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A Appendix

A.1 Proof of Lemma 1 (Row & Column Removal)

Proof. First, we observe that element j in row i, i.e. [A]ij , is set to 0 by the equivalent matrix
transformation of subtracting [A]ij times column i denoted by A:,i divided by the corresponding
diagonal element [A]ii (similarly, elements in column i can be set to 0 by subtracting row i). Thus,
Lemma 1 corresponds to zeroing H−1

pi and H−1
ip for i ̸= p via equivalent matrix transformations, or

in other words, Gaussian elimination of one row and column.

Next, we apply these equivalent matrix transformations to both sides of the obvious equality H−1H =
I, which ultimately gives an equation of the following AB = C form:A1 0 A2

0⊤ a 0⊤

A4 0 A3

 ·
 B1 b1 B2

b4
⊤ b b2

⊤

B4 b3 B3

 =

 I c1 0
c4

⊤ c c2
⊤

0 c3 I

 . (8)

Notice now that the entries of B corresponding to the eliminated row and column in A do not affect
the I and 0 blocks in C since they are always multipled by 0. Thus, the matrix of the Ai blocks must
be the inverse of the Bi block matrix, which is exactly what we wanted to calculate.
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A.2 ExactOBS Global Step Pseudocode

This section provides more details about the global step of the ExactOBS algorithm described in
Section 4 in the form of pseudocode.

Algorithm 2 Let P be a drow × dcol matrix storing the order in which weights are pruned by
ExactOBS in each row and let L be the matrix of the corresponding loss-changes δL. Then the
following procedure determines the global OBS mask with k pruned weights.

Q = {(i, 0) | 1 ≤ i ≤ drow}
for k times do
i, j ← argmin(i,j)∈Q [L]i(j+1) if j < dcol else ∞
Q← Q− {(i, j)}
Q← Q ∪ {(i, j + 1)}

end for
Q contains the number of pruned elements j per row i, which together with P yields the mask.

For increased efficiency, the set Q can be implemented, for example, as a min-heap. Finally, we note
that the slightly simpler method of picking the k smallest elements in L and then counting how many
were picked in each row typically produces essentially the same results as Algorithm 2 in practice
since the loss changes generally increase monotonically as more weights are pruned.

A.3 OBQ-ExactOBS Algorithm Pseudocode

The OBQ version of the ExactOBS algorithm is given below; we emphasize the similarity to the
pruning variant of ExactOBS shown in Algorithm 1.

Algorithm 3 Quantize k ≤ dcol weights from row w with inverse Hessian H−1 = (2XX⊤)−1

according to OBS in O(k · d2col) time.

M = {1, . . . , dcol}
for i = 1, . . . , k do
p← argminp∈M

1
[H−1]pp

· (q(wp)− wp)
2

w← w −H−1
:,p

1
[H−1]pp

· (wp − q(wp))

H−1 ← H−1 − 1
[H−1]pp

H−1
:,pH

−1
p,:

M ←M − {p}
end for

A.4 Further Experiment Details

We now provide some additional details about our experiments in Section 6.

Bias and Variance Correction. Although our bias and variance correction step applied to YOLO
and BERT models is similar to the schemes described in [32] and [1], we now describe our exact
procedure for additional clarity:

1. Sample one batch from the calibration dataset.

2. Perform inference on this batch with the dense model and record after each normalization
layer the mean µℓ

dense and standard deviation σℓ
dense for each channel (for CNNs) / feature

(for Transformers) over this batch.

3. Perform inference on this batch with the compressed model and record the means µℓ
comp and

standard deviations σℓ
comp as in step 2, while already applying mean and variance correction

to the layer outputs Xℓ via:

Y ℓ =
σℓ

dense

σℓ
comp
· (Xℓ − µℓ

comp + µℓ
dense) (9)
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4. Merge (9) into the affine parameters of the respective normalization layer.

We note that it is critical to apply the statistics correction already while computing the compressed
means and variances in step 3 in order to properly account for compounding distribution shifts.

Non-Uniform Sparsity Choices. The method we use for determining per-layer (unstructured or
blocked) sparsity values to reach a certain overall budget with minimal accuracy loss requires a
discrete set of sparsity choices per layer. For both unstructured and blocked sparsity, we follow [10]
and choose a grid where each point prunes the same fraction of remaining weights δ. Hence, sparsity
choice si is given by:

si = 1− (1− δ)i. (10)

In both cases we choose δ = 0.9, which corresponds to pruning 10% of the remaining weights. For
unstructured sparsity, we generate choices until si > 0.99 and for blocked sparsity until si > 0.95.
We note that these sets of sparsity options are chosen to allow for maximum flexibility. However,
in many cases, similar results can likely be achieved with significantly fewer, but more carefully
selected (e.g. using the fact that very high sparsities will typically never be chosen for lower FLOP
reduction targets), options and thus less required database storage.

Activation Quantization. In our GPU-focussed quantization + 2:4 pruning experiments we also
quantize all activations. This is done by simply optimizing the zero point and quantization scale for
one input batch of each layer using exactly the same procedure as for the weights, just on tensor-
instead of channel-level (which is the same LAPQ [34] procedure also used by BRECQ [24]). This is
again done independently for each layer and the corresponding quantization information is stored in
the model database to allow for quick stitching. More advanced schemes such as reoptimizing the
weights to better match the quantized inputs (see Appendix A.8) may be possible, but we found the
simple procedure just described to already work quite well.

A.5 Timing Information

In this section, we provide detailed information about the runtime of our method. All numbers reported
here are for the execution on a single NVIDIA RTX 3090 GPU using our PyTorch implementations.
Pruning runs with a global step are performed with the “less compute” variant described in Figure 1.
Hence an entire database of many pruning levels can be generated in approximately the time shown
for unstructured and block pruning runs here.

PTQ Runtime Comparison. We begin with a runtime comparison of existing state-of-the-art post-
training methods at the task of quantizating the weights of all layers of a ResNet50 to 4 bits. All
timings were collected by executing the authors’ open-source implementations on the same hardware,
the results are shown in Table 6.

Model BitSplit AdaRound AdaQuant BRECQ OBQ

ResNet50 124m 55m 17m 53m 65m

Table 6: Runtimes of post-training quantization methods in minutes (m).

BRECQ, AdaRound and our method OBQ all take around one hour to fully quantize ResNet50, the
former two slightly less and the latter slightly more. Meanwhile, BitSplit takes about twice as long,
whereas AdaQuant is 3× faster. However, as shown in Table 4 in the main text (as well as in Table 9),
AdaQuant is also considerably less accurate than the other methods. In summary, the runtime of
ExactOBS is in line with existing post-training methods. Additional optimizations, like periodically
shrinking the Hessian by omitting rows/columns of pruned/quantized weights, can likely improve the
practical speed further.

Different Compression Types. Next, we study the runtime of ExactOBS applied to different types
of compression problems. We consider a smaller model (YOLOv5s), a medium model (ResNet50)
and a larger one (BERT). The corresponding runtimes for all compression types featured in this work
are listed in Table 7.

In general, we can see that quantization and unstructured pruning take about the same time, which
matches with the fact that the corresponding algorithms are very similar. Correspondingly, 2:4
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Model Quant Unstr 4-block 2:4 Quant 2:4

ResNet50 65m 64m 61m 31m 35m
YOLOv5s 7m 6m 10m 3m 4m
BERT 111m 103m 142m 51m 56m

Table 7: Runtimes of ExactOBS for different models and compression types in minutes (m).

pruning and quantizing a 2:4 pruned model are only approximately half as expensive, which is again
expected as they perform half the work. For YOLO and BERT, blocked pruning is the most expensive
compression type due to the overheads incurred by handling the additional c× c block matrices (see
Section 4). Interestingly, for ResNet50, this is not the case, which is probably related to the highly
non-uniform compute distribution that is discussed in more detail in the next paragraph. Overall, these
results show that our techniques are quick for small models and still reasonably efficient even for
bigger models like BERT, taking less than 2 hours on a single GPU. Finally, we note that ExactOBS is
essentially perfectly parallelizable and its runtime can thus scale linearly with the number of available
GPUs.

Per-Layer Runtimes. Finally, we note that as the time complexity of OBQ implemented via
ExactOBS is O(drow · d3col), i.e. cubic in the column dimension, the overall runtime can often be
dominated by a few particularly large layers. This is illustrated e.g. by ResNet50 where, as shown
in Figure 4, about 75% of the overall runtime is spent in the 3 × 3 convolutions of the last block
(which have dcol ≈ 4500 when unfolded), of which there are just 3 in total. Meanwhile, most of the
earlier layers are quantized within seconds. This means that one could, in many cases, reduce the
overall compression runtime significantly by applying a faster but less accurate method to just those
few bottleneck layers while still achieving more accurate compression on all the others through our
techniques.

Figure 4: Runtime of OBQ for each layer of ResNet50.

A.6 Multiple AdaPrune Iterations

While AdaPrune [18] determined all weights to prune in a single step, the authors of [10] found
that iterating this process in smaller steps can often improve performance significantly, at quickly
increasing computational costs. Our method realizes the very limit of this scheme with one step for
each weight. In this section, we study how OBQ comares against AdaPrune with a varying number
of pruning and full reoptimization steps. For that purpose, we prune BERT to uniform 75% sparsity
by applying AdaPrune in k = 2i steps that, as suggested by [10], all prune the same fraction of
remaining weights.
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Model Sparse ExactOBS AP 1× AP 2× AP 4× AP 8× AP 16×
BERT 75% -7.69 -61.54 -31.67 -19.73 -18.16 -14.89

Table 8: Comparing F1 drops against AdaPrune (AP) with a varying number of pruning/reoptimization
steps.

Our results confirm the finding of [10] that iterating AdaPrune multiple times can significantly
improve results, as we see the F1 drop decreasing quickly with just a few such “recomputations”.
Nevertheless, even after 16 full iterations, which have an overall runtime comparable to ExactOBS, the
accuracy drop for the (iterative) AdaPrune model is still almost 2× larger than the one of ExactOBS,
clearly demonstrating the benefit of our method.

A.7 Independent Quantization Comparison

In our uniform quantization experiments in the main paper (see Table 4), we only compared OBQ with
state-of-the-art sequential methods as those are generally significantly more accurate than independent
ones. However, for completeness, we now additionally compare OBQ with two other methods that
have also been used for independent layer-wise quantization: BitSplit [6] and AdaQuant [19].
Here we consider symmetric per-channel quantization as this is the quantization mode BitSplit
was designed for. Additionally, we compare “raw” quantization performance, that is directly after
independent compression without any additional statistics corrections. The results of the comparison
are summarized in Table 9.

Method ResNet18 – 69.76 ResNet34 – 73.31 ResNet50 – 76.13
4bit 3bit 2bit 4bit 3bit 2bit 4bit 3bit 2bit

BitSplit 67.58 59.25 07.36 71.63 64.91 26.62 74.94 71.76 07.31
AdaQuant 65.45 49.29 00.87 69.49 56.10 00.84 72.79 53.06 00.13

OBQ (ours) 69.18 67.14 48.34 72.85 71.01 51.62 75.50 73.61 46.33

Table 9: Uniform symmetric per-channel weight quantization.

As expected, OBQ clearly outperforms the other two independent methods on all considered models
and bitwidths; at 3 bits by several percent in accuracy and at 2 bits it is the only method that does not
break down completely without any statistics correction.

A.8 Sequential Quantization with OBQ

While we primarily focus on the independent application of OBC which enables quick stitching of
various mixed-compression models, it is also possible to apply OBC sequentially, in similar fashion
to state-of-the-art post-training quantization works [31, 19, 24]. While other methods simply perform
the per-layer optimization by swapping out the dense model inputs Xdense for the corresponding inputs
in the compressed model Xcomp, this does not suffice for OBQ. If the Hessian is computed on Xcomp,
then the initial dense weights are not a local minimum (with 0 gradient) anymore, hence violating a
key assumption of OBQ. Fortunately, this problem can be easily resolved by reoptimizing the dense
weights for the new inputs via the closed form solution of linear regression W⊤ = (XX⊤)−1XY⊤,
after which the gradient is 0 again, and OBQ can be applied correctly. We note that XY⊤ is a
dcol× drow matrix which can be easily accumulated over multiple batches similar to the OBQ Hessian
2XX⊤, without any major increase in memory consumption.

As a demonstration, we apply sequential OBQ to the task of quantizating ResNet18 to various
bitwidths (in the same setup as in Table 4 in the main paper) and report the results in Table 10.
Interestingly, for 4 and 3 bits, the results are essentially the same as for the independent version (with
batchnorm statistics correction); only for the 2 bits setting there seems to be a noticeable benefit,
catching up with the corresponding BRECQ result. A more detailed investigation of this phenomenon
could be a interesting direction for future work.
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Method ResNet18 – 69.76
4bit 3bit 2bit

AdaRound 69.34 68.37 63.37
AdaQuant 68.12 59.21 00.10
BRECQ 69.37 68.47 64.70

OBQ + BNT 69.56 68.69 64.04
OBQ – sequential 69.56 68.68 64.93

Table 10: Comparison with sequential OBQ.

A.9 Impact of ImageNet Data Augmentations

As described in the main submission text, for ImageNet experiments, we expand our calibration set
with standard data augmentations by a factor of 10. The is mainly done to ensure that the 2048×2048
Hessian corresponding to the fully-connected layer of ResNet50 is full rank (which is not the case for
just 1024 images) and thus avoid any hyper-parameter tuning of a dampening constant. Additionally,
it should serve as a demonstration that augmentations are cheap to use in conjunction with our method,
which is not the case for other post-training methods that would require either considerably increased
memory (storing many more activations) or runtime (performing full inference on the entire model
for each batch in the per-layer optimization).

We now study the impact of these augmentations on our results, for which rerun OBQ (in the setup
of Table 4 without them, but using dampening λ = 1 (relative to the values in the Hessian this is
actually a rather small constant) for the last layer of ResNet50. A comparison with the original results
is shown in Table 11.

Method ResNet18 – 69.76 ResNet50 – 76.13
4bit 3bit 2bit 4bit 3bit 2bit

OBQ 69.56 68.69 64.04 75.72 75.24 70.71
OBQ – no aug 69.59 68.51 63.87 75.87 75.06 70.51

Table 11: The impact of data augmentations.

As can be seen, the difference between using and not using data augmentations is generally only
rather minor at ≈ 0.1 − 0.2%. Nevertheless, augmentations are very cheap to use in conjunction
with our methods (they only need to be accumulated into the initial per-layer Hessians once) and at
the same time avoid a dampening hyper-parameter in several cases; therefore we use them in our
ImageNet experiments.

A.10 Sensitivity to Random Seeds

For a fixed calibration dataset, the ExactOBS algorithm is deterministic. For ResNet models, small
amounts of additional randomness are added by the data augmentations that are applied to the
calibration dataset as well as by batchnorm tuning which happens with randomly sampled batches;
for the other models we consider, there is no extra randomness beyond the initial sampling of the
calibration dataset. To assess how much the results of our methods are affected by these random
factors, we quantize ResNet18 to 4bit (symmetric per-channel) and prune ResNet50 to the 2:4 pattern,
for 5 different seeds each, and report mean standard deviation in Table 12.

ResNet18 – 4bit ResNet50 – 2:4

69.28± 0.07 74.74± 0.05

Table 12: Typical random variation of OBC results.
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In conclusion, the variation of results with respect to random seeds is generally very low, here < 0.1%,
which is in line with other post training methods [31, 24].

A.11 Compound Compression Comparisons

In the main paper, we focused on independent comparisons for quantization and pruning since
existing methods are generally only designed for a single compression approach. In this section,
we additionally provide compound comparisons for our GPU and CPU scenarios which combine
sparsity and quantization. In particular, we construct a strong baseline by substituting OBC in our
mixed setup with the best independent layer-wise pruning and quantization methods, AdaPrune and
AdaQuant, respectively. We now provide detailed comparisons for all experiments of Figure 3 from
the main text, in Figures 5, 6 and 7.

In summary, it appears that, as expected, the accuracy improvements for the individual compression
types shown by the experiments in Section 6 also transfer to the combined setting. More concretely,
for the reduction target ranges highlighted in the main paper, that is 12− 14× for ResNet models and
7− 8× for others, there is a consistent 0.5− 1.5 point gap between OBC and the AdaPruneQuant
baseline. For lower BOP reduction / inference time speedup targets, the gap is typically smaller, which
is expected as only the less sensitive layers have to compressed more than to the generally very easy
8-bit level. In contrast, the gaps are largest for the highest targets that also require high compression
of sensitive layers as this is where the effects of OBC’s more accurate layer-wise compression become
particularly noticeable.
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Figure 5: Mixed quantization and 2:4 pruning for various BOP reduction targets on ResNet models.
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Figure 6: Mixed quantization and 2:4 pruning for various BOP reduction targets on BERT models.
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Figure 7: (a) & (b): Mixed quantization and 2:4 pruning for various BOP reduction targets on YOLO
models. (c) Block sparsity & quantization for real-time CPU inference speedup targets on ResNet50.
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