
A Supplementary Material

The appendix presents additional details of our tracker in terms of design and experiments, as follows.

• A.1 Volume of Language-Annotated Training Data
We analyze how the volume of language-annotated training data affects tracking perfor-
mance.

• A.2 Different Language Models
We analyze and compare different language embedding models (i.e., BERT [3] and GPT-
2 [7]) in our method.

• A.3 Details of The Proposed Asymmetrical Searching Strategy (ASS)
We present more details about the pipeline of our proposed ASS.

• A.4 Comparison of ASS and LightTrack [9]
We show efficiency comparison of our ASS and another NAS-based tracker LightTrack [9].

• A.5 Visualization of Tracking Result and Failure Case
We visualize the tracking results and analyze a failure case of our tracker.

• A.6 Activation Analysis of Different Language Descriptions
We study the impact of different language descriptions on tracking performance by visualiz-
ing their activation maps.

• A.7 Attribute-based Performance Analysis
We conduct attribute-based performance analysis on LaSOT [4], and the results demonstrate
the robustness of our tracker in various complex scenarios.

A.1 Volume of Language-Annotated Training Data

Language-annotated data is crucial for our proposed tracker in learning the robust vision-language
representations. We analyze the influence of training with different volumes of language-annotated
data and the results are presented in Tab. 8a. The default setting in the manuscript is noted as “100%”.
For settings of “50%” and “75%”, the reduced part is filled with the data without language annotation,
which keeps the whole training data volume. It shows that as the language-annotated training pairs
reduced, the performance on LaSOT [4] gradually decreases (63.9%→ 61.8%→ 58.9% in SUC),
demonstrating that more language-annotated data helps improve model capacity.

A.2 Different Language Models

As described in Sec. 3.1 of the manuscript, the language model of BERT [3] is adopted to abstract the
semantics of the sentence, which directly relates to the learning of vision-language representation. To
show the influence of different language models, we compare the results of using BERT [3] and GPT-
2 [7], as shown in Tab. 8b. An interesting finding is that GPT-2 [7] even decreases the performances,
which is discrepant with recent studies in natural language processing. One possible reason is that the
bi-directional learning strategy in BERT [3] can better capture the context information of a sentence
than the self-regression in GPT-2 [7].

Table 8: Evaluation for different settings on LaSOT: (a) training with different volumes of language-
annotated data, (b) the influence of different language models.

(a)

Settings SUC (%) P (%)
50% 58.9 61.4
75% 61.8 64.9

100% 63.9 67.9

(b)

Settings SUC (%) P (%)
GPT-2 [7] 59.3 62.3
BERT [3] 63.9 67.9

1



A.3 Details of The Proposed Asymmetrical Searching Strategy (ASS)

As mentioned in Sec. 3.2 of the manuscript, ASS is designed to adapt the mixed modalities for
different branches by simultaneously searching the asymmetrical network N = {φt, φs, φm}. The
pipeline of ASS consists of two stages. The first stage is pretraining to search architecture and the
second one is to retrain it for our VL tracking, as summarized in Alg. 1.

Algorithm 1 Algorithm for Asymmetrical Searching Strategy.
1: /* Search */
2: Input: Network N , search space A, max iteration T , random sampling Γ,

Train dataset: Dtrain = {Xn, yn}Nn=1, Xn = {xv
n, x

l
n(optional)},

Val dataset: Dval = {Xm, ym}Mm=1,
For videos without language annotation: xl =“0-tensor” or “template-embedding”.

3: Initialize: Initialize the network parameters θN .
4: for i = 1 : T do
5: for n = 1 : N do
6: if language annotation exists then
7: f l

n = BERT (xl
n);

8: else if xl
n =“0-tensor” then

9: f l
n = zeros_like[BERT (xl

n)]; // Default setting without language annotation
10: else if xl

n =“template-embedding” then
11: f l

n = ROI(xv
n); // Robust setting without language annotation

12: end if
13: a = Γ(A), pn = N (xv

n, f
l
n; a);

14: end for
15: Update the network parameters θN with gradient descent:
16: θaN ← θaN − α∂ 1

N

∑N
n=1 L(pn, yn; θaN )/∂θaN ;

17: end for
18: abest = EvolutionaryArchitectureSearch(A,Dval; θN ); [6]

19: Initialize: Initialize the network parameters θN .
20: while not converged do
21: for n = 1 : N do
22: line 6 - 12
23: pn = N (xv

n, f
l
n; abest);

24: end for
25: Update the network parameters θN with gradient descent:

θabest

N ← θabest

N − α∂ 1
N

∑N
n=1 L(pn, yn; θ

abest

N )/∂θabest

N ;
26: end while
27: Output: network parameters θN , abest.

28: /* Retrain */
29: Train the searched networks θN , abest;
30: /* Inference */
31: Track the target by y = argmax p.

The pretraining stage (line 3-18 in Alg. 1) contains four steps: 1) ASS first initializes the network
parameter θN of N . Concretely, φt and φs reuse the pretrained supernet of SPOS [6], while φm

copies the weight of the last layer in φt and φs. This reduces the tedious training on ImageNet [2]
and enables quick reproducibility of our work; 2) The language model [3] processes the annotated
sentence xl to get corresponding representation f l. If the language annotations are not provided, two
different strategies are designed to handle these cases (i.e., “0-tensor” or “template-embedding”,
illustrated in Sec. 4.4 and Tab. 5c of the manuscript); 3) Then, θN is trained for T iterations. For
each iteration, a subnet a is randomly sampled from search space A by the function Γ and outputs
the predictions p. The corresponding parameters of a would be updated by gradient descent; 4) After
pretraining, Evolutionary Architecture Search [6] is performed to find the optimal subnet abest. The
rewarding for evolutionary search is the SUC (success score) on validation data Dval. The retraining

2



stage (line 19-27 in Alg. 1) is to optimize the searched subnet abest following the training pipeline of
baseline trackers [5, 1].

Tab. 9 displays the detailed configurations of the searched asymmetrical architecture, providing a
complement to Tab. 1 in the manuscript.

Table 9: Configurations of the asymmetrical architecture learned by ASS.
Stem Stage1 Stage2 Stage3 Stage4 Output

Layer Name Convolution
Block

BlockASS

×3 ModaMixer BlockASS

×3 ModaMixer BlockASS

×7 ModaMixer BlockASS

×3 ModaMixer Convolution
Block

Parameter Pin = 2
Cin = 16

P1 = 2
C1 = 64

P = 1
C = 64

P2 = 2
C2 = 160

P = 1
C = 160

P3 = 1
C3 = 320

P = 1
C = 320

P4 = 1
C4 = 640

P = 1
C = 640

Pout = 1
Cout = 256

Output Size H
2 ×

W
2

H
4 ×

W
4

H
8 ×

W
8

H
8 ×

W
8

H
8 ×

W
8

H
8 ×

W
8

A.4 Comparison of ASS and LightTrack [9]

Despite greatly boosting the tracking performance, Neural Architecture Search (NAS) brings com-
plicated training processes and large computation costs. Considering the complexity, we ease
unnecessary steps of ASS to achieve a better trade-off between training time and performance. Taking
another NAS-based tracker (i.e., LightTrack [9]) as the comparison, we demonstrate the efficiency of
our proposed ASS.

As illustrated in Tab. 10, NAS-based trackers usually need to first pretrain the supernet on Ima-
geNet [2] to initialize the parameters, which results in high time complexity in training. LightTrack
even trains the backbone network on ImageNet [2] twice (i.e., the 1st and 4th steps), which heavily
increases the time complexity. By contrast, our ASS avoids this cost by reusing the pre-trained
supernet from SPOS, which is much more efficient.

Table 10: Pipeline comparison of ASS and LightTrack in term of time complexity.
Steps LightTrack [9] ASS in VLT (Ours)

1st step Pretraining backbone supernet
on ImageNet [2]

Reusing trained backbone
supernet of SPOS [6]

2nd step Training tracking supernet
on tracking datasets

Training tracking supernet
on tracking datasets

3rd step Searching with evolutionary
algorithm on tracking supernet

Searching with evolutionary
algorithm on tracking supernet

4th step Retraining searched backbone
subset on ImageNet [2]

Reusing trained backbone
supernet of SPOS [6]

5th step Finetuning searched tracking
subset on tracking datasets

Finetuning searched tracking
subset on tracking datasets

Network searching cost ∼40 Tesla-V100 GPU days ∼3 RTX-2080Ti GPU days

A.5 Visualization of Tracking Result and Failure Case.

As shown in Fig. 5, the proposed VLTSCAR delivers more robust tracking under deformation,
occlusion (the first row) and interference with similar objects (the second row). It demonstrates the
effectiveness of learned multimodal representation, especially in complex environments. The third
row shows the failure case of our tracker. In this case, the target is fully occluded for about 100
frames and distracted by similar objects, leading to ineffectiveness of our tracker in learning helpful
information. A possible solution to deal with this is to apply a global searching strategy, and we leave
this to future work. Fig. 6 shows that our VLTTT achieves the best performance compared to other
SOTAs. It demonstrates the resilience of our tracker and effectiveness of proposed multimodal VL
tracking in complex environments.

3



Figure 5: The first two rows show the success of our tracker in locating target object in complex
scenarios, while the third row exhibits a failure case of our method when the target is occluded for a
long period (with around 100 frames).

Figure 6: Results visualization of different trackers. The comparison shows that our VLTTT could
perform robust tracking under complex scenarios (e.g., Deformation, Disappearance, Occlusion and
Similar Interferences).

A.6 Activation Analysis of Different Language Descriptions

Language description provides high-level semantics to enhance the target-specific channels while
suppressing the target-irrelevant ones. As presented in Fig. 7, we show the effect of different words
to evidence that language helps to identify targets. The first row shows that the VLTSCAR without
language description focuses on two birds (red areas), interfered by the same object class. When
introducing the word “bird”, the response of the similar object is obviously suppressed. With a more
detailed “black bird”, the responses of distractors almost disappear, which reveals that more specific
annotation can help the tracker better locate the target area. Furthermore, we also try to track the
target with only environmental description, i.e., “standing on the ground”. The result in column 5
shows that the background is enhanced while the target area is suppressed. The comparison evidences

4



Figure 7: Activation visualization of VLTSCAR with different language descriptions using Grad-
CAM [8]. The general language description endows our VL tracker the distinguishability between
the target and interferences.

that the language description of object class is crucial for the tracker to distinguish the target from the
background clutter, while the mere description of the environment (the fourth column) may introduce
interference instead. The last column shows the activation maps with full description, where the
tracker can precisely locate the target, demonstrating the effectiveness of the learned unified-adaptive
vision-language representation.

A.7 Attribute-based Performance Analysis

Fig. 8 presents the attribute-based evaluation on LaSOT [4]. We compare VLTSCAR and VLTTT with
representative state-of-the-art algorithms, as shown in Fig. 8a. It shows that our methods are more
effective than other competing trackers on most attributes. Fig. 8b shows the ablation on different
components of VLTSCAR, which evidences that the integration of ModaMixer and ASS is necessary
for a powerful VL tracker.

(a) Comparison with different trackers. (b) Ablation on components of VLTSCAR.

Figure 8: AUC scores of different attributes on the LaSOT.

5



References
[1] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer tracking. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. 3

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2009. 2, 3

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 1, 2

[4] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and
Haibin Ling. LaSOT: A high-quality benchmark for large-scale single object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. 1, 5

[5] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. SiamCAR: Siamese fully
convolutional classification and regression for visual tracking. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020. 3

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path
one-shot neural architecture search with uniform sampling. In European Conference on Computer Vision,
2020. 2, 3

[7] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 2019. 1

[8] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, 2017. 5

[9] Bin Yan, Houwen Peng, Kan Wu, Dong Wang, Jianlong Fu, and Huchuan Lu. Lighttrack: Finding
lightweight neural networks for object tracking via one-shot architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. 1, 3

6


