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A An overview example

To illustrate different components of the GNAT model, here we present a toy example of designing a
speech recognition for finite alphabet Σ = {a, b}. Given an input feature sequence x = x1 . . . xT , we
wish to predict the corresponding output label sequence y = y1 . . . yU , yi ∈ Σ. Our objective is to
create a conditional probabilistic model P (y|x) which assigns the highest probability to the correct
label sequences for any given feature sequence. We construct a GNAT model with the following
components:

• Context dependency: 2-gram
• Alignment lattice: frame dependent
• Weight function: per-state linear projection, streaming

Next we elaborate details of each of these modules and how they are integrated to create the final
space the recognition lattice Aθ,x and the probabilistic model P (y|x) as described in Section 3.

A.1 Context Dependency FSA

Figure 2 presents the 2-gram context dependency C2. The set of states for this space are the initial
state, 1-gram states and 2-gram states:

QC =
{
ε, a, b, aa, ab, ba, bb

}
With the lexicographic order, these states are indexed as follows:

state state index
ε 0
a 1
b 2
aa 3
ab 4
ba 5
bb 6

For this particular FSA, the transitions space is

EC =
{

(q, y, q′) | q ∈ Q, y ∈ Σ)
}

where q′ is the suffix of qy with length at most 2. All 14 transitions of this space are listed in the
following table:

from state label to state
ε a a
ε b b
a a aa
a b ab
b a ba
b b bb
aa a aa
aa b ab
ab a ba
ab b bb
ba a aa
ba b bb
bb a ba
bb b bb

A.2 Alignment Lattice FSA

Figure 3 depicts a frame dependent alignment lattice L4 for four frames feature sequence x. The
states of this space are:

QT =
{

0, 1, 2, 3, 4
}
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Figure 2: 2-gram context-dependency automaton C2 for Σ = {a, b}.
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Figure 3: Frame dependent alignment lattice with T = 4.

where 0 is the initial state and 4 is the final state. Every path starting from the initial state in this
automaton corresponds to one possible alignment sequence of the input feature sequence. The
example FSA in Figure 1b encodes 34 = 81 possible alignment sequences. An alignment path εaεb
corresponds to the following sequence of transitions in L4:

(0, ε, 1), (1, a, 2), (2, ε, 3), (3, b, 4)

A.3 Weight Function

The weight function ωθ,x : QT ×QC × (Σ ∪ ε)→ K. ωθ,x is the only trainable component of the
GNAT model which assigns a weight to every transition of the recognition lattice Aθ,x. We first
feed x = x1, ..., x4 into an encoder to obtain hidden activations h = h1, ..., h4 of dimension D. The
encoder can be any neural architecture such as DNNs, CNNs, RNNs or Transformers. Since we are
interested in streaming weight function for this example, we need to make sure the encoder is also
streaming. This means ht can only depends on x1:t. Finally we define a D × 3 matrix Wqc and a
3-dim bias vector bqc for any qc ∈ Qc. The weight function is then defined as3:

ωθ,x1:t
(qa = t, qc, y) = exp (Wqc [y, :] · ht + bqc [y])

where Wqc [y, :] is the row of Wqc corresponding to label y ∈ Σ ∪ {ε}. The total number of trainable
parameters is 7×D × 3 + 7× 3 parameters plus the number of parameters of the encoder function.

A.4 The recognition lattice Aθ,x

Given the context dependency FSA C2, the frame dependent alignment lattice L4 and the weight
function ωθ,x, we are ready to derive the recognition lattice Aθ,x. The state space has 5× 7 states:

Qθ,x =
{

(t, qc) | 0 ≤ t ≤ 4, qc ∈ Qc
}

3Note that for simplicity we use real semiring for all the score calculations in this example.
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The transitions in this space is specified by the state it is originated from, (t, qc), the label y ∈ Σ∪{ε},
weight ωθ,x(t, qc, y) and the state the transition is ended to (t+ 1, q′c). For the alignment sequence
of our example, εaεb, the transitions are:

from label weight to
(0, ε) ε ωθ,x1

(qa = 0, qc = ε, y = ε) = exp (W0[0, :] · h1 + b0[0]) (1, ε)
(1, ε) a ωθ,x1:2

(qa = 1, qc = ε, y = a) = exp (W0[1, :] · h2 + b0[1]) (2, a)
(2, a) ε ωθ,x1:3

(qa = 2, qc = a, y = ε) = exp (W1[0, :] · h3 + b1[0]) (3, a)
(3, a) b ωθ,x1:4

(qa = 3, qc = a, y = b) = exp (W1[2, :] · h4 + b1[2]) (4, ab)

The product of the above weights is the score that the GNAT model assigns to the features sequence
x and alignment sequence εaεb:

score(x, εaεb) = ωθ,x1(0, ε, ε)ωθ,x1:2(1, ε, a)ωθ,x1:3(2, a, ε)ωθ,x1:4(3, a, b)

The GNAT model formulates the posterior probability P (y|x) by ratio of two quantities:

• numerator: sum of all the score(x, z) where z is an alignment between x and y. For example
if y = ab, there are only 6 possible alignments: abεε, aεbε, aεεb, εabε, εaεb, εεab

• denominator: sum of all the score(x, z) where z can be any (|Σ| + 1)T = 34 = 81
sequences.

Since the numerator computation is a special case of the denominator, we only present the denominator
calculation. To follow the computation presented in Section C, we first define forward variable αt
which is a 7-dim real-valued vector where αt[j] is the total alignment scores reaching to state index j
(corresponding to the state indices in Qc) at time t:

αt =
(t, i) (t, a) (t, b) (t, aa), (t, ab) (t, ba) (t, bb)

( )αt[0] αt[1] αt[2] αt[3] αt[4] αt[5] αt[6]

the initial state α0 is a 1-hot vector with α0[j] = 1 iff j = 0, the initial state. At every time frame t,
the transition weight matrix Ωt,Σ is defined for all the transitions in EAθ,x where label is an element
of Σ. This matrix is a structured matrix with only |Σ| = 2 non-zero elements per row:

Ωt,Σ =

(t, ε) (t, a) (t, b) (t, aa), (t, ab) (t, ba) (t, bb)



(t− 1, ε) 0 ω(t, ε, a) ω(t, ε, b) 0 0 0 0
(t− 1, a) 0 0 0 ω(t, a, a) ω(t, a, b) 0 0
(t− 1, b) 0 0 0 0 0 ω(t, b, a) ω(t, b, b)

(t− 1, aa) 0 0 0 ω(t, aa, a) ω(t, aa, b) 0 0
(t− 1, ab) 0 0 0 0 0 ω(t, ab, a) ω(t, ab, b)
(t− 1, ba) 0 0 0 ω(t, ba, a) ω(t, ba, b) 0 0
(t− 1, bb) 0 0 0 0 0 ω(t, bb, a) ω(t, bb, b)

Similarly we denote Ωt,ε to be the transition weight matrix for all the transitions in EAθ,x where label
is ε. This matrix is a diagonal matrix corresponding to the weights of the self loops:

Ωt,ε =

(t, ε) (t, a) (t, b) (t, aa), (t, ab) (t, ba) (t, bb)



(t− 1, ε) ω(t, ε, ε) 0 0 0 0 0 0
(t− 1, a) 0 ω(t, a, ε) 0 0 0 0 0
(t− 1, b) 0 0 ω(t, b, ε) 0 0 0 0

(t− 1, aa) 0 0 0 ω(t, aa, ε) 0 0 0
(t− 1, ab) 0 0 0 0 ω(t, ab, ε) 0 0
(t− 1, ba) 0 0 0 0 0 ω(t, ba, ε) 0
(t− 1, bb) 0 0 0 0 0 0 ω(t, bb, ε)

For our model, the forward variable αt can be calculated given αt−1 and the above weights matrices
as:

αt = α′t−1(Ωt,Σ + Ωt,ε)

since every transition at time t + 1 is either an ε transition or a non-ε transition. Here α′t−1 is the
transpose of forward variable αt−1.
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Given the above iterative equation, the forward variable at time 4 is equal to:

α4 = α0(Ω1,Σ + Ω1,ε)(Ω2,Σ + Ω2,ε)(Ω3,Σ + Ω3,ε)(Ω4,Σ + Ω4,ε)

and the denominator of the GNAT model is equal to
∑6
j=0 α4[j]. Replacing the real semiring with

the tropical semiring in above calculation will allow us to find the most likely alignment sequence.

B A Modular Framework

In this section, we demonstrates how the existing and common neural speech recognition models
can be expressed within our proposed framework. These models can be divided into two categories:
models with zero-context recognition lattices and models with infinite context recognition lattices.

B.1 Zero-context Recognition lattice

B.1.1 Cross-Entropy with Alignments

The conventional cross-entropy models with feed-forward neural architectures [31] define the condi-
tional probability of label sequence y given feature sequence x by:

Pθ(y|x) =

T∏
t=1

Pθ(yt|xt)

where probability factors Pθ(yt|xt) are derived by some neural architecture parameterized by θ:

Pθ(y = yt|xt) =
exp(W [yt, :] · ht + b[yt])∑
y∈Σ exp(W [y, :] · ht + b[y])

where ht is the encoder activation of dimension D at time frame t, W is a weight matrix of shape
|Σ| ×D and b is a |Σ|-dim bias vector.

The equivalent GNAT model is configured as follow:

• Context dependency: 0-gram C0

• Alignment lattice: frame dependent without ε transitions
• Weight function (here ε is the initial and only state of C0):

– ωθ,x(qa = t, qc = ε, y = yt) , Pθ(y = yt|xt)
– Locally normalized
– Streaming

The more advanced cross-entropy models use recurrent architectures or transformers as encoder [39].
The only difference between the GNAT equivalent of these models and above configuration is that
whether the encoder is streaming or not.

B.1.2 Supporting CTC Style Label Deduplication

The standard CTC model [14] is very similar to a GNAT model using a frame dependent alignment
lattice and a 0-gram context dependency. One key difference is that CTC introduces a deduplication
process when turning its model output sequence to a label sequence. Each model output of a CTC
model is either a lexical label from Σ, or the special blank (ε) label. To obtain the label sequence,
two steps are applied on the model output in order,

1. Maximal consecutive repeated non-blank labels are merged into one (e.g. turning abbc into
abc, or abbεb into abεb);

2. All the ε labels are removed.

As a comparison, paths on the alignment lattice of the GNAT models in the main paper is equivalent
to the model outputs in CTC, whereas the ε-free label sequence seen by the context dependency is
equivalent to the label sequence in CTC. To support the deduplication of repeated non-blank labels,
we need to introduce a finite state transducer into our series of finite state machine compositions.
Similar to a finite state automaton, a weighted finite-state transducer (WFST) T = (Σ, Q, i, F, ρ, E)
over a semiring K is specified by a finite alphabet Σ, a finite set of states Q, an initial state i ∈ Q, a
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Figure 4: An unweighted FST for CTC style label deduplication with Σ = {a, b}.

set of final states F ⊆ Q, a final state weight assignment ρ : F → K, and a finite set of transitions
E.4 The meaning of Σ, Q, i, F , and ρ are identical to those of a WFSA. The set of transitions E is
instead a subset of Q× (Σ ∪ {ε})× (Σ ∪ {ε})×K×Q, i.e. containing a pair of input/output labels
instead of just one. A WFSA can be viewed as a WFST with identical input/output labels on each
arc, and similar to WFSA intersection, a series of WFST can be composed into a single WFST. We
refer the readers to [28] for a full description of WFST and the composition algorithm. Figure 4 is an
example unweighted FST, when composed with another input FSA or FST, performs the CTC style
label deduplication. More generally, the unweighted label deduplication transducer D of vocabulary
Σ consists of

• States QD = Σ ∪ {ε}, iD = ε, FD = QD
• Transitions E = {(p, x, x, x)|p, x ∈ QD} ∪ {(x, x, ε, x)|x ∈ Σ}

Given a context dependency FSA C, an alignment lattice FSA LT , and the weight function ωθ,x, as
defined in Section 3.3, a GNAT model with CTC style label deduplication induces a WFST Tθ,x as
follows,

Qθ,x = QT ×QD ×QC
iθ,x = (iT , iD, iC)

Fθ,x = FT × FD × FC

ETθ,x =
{(

(qa, qd, qc), y, y, ωθ,x(qa, qc, y), (q′a, q
′
d, q
′
c)
)
|

y ∈ Σ, (qa, y, q
′
a) ∈ ET , (qd, y, y, q

′
d) ∈ ED, (qc, y, q

′
c) ∈ EC

}
∪
{(

(qa, qd, qc), ε, ε, ωθ,x(qa, qc, ε), (q
′
a, q
′
d, qc)

)
|

(qa, ε, q
′
a) ∈ ET , (qd, ε, ε, q

′
d) ∈ ED, qc ∈ QC

}
∪
{(

(qa, qd, qc), y, ε, ωθ,x(qa, qc, y), (q′a, q
′
d, qc)

)
|

y ∈ Σ, (qa, y, q
′
a) ∈ ET , (qd, y, ε, q

′
d) ∈ ED

}
ρTθ,x(q) = 1̄, ∀q ∈ Fθ,x

In other words, the topology of Tθ,x is the same as the following cascade of FST compositions,

1. D · C treating output ε labels in D as empty (i.e. standard FST composition).
2. LT · (D · C) treating ε transitions in LT and input ε labels in (D · C) as regular labels.

and the transition weights are defined using ωθ,x just like the GNAT models in the main paper.

When implemented naively, CTC style label deduplication causes a |QD| = (|Σ| + 1) blow up in
|Qθ,x|. However, by inferring about states in QD from states in QC , we can greatly reduce the
number of states needed. For each state x ∈ Σ in QD, we know the last non-blank label observed
when reaching state x must be label x. Similarly, for context dependencies we care about (n-gram
and string), there is a unique label x(qc) for all incoming arcs of each non-start state qc (start states do

4Here we make the simplification that the input and output vocabularies are identical, i.e. Σ.
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not have any incoming arcs in these context dependencies). Thus, the states in Qθ,x that are reachable
from the start must match one of the following patterns,

• (qa, ε, qc), ∀qa ∈ QA, qc ∈ QX
• (qa, x(qc), qc), ∀qa ∈ QA, qc ∈ QX \ {iX}

This means the actual number of states we shall visit in computing the shortest distance is only
2|QA||QC |.

B.2 Infinite Recognition Lattices with Finite Intersection

To describe models such as Listen, Attend and Spell and Recurrent Neural Transducer in our
framework, we need to allow the complete recognition lattice to be infinite, because of the possibly
infinite context dependency or alignment lattices admitted by such models.

Despite the infinite size of the context dependency and alignment lattices, implying an infinite size of
the recognition lattice, the recognition lattice intersected with a reference string still produces a finite
state machine. This is why locally normalized training is feasible for such models. However, their
globally normalized counterparts are in general not well defined because the denominator is usually
unbounded.

B.2.1 Listen, Attend and Spell (LAS)

This model formulates the posterior probability by directly applying chain rule (Equation 1 in [8]):

Pθ(y|x) =
∏
l

Pθ(yl|x,y<l)

the posterior factors are defined as (Equations 6 to 8 of [8]):

Pθ(yl|x,y<l) = CharacterDistribution(sl, cl)

where

h = Listen(x)

sl = RNN(sl−1, yl−1, cl−1)

cl = AttentionContext(sl,h)

here Listen is a bidirectional encoder function, AttentionContext is the attention network (Equations
9 to 11 of [8]).

The equivalent GNAT model is configured as follow:

• Context dependency: ∞-gram
• Alignment lattice: label dependent since the probability factorizes only on label sequence.
• Weight function:

– ωθ,x(qa = l, qc = q, y = yl) , Pθ(y = yl|x,y<l)
– Locally normalized
– Non-streaming

B.2.2 Recurrent Neural Transducer

The RNNT model formulate the posterior probability as marginalization of alignment sequences
(Equation 1 in the RNNT paper [13]):

Pθ(y|x) =
∑

z∈B−1(y)

Pθ(z|x)

where z = z1, · · · , zT+L is an alignment sequence, zi ∈ Σ∪{ε}, T is the number of acoustic frames
and L is the number of labels. The function B(z) = y removes the epsilons from the alignment
sequence. The alignment posterior is factorized along the alignment path as:

Pθ(z|x) =

T+L∏
j=1

Pθ(zj |x, z<j)
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and finally RNNT make the following assumption:

Pθ(zj |x, z<j) = Pθ(zj |x, B(z<j) = y<u)

which means if the prefix of two alignments be equal after epsilon removal, the model assigns same
expansion probability for the next alignment position. The inner terms in the above equation is
defined (Equations 12 to 15 of the RNNT paper):

Pθ(zj |x, B(z<j) = y<u) =
exp(W [zj , :] · (hj−u + gu) + b[zj ])∑

y∈Σ∪{ε} exp(W [y, :] · (hj−u + gu) + b[y])

where hj−u is the encoder activation at time frame j − u (referred to as the transcription network in
[13]) and gu is the output of the prediction network which is a simple stack of RNNs.

The equivalent GNAT model is configured as follow:

• Context dependency: ∞-gram
• Alignment lattice: ∞-constrained label and frame dependent
• Weight function:

– ωθ,x(qa = (t, u), qc = q, y = zt+u+1) , Pθ(zt+u+1|x, B(z<t+u+1) = y<u)
– locally normalized
– non-streaming

While the original definition of the RNNT model is based on non-streaming encoder (transcription
network), this model is widely used for streaming applications by using a streaming encoder. This is
in contradiction of the forward-backward derivations in the original paper which explicitly assumes
dependency on the whole sequence for any position of alignment sequence (Equation 17 of [13])

Similar to RNNT, the hybrid autoregressive transducer (HAT) [40] model can be also configured in the
GNAT framework with the same parametrization as RNNT. The only difference is the weight function.
The HAT model defines different probabilities for label transitions and ε-transitions (duration model
in [40]):

Pθ(zj |x, B(z<j) = y<u) =

{
bj−u,u zj = ε

(1− bj−u,u)Pθ (yu+1|X,B(z<j) = y<u) zj ∈ Σ
(1)

where bt,u is a sigmoid function defined in Equation 6 of [40].

C Accelerator-Friendly Computation

The standard shortest distance/path algorithm for acyclic WFSA [27] can be used for training
(computing W (A) for some acyclic A) and inference of a GNAT model. To compute W (A) for an
acyclic WFSA A, we maintain the following forward weight αq for each state q in QA:

αq =

{
1̄ if q = iA,⊕

(p,y,w,q)∈EA αp ⊗ w else.

The weight of A is then W (A) =
⊕

q∈FA αq ⊗ ρA(q). The recurrence in the definition of αq can be
computed by visiting states in QA in a topological order.

To make better use of the compute power of modern accelerator hardware, we observe the following
properties of the C or LT presented so far that enable us to use a more vectorized variant of the
shortest distance algorithm in Figure 5:

• From any topological ordering on QT , we can derive a topological ordering on Qθ,x.
• The n-gram context dependency FSA Cn is deterministic, namely leaving any state there is

no more than 1 transition for any label y ∈ Σ, and there is no ε-transition.
• For all three types of alignment lattices, for any non-final state q ∈ QT \ FT , there is a

unique next state succ(q) for transitions leaving q consuming any label y ∈ Σ.

Center to an efficient implementation of the algorithm in Figure 5 is the function nextC . This
function receives as input the current forward weight vector ᾱqa for states (qa, qc), ∀qc ∈ QC , and
the transition weights for leaving these states via label transitions, and returns the forward weights
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{Initialize the length |QC | forward weight vectors ᾱqa}
for all qa ∈ QT do
ᾱqa ← [0̄, . . . , 0̄]

end for
ᾱiT [iC ]← 1̄
{Compute ᾱqa for qa 6= iT }
for all qa ∈ QT in topological order do

{Ω is a [|QC |, |Σ|+ 1] matrix}
Ω← ω̄θ,x

(
qa, QC ,Σ ∪ {ε}

)
if qa has outgoing label transitions to q′a = succ(qa) then
ᾱq′a ← ᾱq′a⊕̄nextC

(
ᾱqa ,Ω[:,Σ]

)
end if
for all q′a such that (qa, ε, q

′
a) ∈ ET do

ᾱq′a ← ᾱq′a⊕̄
(
ᾱqa⊗̄Ω[:, ε]

)
end for

end for
return

⊕
qa∈FT ,qc∈FC ᾱqa [qc]

Figure 5: The vectorized shortest distance algorithm for Aθ,x. We denote ⊕̄, ⊗̄, and ω̄θ,x the
vectorized versions of the corresponding operations.

{Inputs: ᾱqa and Ω[:,Σ]}
if n = 1 then

{QCn contains only iCn}
return ᾱqa⊗̄

⊕
y∈Σ Ω[iCn , y]

end if
{Initialize length |QCn | vector ᾱ}
ᾱ← [0̄, . . . , 0̄]

{States in QCn are numbered from 0 to |QCn | − 1 =
∑n−1
i=1 |Σ|i following the lexicographic

order}
l← 0
for i = 0 to n− 2 do
h← l + |Σ|i
ᾱ[l · |Σ|+ 1 : h · |Σ|+ 1]← flatten(Ω[l : h,Σ])
l← h

end for
for i = 0 to |Σ| − 1 do
ᾱ[l :]← ᾱ[l :]⊕̄flatten(Ω[l + i · |Σ|n−2 : l + (i+ 1) · |Σ|n−2,Σ])

end for
return ᾱ

Figure 6: Specialized implementation of nextCn . The flatten function flattens a matrix into a vector
by joining the rows.

going to states (q′a, q
′
c) by taking the (qc, y, q

′
c) transitions for y ∈ Σ. In other words, nextC [q′c] =⊕

(qc,y,q′c)∈EC
ᾱqa [qc]⊗ Ω[qc, y]. The n-gram context dependency Cn allows a particularly simple

and efficient implementation of nextCn , as outlined in Figure 6. The key observation is that when
we number the states in QC following the lexicographic order, the |Σ| transitions leaving the same
qc lead to states in a consecutive range [σ(qcy0), . . . , σ(qcy|Σ|−1)], where [y0, . . . , y|Σ|−1] are the
lexicographically sorted labels of Σ, and σ(s) is the suffix of label sequence s of length up to n− 1.

During training, we also need to compute the shortest distance D(Aθ,x ∩ y). We note the algorithm
in Figure 5 can also be used for this purpose since (LT ∩ C) ∩ y = LT ∩ (C ∩ y), and we simply
need to substitute C with C ∩ y in the algorithm.
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D Memory and Computation Time Benchmarks

The memory and computation benchmark of our implementation for the GNAT model is presented in
Table 2. We present benchmarks for training and inference for different configurations of the GNAT
model:

• Context dependency: 0-gram, 1-gram and 2-gram

• Alignment lattice: frame dependent, 1-constrained label and frame dependent

• Weight functions: Per-state linear projection (unshared), Shared linear projection with
per-state embedding (shared-emb), Shared linear projection with RNN state embedding
(shared-rnn)

context alignment weight function memory [M] time [sec]
dependency lattice type normalization train decode train decode

0-gram
frame

unshared local 126.47 64.97 0.15 0.02
global 124.58 65.19 0.14 0.02

shared-emb local 124.20 65.12 0.20 0.02
global 124.64 65.19 0.18 0.02

shared-rnn local 124.43 65.16 0.20 0.02
global 124.88 65.29 0.18 0.02

label frame

unshared local 174.62 65.00 0.16 0.02
global 172.21 65.20 0.18 0.04

shared-emb local 172.32 65.15 0.20 0.02
global 172.25 65.17 0.22 0.03

shared-rnn local 172.55 65.19 0.20 0.02
global 172.49 65.27 0.22 0.04

1-gram
frame

unshared local 144.04 64.95 0.17 0.044
global 146.23 65.51 0.19 0.05

shared-emb local 156.02 70.42 0.22 0.05
global 158.12 70.52 0.22 0.05

shared-rnn local 157.04 70.67 0.23 0.05
global 159.15 70.76 0.23 0.05

label frame

unshared local 192.19 64.98 0.18 0.04
global 192.70 65.19 0.27 0.07

shared-emb local 204.13 70.45 0.23 0.05
global 204.65 70.14 0.29 0.07

shared-rnn local 205.16 70.69 0.23 0.05
global 205.68 70.38 0.30 0.07

2-gram
frame

unshared local 306.94 187.21 0.23 0.07
global 513.58 195.36 1.55 0.41

shared-emb local 156.05 70.42 0.23 0.05
global 181.42 73.49 1.16 0.23

shared-rnn local 174.22 73.04 0.23 0.05
global 199.62 76.11 1.16 0.23

label frame

unshared local 320.98 187.24 0.24 0.07
global 428.40 187.90 3.79 0.94

shared-emb local 204.17 70.45 0.24 0.05
global 210.61 71.42 2.63 0.48

shared-rnn local 222.33 73.07 0.24 0.05
global 229.17 74.04 2.64 0.49

Table 2: Memory and computation benchmarks of the GNAT model for different configurations.

For each configuration, the memory usage footprint is presented in terms of MB and total computation
time is presented in terms of number of seconds. The benchmarks do not include the memory and
computation footprint of the encoder activations. The training benchmarks are corresponding to the
calculation of the GNAT criterion as well as all the backward gradient calculation up to the encoder
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activations. The evaluation benchmarks only contain the forward pass memory and compute footprint
to find the most likely hypothesis.

All the memory and computation benchmarks are evaluated for an input batch of 32 examples each
with 1024 number of frames. Each frame is a 512-dim vector corresponding to the encoder activations.
Each example in the input batch are assumed to have at most 256 labels. The alphabet size is set to
32.

The main observations are:

• The larger context dependency lead to more memory and compute footprint. This is expected
since the computation complexity is directly related to the context dependency state size.
However, interestingly, the memory and computation values do not scale exponentially by
value of n in n-gram context dependency (as a result by number of states in the context
dependency).

• Label frame dependent alignment lattice generally leads to higher memory usage and
computation time compare to the frame dependent alignment lattice. This is expected
since the label frame dependent consist of alignment paths of length 1024 + 256 = 1270,
corresponding to the sum of number of frames and number of labels.

• The per-state linear projection weight function requires more memory and has longer
compute time compare to the shared weights function which is expected by design. Both
shared weight functions are performing on-par of each other in terms of memory and
compute.

• The global normalization requires more memory and time and the difference is more
significant for context dependency FSAs with more number of states (2-gram versus 1-
gram).

E Equivalence of Certain Locally and Globally Normalized Models under
Non-Streaming Settings

As widely discussed in literature (e.g. Section 4.6.12 of [23], [24, 2]), under streaming settings, a
locally normalized model introduces an independence assumption between an output zi and future
inputs x≥t(i), when future outputs z>i are not yet known. On the contrary, a globally normalized
model using the same score factorization does not introduce the same independence assumption. This
is the key reason to a locally normalized model’s inability to express certain conditional distributions
and thus prone to the label bias problem.

However, under non-streaming settings, the entire input sequence x is available for predicting each zi.
The aforementioned independence assumption is thus no longer present for locally normalized models.
We shall show that under a mild condition regarding how an alignment score ω(zi|z<i,x) makes use
of information from the past outputs z<i, for every non-streaming globally normalized model, there
is a non-streaming locally normalized model that defines the same conditional distribution for the
output sequence.

For an alignment score ω(zi|z<i,x), for each output step i, define the past output index set δi ⊆
{1, 2, . . . , i− 1} to consist of the indices of past outputs on which ω(zi|z<i,x) actually depend. For
example, for a GNAT model using a n-gram context dependency with n = 2, δi = {i− 1, i− 2}, i.e.
the alignment score only depends on the previous two outputs. On the other hand, an RNN-T model
with unlimited history has δi = {1, 2, . . . , i− 1}. When comparing locally and globally normalized
models, it is important to ensure the same past output index sets are used. Otherwise the comparison
is not fair since the parameterization of these models will differ.

Given the sequence of past output index sets [δ1, δ2, . . .], the alignment score function ω(zi|z<i,x)
can also be written as ω(zi|zδi ,x), with zδi = {zj |j ∈ δi}. The sequence of past output index
sets grows monotonically if for all i, δi ∩ {1, 2, . . . , i− 2} ⊆ δi−1. In other words, each δi can be
constructed from δi−1 by first removing some elements then optionally adding i− 1. Importantly if
some j < i is not in δi, then j is not in any subsequent δk for any k ≥ i. Notably, all existing work
on neural globally normalized ASR models including this paper itself use score functions where the
sequence of past output index sets grows monotonically [17, 10, 42, 44].
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When the sequence of past output index sets grows monotonically, globally normalized models and
locally normalized ones are in fact equivalent in terms of the conditional distributions that they can
express. Since any locally normalized model is by definition globally normalized, we only need to
show the other direction.
Theorem E.1. For any non-streaming globally normalized model with alignment score ωG(zi|zδi ,x),
if the sequence of past index sets {δ1, δ2, . . .} grows monotonically, then there exists a non-streaming
locally normalized model with alignment score of the same sequence of index sets ωL(zi|zδi ,x), such
that PωG(z|x) = PωL(z|x).

This theorem can be seen a result of such a globally normalized model’s corresponding Markov
network representation being chordal (see Theorem 4.13 of [23]). In an effort to be self-contained ,
below we instead present a direct proof that does not rely on any results on graphical models, using
essentially the same technique as [9, 36].

Proof. For any prefix z≤i, the sum of the scores of all possible suffices continuing z≤i is commonly
known as the backward score. More specifically, in our case, the backward score at position i is

βi =
∑

z′|z′<i+1=z<i+1

|z′|∏
j=i

ωG(z′j |z′δj ,x)

It is easy to see that βi only depends x and zj for j ∈ {i} ∪ δi. Thus βi(zi, zδi ,x) is a well-defined
function. βi is upper bounded by the denominator Z(x) and thus finite. ωG(zj |zδ,x) > 0 implies
βi > 0. We can thus define the following alignment score which is a locally normalized model,

ωL(zi|zδi ,x) =
βi(zi, zδi ,x)∑
z′i
βi(z′i, zδi ,x)

Then

PωG(zi|z<i,x) =

∑
z′|z′<i+1=z<i+1

∏|z′|
j=1 ωG(z′j |z′δj ,x)∑

z′|z′<i=z<i

∏|z′|
j=1 ωG(z′j |z′δj ,x)

=

(∏i−1
j=1 ωG(zj |zδj ,x)

)(∑
z′|z′<i+1=z<i+1

ωG(zi|zδi ,x)
∏|z′|
j=i+1 ωG(z′j |z′δj ,x)

)
(∏i−1

j=1 ωG(zj |zδj ,x)
)(∑

z′|z′<i=z<i

∏|z′|
j=i ωG(z′j |z′δj ,x)

)
=

βi(zi, zδi ,x)∑
z′i
βi(z′i, zδi ,x)

=ωL(zi|zδi ,x)

=PωL(zi|z<i,x)

Therefore, PωG(z|x) = PωL(z|x).
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