 Association Graph Learning (TEST TIME)

Require: x;: one test instance from the ¢-th task; £: Trained the feature extractor; G, Ge: Trained

task and class graph; L: Number of GNN layers; {Wl}lelz Trained parameters of all GNN
layers; f;: The trained task-specific classifier.
Embed each test instance for the ¢-th task into the feature space £(x;).
Construct the association graph G to connect the trained task G7 and class graph G and the test
instance node.
for! =1to Ldo
Apply GNN with the parameter W' on the association graph G and update the instance node
in the graph.
end for

6: Obtain the updated instance node &£ (;(t)

7: Predict the test instance with the task-specific classifier p(y:|f, £ (;ct))




Table B.1: The observed classes of each task on 0ffice-Home with different missing rates. v = 0%
denotes all task share the entire label space.

Missing rates | Artistic Clipart Product Real_world
*Alarm_Clock’, "Bottle’, "Fan’, "Batteries’, "Computer’, Drill’, "Calculator’, *Calendar’, *Chair’, "Backpack’, Bed’, "Bike’,
"Flowers’, "Fork’, "Gl s, "Folder’, "THammer’, ’Keyboard’,  ’Couch’, "Desk_Lamp’, "Flipflops’, "Bucket’, "Candles’, "Clipboards’,
¥ ="T75% "Helmet’, "Kettle’, "Knives’, "Marker’, "Monitor’, "Mug’, *Laptop’, "Mop’, "Mouse’, *Curtains’, "Eraser’, "Exit_Sign’,
"Lamp_Shade’, "Push_Pin’, "Radio’, “Pan’, "Pen’, "Pencil’, "Notebook’, "Printer’, *Scissors’, "File_Cabinet’, "Oven’, "Paper_Clip’,
"Refrigerator’, *Shelf’, *Soda’, "Ruler’, *Screwdriver’, "TV”, "Sneakers’, *Speaker’, "Trash_Can’, "Postit_Notes’, "Sink’, "Telephone’,
’Spoon’ "Table’, "Toys’ "Webcam’ "ToothBrush®
’Alarm_Clock’, "Batteries’, Bike’, "Batteries’, "Bed’, "Bottle’, "Backpack’, *Calculator’, *Calendar’, ’Alarm_Clock’, "Backpack’, "Bed’,
"Bottle’, "Bucket’, "Candles’, *Calendar’, *Computer’, "Drill’, *Chair’, *Clipboards’, ’Computer’, "Bike’, "Bucket’, Calculator’,
"Desk_Lamp’, "Fan’, "File_Cabinet’, ’Fan’, "Flowers’, "Folder’, *Couch’, *Curtains’, 'Desk_Lamp’, ’Candles’, Chair’, *Clipboards’,
"Flowers’, "Fork’, "Glasses’, *Fork’, "Hammer’, "Keyboard’, "Drill’, "Exit_Sign’, "File_Cabinet’, *Couch’, "Curtains’, "Eraser’,
"Hammer’, "Helmet’, "Kettle’, "Marker’, "Monitor’, "Mouse’, "Flipflops’, "Folder’, *Glasses’, "Exit_Sign’, "Flipflops’, "Knives’,
v =50% "Knives’, "Lamp_Shade’, "Laptop’, "Mug’, "Notebook’, "Pan’, "Helmet’, "Kettle’, "Keyboard’, "Lamp_Shade’, "Oven’, "Paper_Clip’,
"Marker’, "Mop’, "Mug’, "Pen’, "Pencil’, "Postit_Notes’, *Laptop’, "Monitor’, "Mop’, "Pen’, "Postit_Notes’, 'Radio’,
"Paper_Clip’, "Pencil’, "Push_Pin’, "Printer’, "Push_Pin’, "Ruler’, "Mouse’, "Notebook’, *Oven’, ’Refrigerator’, *Shelf’, *Sink’,
’Radio’, "Refrigerator’, *Screwdriver’, ~ ’Scissors’, *Screwdriver’, "Soda’,  ’Pan’, "Printer’, *Scissors’, ’Sneakers’, *Speaker”, "Table’,
“Shelf”, ’Sink’, *Soda’, ’Spoon’, "TV’, "Table’, *Sneakers’, *Speaker’, "TV’, "Telephone’, *ToothBrush’, *Toys’,
’Spoon’, "ToothBrush’ "Telephone’, "Toys’ "Trash_Can’, "Webcam’ "Trash_Can’, "Webcam’
’Batteries’, 'Bed’, "Bike’, ’Batteries’, 'Bed’, 'Bike’, *Alarm_Clock’, "Backpack’, "Batteries’, *Alarm_Clock’, "Backpack’, 'Bed’,
"Bottle’, "Bucket’, *Calendar’, "Bottle’, "Bucket’, *Calendar’, *Calculator’, *Calendar’, *Chair’, "Bike’, "Bottle’, "Bucket’,
’Candles’, "Chair’, *’Computer’, *Candles’, *Chair’, "Computer’, *Clipboards’, *Computer’, *Couch’, ’Calculator’, *Calendar’, *Candles’,
"Drill’, "Eraser’, "Fan’, *Drill’, "Eraser’, "Fan’, *Curtains’, "Desk_Lamp’, *Drill’, *Chair’, *Clipboards’, "Couch’,
"Flowers’, "Folder’, "Fork’, "Flowers’, "Folder’, "Fork’, *Exit_Sign’, "Fan’, "File_Cabinet’, *Curtains’, "Desk_Lamp’, "Drill’,
*Glasses’, "Hammer’, "Helmet’, *Glasses’, "Hammer’, "Helmet’, "Flipflops’, "Flowers’, "Folder’, ’Eraser’, "Exit_Sign’, "File_Cabinet’,
"Keyboard’, "Knives’, "Laptop’, "Keyboard’, "Kni Laptop’, "Fork’, *Glasses’, "Hammer’, "Flipflops’, "Kettle’, "Keyboard’,
= 95% "Marker’, "Monitor’, "Mop’, "Marker’, "Monitor’, "Mop’, "Helmet’, "Kettle’, "Keyboard’, "Knives’, "Lamp_Shade’, "Mouse’,
! e "Mouse’, "Mug’, "Notebook’, "Mouse’, 'Mug’, "Notebook’, "Lamp_Shade’, Laptop’, "Marker’, "Mug’, "Notebook’, *Oven’,
"Pan’, "Paper_Clip’, "Pen’, "Pan’, "Paper_Clip’, "Pen’, "Monitor’, "Mop’, "Mouse’, "Paper_Clip’, "Pen’, "Pencil’,
“Pencil’, "Postit_Notes’, "Printer’, "Pencil’, "Postit_Notes’, "Printer’, ’Notebook’, ’Oven’, "Pan’, "Postit_Notes’, "Printer’, "Push_Pin’,
Push_Pin’, 'Radio’, 'Ruler’, Push_Pin’, "Radio’, "Ruler’, "Paper_Clip’, "Pen’, "Printer’, "Radio’, "Refrigerator’, *Scissors’,
*Scissors’, *Screwdriver’, *Sink’, *Scissors’, *Screwdriver’, *Sink’,  ’Refrigerator’, "Ruler’, *Scissors’, *Screwdriver’, *Shelf”, *Sink’,
"Soda’, *Speaker’, *Spoon’, *Soda’, *Speaker’, *Spoon’, *Shelf”, *Sneakers’, *Speaker’, ’Sneakers’, "Soda’, *Speaker’,
"TV’, "Table’, "Telephone’, "TV’, "Table’, "Telephone’, *Spoon’, "TV’, "Table’, "Table’, "Telephone’, *ToothBrush’,
’Toys’, "Trash_Can’, "Webcam’ "Toys’, "Trash_Can’, *"Webcam’ "ToothBrush’, *Trash_Can’, "Webcam’ ’Toys’, "Trash_Can’, "Webcam’
’Alarm_Clock’, "Backpack’, "Batteries’, "Bed’, "Bike’, "Bottle’, 'Bucket’, "Calculator’, *Calendar’, *Candles’, *Chair’, "Clipboards’, *Computer’, ’Couch’, *Curtains’,
o= 0% "Desk_Lamp’, "Drill’, *Eraser’, "Exit_Sign’, "Fan’, "File_Cabinet’, 'Flipflops’, "Flowers’, "Folder’, "Fork’, *Glasses’, "THammer’, 'Helmet’, "Kettle’, "Keyboard’, "Knives’,
! "Lamp_Shade’, "Laptop’, "Marker’, "Monitor’, "Mop’, "Mouse’, "Mug’, "Notebook’, *Oven’, "Pan’, "Paper_Clip’, "Pen’, "Pencil’, "Postit_Notes’, "Printer’, "Push_Pin’, "Radio’,
"Refrigerator’, "Ruler’, *Scissors’, *Screwdriver’, *Shelf”, *Sink’, *Sneakers’, *Soda’, *Speaker’, *Spoon’, *TV’, "Table’, "Telephone’, *ToothBrush’, *Toys’, "Trash_Can’, "Webcam’

B Class assignment of all datasets

In this section, we provide the class assignment of all datasets under different missing rates. Ta-
ble B.1, B.2, B.3 shows the class assignment for 0ffice-Home, 0Office-Caltech and ImageCLEF,
respectively. For the Skin-Lesion, each task contains a subset of the following classes: melanocytic
nevus (nv), melanoma (mel), basal cell carcinoma (bcc), dermatofibroma (df), benign keratosis (bkl)
and vascular lesion (vasc). The class assignment is provided in Table B.4.

The proposed setting is a new multi-task learning scenario. Its practical applications could not be
limited by the mentioned assumption in the testing space. In our setting, the test label spaces of
different tasks are not forced to be the same since the model predicts instances from different classes
and tasks independently during inference. The real significance of this setting is coordinating multiple
related tasks to make up for the missing information of each task from other tasks. In order to evaluate
the methods under different degrees of category shifts, we set various missing rates of the training set.

Table B.2: The observed classes of each task on Office-Caltech with different missing rates.
~v = 0% denotes all tasks share the entire label space.

Missing rates

Amazon

Webcam

DSLR

Caltech

v ="75% | "keyboard’, *laptop_computer’ *calculator’, "monitor’, 'mouse’  ’bike’, "projector’ “back_pack’, "headphones’, "mug’

o = 50% “headphones’, "keyboard’, *back_pack’, “calculator’, “bike’, "keyboard’, “back_pack’, "bike’,

e ° ’laptop_computer’, "mouse’, 'mug’  ’monitor’, "mouse’, 'projector’  ’laptop_computer’, “monitor’, *projector’  ’calculator’, headphones’, ‘'mug’
*calculator’, "headphones’, "back_pack’, "calculator’, "back_pack’, "bike’, back_pack’, "bike’,

v =25% ’keyboard’, "laptop_computer’, ’keyboard’, *monitor’, *calculator’, "headphones’, *headphones’, "laptop_computer’,
’mouse’, 'mug’, "projector’ ’mouse’, 'mug’, "projector’ ’laptop_computer’, *monitor’, ’projector’  ’monitor’, ‘mouse’, "mug’

v =0% \ *back_pack’, ’bike’, "calculator’, "headphones’, "keyboard’, "laptop_computer’, *monitor’, 'mouse’, 'mug’, ’projector’

Table B.3: The observed classes of each task on ImageCLEF with different missing rates. v = 0%
denotes all tasks share the entire label space.

Missing rates ‘ Caltech ImageNet Pascal Bing

v ="75% | bikes’, *computer-monitor’, 'school-bus’  ’car-side’, "hummingbird’, 'motorbikes’ *dog’, "people’, *speed-boat’ “airplanes’, "horse’, *wine-bottle

o 50% *bikes’, *computer-monitor’, *dog’, *bikes’, "computer-monitor’, *dog’, “airplanes’, car-side’, "horse’, “airplanes’, car-side’, "horse’,

Y =907 “people’, *school-bus’, "speed-boat” “people’, *school-bus’, *speed-boat” “hummingbird’, *motorbikes’, *wine-bottle’  "hummingbird’, *motorbikes’, *wine-bottle

“bikes’, car-side’, *computer-monitor’, “airplanes’, "bike: e’, “airplanes’, "bikes’, *computer-monitor’, “airplanes’, “car-side’, dog’,

v =25% ’dog’, "hummingbird’, motorbikes’, ’computer-monitor’ “hummingbird’,  *dog’, "horse’, people’, “horse’, hummingbird’, *motorbikes’,
*people’, school-bus’, *speed-boat’ "motorbikes’, *school-bus’, "wine-bottle’ *school-bus’, speed-boat’, 'wine-bottle’ *people’, *speed-boat’, *wine-bottle’

v =0% ‘ “airplanes’, "bikes’, "car-side’, "computer-monitor’, *dog’, "horse’, Thummingbird’, "motorbikes’, "people’, *school-bus’, *speed-boat’, *wine-bottle




Table B.4: The observed classes of each task on Skin-Lesion with different missing rates. v = 0%
denotes all tasks share the entire label space.

Missing rates | HAM10000 | Dermofit | Derm7pt

v =6T% | “bee’, 'nv’ | “mel’, "vasc’ | "bkI’, “df’

v =33% \ ’bkl’, "mel’, *nv’, ’vasc’ \ ’bee’, ’df’, *mel’, ‘nv’ \ ’bee’, *bkl’, *df’, *vasc’
v =0% | “bec’, "bKI’, *df”, "mel’, 'nv’, "vasc’

C Datasets

0ffice-Home [9] contains images from four domains/tasks: Artistic, Clipart, Product and Real-
world. Each task contains images from 65 object categories collected under office and home settings.
There are about 15, 500 images in total.

0ffice-Caltech [3] contains the ten categories shared between Office-31 [7] and Caltech-256 [4].
One task uses data from Caltech-256, and the other three tasks use data from Office-31, whose images
were collected from three distinct domains/tasks, namely Amazon, Webcam and DSLR. There are
8 ~ 151 samples per category per task, and 2, 533 images in total.

ImageCLEF [6], the benchmark for the ImageCLEF domain adaptation challenge, contains 12 com-
mon categories shared by four public datasets/tasks: Caltech-256, ImageNet ILSVRC 2012, Pascal
VOC 2012, and Bing. There are 2,400 images in total.

Skin-Lesion contains three skin lesion classification tasks: HAM10000 [8], Dermofit [2] and
Derm7pt [5]. Tasks are collected from different hospitals or healthcare facilities. In this dataset, each
task contains a subset of the following classes: melanocytic nevus, melanoma, basal cell carcinoma,
dermatofibroma, benign keratosis and vascular lesion.

D Detailed Results

We provide detailed information for Figure 3 of the paper in Table D.5. The 95% confidence intervals
of Table 4 and Table 5 of the paper are shown in Table D.6 and Table D.7. STL is the typical baseline
of single-task learning, which learns each task independently.

Table D.5: Benefit of the proposed association graph on 0ffice-Home under the setting of missing
75% classes. L denotes the number of massage passing layers. Our association graph consistently
performs better than the attention graph with different message passing layers.

Method L=0 L=1 L=2 L=3 L=4 L=5

|
Attention Graph 49.82 £o042  54.09 o065 5572 070 56.53 £053 56.35+100 56.16 +0.32
Association Graph || 49.82 +042 57.18 +035 58.00 +045 5832 +034 60.56 +039 60.13 + 035

E More Visualizations

To further show the benefit of the association graph in feature learning, we visualize the test samples
from four classes of all tasks in Figure E.1. The model is trained on 0ffice-Home with the 75%
missing rate. The four classes are observed by Artistic during training and missed by other tasks.
The visualizations show that the association graph encourages features from the same class of different
tasks to be more clustered. This demonstrates that the association graph effectively generalizes the
categorical information from seen classes (of Artistic) to missing classes (of other tasks), making
them more distinguishable.

To show the relationships between tasks and classes, we visualize the similarity matrices between
task and class nodes with different numbers of GNN layers. As shown in Figure E.2, the model with
the association graph (L > 0) obtains more evenly distributed similarities than the model without the
graph (L = 0). Moreover, when L = 4, fewer categories have absolutely dominated tasks (yellow
square), which improves the knowledge transferring from observed classes to missing classes for
each task.



Table D.6: Comparative results under the proposed setting with different missing rates on
0ffice-Home, Office-Caltech and ImageCLEF using a ResNet-18 backbone. The best per-
formance is in bold. Our method improves the overall performance of both seen and unseen classes.

Missing 0ffice-Home Office-Caltech ImageCLEF
Method ‘ Rate ‘ A, A, " A A, " A, A, H
STL 0.00 +000 8825051 0.00+000 0.00+000 98.53x077 0.00+000 0.00=000 95.00=+056 0.00 =000
ERM 36.45+033 83.53 £o042 4932 :036 4743056 9728 x073 6298 +o0s8 71.94 x023 80.00 £oss 75.55 +o038
PCGrad 75% 36.99 +o051  83.30+053 49.56+037 49.84 +071 9643 +067 6493 +089 T1.94 012 8333 £087 76.92 +051
WeighLosses 3739 +035 82.92+050 50.26+03¢ 4939 +092 9643 +033 64.46 +052 7222 +054 80.83 x086 76.08 +076
Ours 47.51 032 87.16 £044 60.59 035 5547 +020 98.12+049 70.55+028 75.28+037 8500052 79.45 036
STL 0.00 £000 8437 £029 0.00+000  0.00 000 98.61 x041 0.00 £000  0.00 =000 8833 +027 0.00 =000
ERM 5096 £022 81.89 +03 62.14+026 77.33 +017 9743 xo050 85.09 £021 76.67 034 84.58 028 80.36 +027
PCGrad 50% 5095 o018 8252 4066 6239 +057 80.29 +031 9743 £079 87.28 o066 7458 038 8292 055 78.46 +039
WeighLosses 51.65 +0s5¢ 8238 +039 62.84 £044 7654 +024 9727 x051 84.60 032 7542+0290 8542+037 79.94 +030
Ours 54.65 023 83.57+035 65.54+032 88.65+019 98.15+040 92.83+031 7833 o024 87.08=+038 82.20+026
STL 0.00 +000  82.06 +0s82  0.00+000  0.00£000 98.07 £063 0.00£000  0.00 =000 83.06+092  0.00 +000
ERM 54.09 036 81.34 047 64.51 £042 94.27 x086 97.42x039 9576 021 74.17 044 85.00 073 78.90 +036
PCGrad 25% 5243 £os2  80.81 032 63.18 £033 92.96 +049 97.92 x051 9520 +036 76.67 o051 8222 +073 79.12 046
WeighLosses 53.60 £o071 8138 £093 64.03 £042 9384 +037 97.81 098 95.69 +073 76.67 036 83.89 +o0s0 79.88 £029
Ours 56.74 £023 8294 +037 67.02+028 97.35+016 9851073 97.92+051 80.00 toey 8528 078  82.48 031
STL - 79.29 035 - - 98.13 + 027 - - 81.67 + 053 -
ERM - 80.99 +0.89 - - 98.22 062 - - 84.79 057 -
PCGrad 0% - 81.41 + 049 - - 98.02 + 048 - - 82.71 + 039 -
‘WeighLosses - 81.78 + 045 - - 98.24 + 056 - - 82.75 + 049 -
Ours - 82.01 + 026 - - 98.26 +0.39 - - 86.04 + 044 -

Table D.7: Comparative results with different missing rates on the medical dataset Skin-Lesion.
Our method achieves the best overall performance on both missing and observed classes. All results
of compared methods are based on our re-implementations.

v =67% v =33% v =0%
Matbod ||, 4, il An 4, H  Aw A, H
STL 0.00 £000 9799 +0.2  0.00 £000  0.00 000 87.32+025 0.00 +0.00 - 8433 036 -
ERM 874 £o042 9395 +015 15.16 £024 1552053 84.24 +o.16 25.96 +022 - 83.48 049 -
PCGrad 8.04 +039  91.62 £021 14.51 +033 14.28 047 82.77 £024 23.53 £035 - 84.11 o041 -
WeighLosses || 7.73 +045 89.68 029 13.07 036 14.25 +039 85.56 +031 24.35 +034 - 84.20 038 -
Ours 10.82 +038 90.29 +024 18.17 +031 16.58 +041 86.62 028 27.21 +037 - 85.98 +043 -

F Additional Results

F.1 Benefits of the graph structure

To show the benefits of the graph structure, We conduct an experiment by directly incorporating the
class knowledge into the instance with a cross attention module on 0ffice-Home with a missing rate
of 75%. v and X denote whether the model explores relationships between nodes or not.

In Table E.8, the direct incorporation obtains lower performance than our method using the association
graph. This is because the direct incorporation does not capture relationships among nodes and
therefore fails to fully utilize the structure information to transfer the task-specific and class-specific
knowledge to each instance. We also found that both methods outperform single-task learning in
terms of the harmonic mean (H). This again shows that our multi-task models benefit not only from
the knowledge stored in the graph nodes, but also from the relationships among them.

Table F.8: Comparisons between with and without the graph structure.

Methods | Graph structure | A, A, H
Single-task learning X 0.00 88.25 0.00
Direct incorporation X 37.45 88.84 50.94
Ours v 47.51 87.16 60.59

F.2 Compared with out-of-distribution generalization methods

We make comparisons to three typical out-of-distribution generalization methods under the proposed
settings on Office-Home. As shown in Table F.9, our method outperforms them consistently,
showing the effectiveness of our association graph learning in dealing with category shifts.



Table F.9: Comparisons between out-of-distribution methods and the proposed method.

Missing rates | 75%  50%  25% 0%

MixUp [10] 51.18 61.06 64.38 81.53
MixStyle [11] | 52.95 63.43 6597 81.59
IRM [1] 57.11 64.11 66.24 81.41

Ours | 60.59 6554 67.12 82.01

F.3 Computation cost

We calculate the computation cost in Table F.10 for each iteration (the unit for time is the second,
experiments on Office-Home with missing rate 75%). The model with the association graph takes
more time to test in each iteration than the model without the graph. The main reason is that the
graph model needs to compute edges for pair-wise nodes in the graph. However, the model with
the association graph significantly outperforms without the graph, by a large margin of 10.74%, in
terms of the harmonic mean. Moreover, we also find that as the number of GNN layers increases, the
inference time increases only slightly. Thus, we can conclude that the computational cost is mainly
from the graph construction rather than GNN layers.

Table F.10: Comparisons on the computation cost during inference.

Number of GNN layers | 1 2 3 4 5

w/o Association graph 0.14 0.14 0.14 0.14 0.14
w Association graph 0.68 0.69 071 0.72 0.73

F.4 Benefits of each proposed architecture

We provide the ablation study to show the benefits of each sub-graphs in the proposed association
graph. The results are shown in Table F.11. v and X denote whether the association graph contains
the corresponding sub-graphs or not. From the table, we can see that the model containing the task
and class graphs outperforms the model with task or class graphs. This demonstrates that our model
benefits from each sub-graphs in the association graph.

Table F.11: Benefits of each sub-graphs in the proposed association graph.

Task graph ~ Class graph | A, A, H

X v 46.21 86.10 59.34
v X 45.80 84.02 58.41
v v 47.51 87.16 60.59

F.5 Advantages of using assignment entropy maximization

To show the advantage of using assignment entropy maximization, we set different values of § for
assignment entropy maximization in Table F.12 (on 0ffice-Home with the missing rate of 75%).
During training, 5 controls the trade-off between the cross-entropy and assignment entropy losses.
When beta is 0, the assignment entropy maximization is not optimized during training. The model
with 8 # 0 outperforms the model with 8 = 0 consistently in terms of the average accuracy of
missing classes and the harmonic mean. This demonstrates that the assignment entropy maximization
can improve the knowledge transferring for missing classes in the association graph, making the test
instance more discriminative.



Table F.12: Comparisons between the models with the different values of .

/6 ‘ A'HL AO H

0 44.65 87.59 58.26
1 46.12 87.02 59.30
0.1 4751 87.16 60.59

0.01 46.33  87.11 59.63
0.001 | 4559 8690 58.96
0.0001 | 45.13 86.69 58.37

We further evaluate a variant with fixed and equal weights of edges from tasks to a class. As shown in
Table F.13, our method outperforms the variant. This demonstrates that with the assignment entropy
maximization, the learned weights between tasks and a class are not the same.

Table F.13: Comparisons between the variant with fixed and equal weights and the proposed method.

Edge weights between each task and a class | A, A, H

Fixed and equal 46.46 86.97 59.35
Ours 47.51 87.16 60.59

F.6 Benefits of the designed metric function
We provide the results of a variant using the learnable metric function for the edge between task and

class graphs in Table F.14. The results show that our method outperforms this variant.

Table F.14: Comparisons between the variant using the learnable metric function for the edge between
task and the proposed method.

Metric function | A,, A, H

Learnable 46.39 87.20 59.79
Ours 4751 87.16 60.59

G Discussion about Limitations

In this paper, the proposed setting is based on the multi-input multi-output setting for multi-task
learning, where different tasks have different data distributions and share the same label or target
spaces. One potential limitation of the work is that the proposed setting is not applicable to the
single-input multi-output setting. The reason is that different tasks do not share the same label or
target spaces in the single-input multi-output setting.

Moreover, based on the multi-input multi-output setting, we address category shifts in multi-task
classification. Category shift means that the training label space is a subset of the test label space in
each task, which only appears between several related classification tasks. Thus, the other limitation
of the work is that our method is not directly applicable to regression tasks. Our work could be
extended to other settings to explore and utilize the structural information. We leave the explorations
for future work.

Our model is designed for finite classes and therefore is not directly applicable to infinite out-of-
domain classes. A possible extension is to construct a placeholder node in the graph to represent all
unknown open classes during training.
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Figure E.1: Benefit of the association graph in feature learning. We show the visualizations of the
test features without (top) and with the graph (bottom) from 0ffice-Home. Different shapes denote
different classes, and different colors correspond to different tasks. All classes in the figure are
observed during training for Artistic, while missed for other tasks during training. Our graph
encourages the features from the other tasks to be close to that from Artistic, which demonstrates
the effectiveness of our model in generalizing the categorical information from seen classes (of
Artistic) to missing classes (of other tasks).



o © © < o~ )
- o o S o ]

)

0
g
F 5
2
]

X
o
@
o
<

c
®
(]
1S

(S}

larity matrix between task and class nodes ( L

imi

S

wesqam
ue)y ysei
shoL
ysnugyjoo
suoydajaL
aiqeL
AL
uoods
Jaxeads
epos
siajeaus
Auis

J12uS
JBALPMAIDS
51085
3Ny
10181361149y
oipey
uld"ysng

Joyuon
Jaiep
doyde]

apeys dwe
sanluy

BUIgeD 3|
uey

X3

Jases3

a
dweTys3aq
suleun)
Yo
saandwio)
spieoqd
neyd
sajpued
Jepuajed
J03e[N2}R)
g
apog
8
pag
sausneg
Fedyoeg
32010 wely

Art

Clipart
Product
Real_World

o @ @ < o 2
- S S S S S

wesgam
uedyseur
shoL
ysnigyiooL
suoydajaL
aiqeL
AL
uoods

JBAIPMBIS
51055195
Iy
10101061149y
olpey

uid ysnd
Ja3uLd
s310N Is0d
Ipuag

uad

dijy sadeq
ueg

uano
>0ogaioN

apeys dwe
sanIy
pieoqhay
amay
BWIRH
Jawwey

ubisTyx3
Jasely

dweTys3a
sueun)
Yoy
sandwod

Jsepuajed
J0reINd[ED
g
apog

8

pag
sausneg
sjoedyoeg
32010 wiely

larity matrix between task and class nodes ( L = 1, Harmonic mean = 57.18%)

imi

S

Art
Clipart
Product
Real_World

@ @ < o
S S S s

wesgam
uey ysel.
shoL
Ysnigyioo
suoydajaL
alqeL

AL

uoods
Jjeads
epos
siayeaus
Sjuis

JIE
JBALPMBIIS
51055195
BNy
FGLIELIITEN]
olpey
uldysnd
J23uLd
310N S04
11uad

usd
dipsadeq
ueg

uano
>00ga10N

apeys dwe
sanIy
pieoqhay
MmN

14
PUIged 31
ueq
ubISTIa
seses3

a

dweT ysaa
sulepn)
ynod
J@ndwod
spieoqdiy
Jreyd
sajpued
Jepuaed
Jojeinojed
@png
amog

g

pag
sauaneg
yedyoeg
>popy wuely

larity matrix between task and class nodes ( L = 2, Harmonic mean = 58.00%)

imi

S

Art
Clipart
Product
Real_World

@ @ < o
S S S S

larity matrix between task and class nodes ( L = 3, Harmonic mean = 58.32%)

imi

S

wesqam
ued ysesy
skoL.
ysnigyjooL
auoydajar
2lqeL

AL

uoods
Jjeads
epos
siayeaus
IS

J12us
JaALpMaIS
$10SSI9G
sIny
10321961143y
olpey
uid"usng
12ud
S210NI1s0d
J1puad

uad

dijy 1adeq
ued

uano
300qa30N

PUIgeD 3|
ueq
ubISIXg
Jasei3

ua
dweseq
sulepnd
Yoy
saandwod
spieoqdid
ney
sajpued
Jepusjed
J03[nd[e)
3%ong
amog

18

peg
sausneg
yoedyoeg

32010 wely

Art

Clipart
Product
Real_World

@ < o
S S S

larity matrix between task and class nodes ( L = 4, Harmonic mean = 60.56%)

imi

S

wesgam
uedTyses
shoL
ysnigyioo
auoydajaL
3lqeL
AL
uoods
Jaxeads
epos
siayeaus
qus

JIBUs
IBALPMBIIS
51055195
BNy
BGLIELITEN]
olpey
uldysnd
J23uLd
310N 1504
uag

uad

diy sadeq
ueg

uano
»00ga10N

apeys dwe
sanIy
pieoqhay
amax
BWRH
Jawwey

uBISTINa
Jasei3

a
dweTysaa
surepn)
yn0d
J@ndwod
spaeoqdiy
areyd
sajpued
Jepuaed
Jojeinojed
W@png
amog

g

pag
sauaneg
yedyoeg
popy wuely

Art
Clipart
Product
Real_World

@ @ 3 o
S S S S

wesgam
uedyseur
shoL
ysnigyiooL
suoydajaL
alqeL
AL
uoods

IBALIPMAIIS
105515
sy
J0jesabLyy
olpey

uld ysng
123ud
S310N I1s0d
uad

uad

diy sadeq
ueg

uano
>oogalon
6N
asnow
dow
Joyuon
Jaiepn
doyde]
apeys dwe
sanluy

ubis X3
Jasely

dweTyseq
suleun)
Yo
saandwiod
spieoqdiy
Beyd
sajpued
Jepuajed
J03e[N2}R)
®¥ong
apog

8

pag
sausneg
Fedyoeg
32010 wely

larity matrix between task and class nodes ( L = 5, Harmonic mean = 60.13%)

imi

S

Art
Clipart

g
3
]
g
£

o
5
H
®
3
&

f the relationships between task and classes.

isualization o

Vi

E.2

Figure



	Algorithm
	Class assignment of all datasets
	Datasets
	Detailed Results
	More Visualizations
	Additional Results
	Benefits of the graph structure
	Compared with out-of-distribution generalization methods
	Computation cost
	Benefits of each proposed architecture
	Advantages of using assignment entropy maximization
	Benefits of the designed metric function

	Discussion about Limitations

