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Abstract

We introduce the Globally Normalized Autoregressive Transducer (GNAT) for
addressing the label bias problem in streaming speech recognition. Our solution
admits a tractable exact computation of the denominator for the sequence-level
normalization. Through theoretical and empirical results, we demonstrate that
by switching to a globally normalized model, the word error rate gap between
streaming and non-streaming speech-recognition models can be greatly reduced (by
more than 50% on the Librispeech dataset). This model is developed in a modular
framework which encompasses all the common neural speech recognition models.
The modularity of this framework enables controlled comparison of modelling
choices and creation of new models. A JAX implementation of our models has
been open sourced.1

1 Introduction

Deep neural network models have been tremendously successful in the field of automatic speech
recognition (ASR). Several different models have been proposed over the years: cross-entropy (CE)
models with a deep feed-forward architecture [19], connectionist temporal classification (CTC)
models [14] with recurrent architectures such as long short-term memory (LSTM) [20], and more
recently sequence-to-sequence (Seq2Seq) models like listen, attend and spell (LAS) [8], recurrent
neural network transducer (RNN-T) [13], and hybrid autoregressive transducer (HAT) [40]. When
configured in non-streaming mode, these neural ASR models have reached state-of-the-art word error
rate (WER) on many tasks. However, the WER significantly worsens when they are operating in
streaming mode. In this paper, we argue that one main cause of this WER gap is that all the existing
models are constrained to be locally normalized which makes them susceptible to the label bias
problem [36, 2, 24, 4]. To address this problem, we introduce new category of globally normalized
models called Globally Normalized Autoregressive Transducer (GNAT). Our contributions are:

(1) Addressing the label bias problem in streaming ASR through global normalization that
significantly closes more than 50% of the WER gap between streaming and non-streaming ASR.

(2) Efficient, accelerator-friendly algorithms for the exact computation of the global normal-
ization under the finite context assumption.

(3) A modular framework for neural ASR which encompasses all the common models (CE, CTC,
LAS, RNN-T, HAT), allowing creation of new ones, and extension to their globally normalized
counterparts.

1https://github.com/google-research/last
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2 Streaming Speech Recognition

For an input feature sequence x = x1 . . . xT , usually represented as a sequence of real valued feature
vectors (such as log mel), and a finite output alphabet Σ, we wish to predict the corresponding output
label sequence y = y1 . . . yU , yi ∈ Σ. We call each element xi in x a frame, and each element
yi in y an output label. Common ASR models do not directly predict y, but rather an alignment
label sequence z = z1 . . . zV , zi ∈ Σ ∪∆. ∆ is a finite alphabet of control labels, such as the blank
label in CTC or RNN-T, or the end-of-sequence label in LAS. There is a deterministic mapping
B(z) : (Σ∪∆)∗ → Σ∗ for obtaining y from z (e.g. in RNN-T, we simply remove all the blank labels
from z). An ASR model can then be broken down in two tasks: (1) assigning a score

∏
i ω(zi|x, z<i)

to each alignment sequence z, where ω(zi|x, z<i) > 0 is the alignment score of predicting a single
alignment label; (2) finding (usually approximately) arg maxy

∑
z|B(z)=y

∏
i ω(zi|x, z<i).

A non-streaming ASR model’s alignment score ω(zi|x, z<i) has access to the entire x for any i. In
contrast, a streaming model’s alignment score takes the form ω(zi|x<t(i), z<i): it only has access a
prefix x<t(i) of the input feature sequence, where t(i) is the frame to which zi is aligned. Streaming
models can be seen as special case of non-streaming models with respect to the alignment scores.

All the common neural ASR models use a locally normalized alignment score which satisfies the
constraint

∑
z∈Σ∪∆ ω(zi = z|x, z<i) = 1. This is achieved by applying the softmax function to the

last layer activations. The local normalization constraint makes ω(zi|x, z<i) easily interpretable as
a conditional probability distribution Pω(zi|x, z<i), and thus

∏
i ω(zi|x, z<i) easily interpretable

as Pω(z|x). With samples from the true data distribution P (x,y), the modeling parameters are
optimized by minimizing the negative log-conditional-likelihood loss EP (x,y)[− logPω(y|x)] =
EP (x,y)[− log

∑
z|B(z)=y Pω(z|x)].

2.1 Label Bias in Streaming ASR

For a non-streaming, locally normalized model, the negative log-conditional-likelihood loss is mini-
mized in the limit (assuming enough model capacity) by setting ω(zi|x, z<i) to the true conditional
probability P (zi|x, z<i), leading to

∏
i ω(zi|x, z<i) being equal to the true posterior P (z|x).

For a streaming model, x is replaced by x<t(i) in the alignment score (e.g. by using a unidi-
rectional encoder). Here the negative log-conditional-likelihood loss is minimized in the limit
by setting ω(zi|x<t(i), z<i) to P (zi|x<t(i), z<i). As a result, the product

∏
i ω(zi|x<t(i), z<i) =∏

i P (zi|x<t(i), z<i) is in general not equal to P (z|x) anymore. In other words, using a streaming
locally normalized model means that the estimated alignment sequence posterior is the product of
some locally normalized alignment scores which depend only on partial input x<t(i), and as a result
can no longer accurately represent the true conditional distribution. This will bias the model towards
predictions with low-entropy estimated posterior probabilities at each decoding step. This degrades
the model ability to revise previous decisions, a phenomenon called label bias [24, 2].

2.2 Global Normalization

Traditionally, globally normalized models such as Conditional Random Fields (CRF) [24] are used
to address the label bias problem. This paper seeks to apply global normalization to modern neural
architectures that are more similar to CTC, RNN-T, or LAS, rather than traditional linear models,
with the purpose of addressing label bias problem for streaming ASR models.

A globally normalized model does not constrain the alignment score ω(zi|x, z<i) to be locally
normalized; it only requires it to be any non-negative score, as long as the denominator Z(x) =∑

z

∏
i ω(zi|x, z<i) is finite. The finite denominator allows us to interpret

∏
i ω(zi|x,z<i)
Z(x) as a

conditional probability distribution Pω(z|x). Minimum negative log-conditional-likelihood training
can be more expensive for globally normalized models due to the need to compute Z(x) and the
corresponding gradients. However with our proposed modular framework, globally normalized model
training can be made practical with careful modelling choices on modern hardware.

Any locally normalized model is by definition also globally normalized, whose Z(x) = 1. While
the reverse is not true in general, Appendix E shows that under non-streaming settings with a mild
condition, locally and globally normalized models actually express the same class of conditional

2



distributions. Based on this observation, we argue that under non-streaming settings, with adequately
powerful neural architectures, maximum log-conditional-likelihood training should yield behaviorly
similar locally or globally normalized models, and thus similar WERs in testing. Results from
[37, 17] and our own experiments in Section 6 validate this.

3 A Modular Framework for Neural ASR

In this section, we introduce a modular framework for neural ASR, using the weighted finite state
automaton (WFSA) formalism to calculate the conditional probabilities via alignment scores. The
modular framework clearly expresses the modelling choices and enables practical globlally normal-
ized model training and inference. We use the WFSA formalism as the language for describing our
framework because of its succinctness and precision. Our algorithms are implemented from scratch
to run on TPUs, without using existing toolkits such as OpenFst [1], Kaldi [33] or K2 [21].

3.1 Preliminaries

We begin with an introduction to the relevant concepts and notations.

A semiring (K,⊕,⊗, 0̄, 1̄) consists of a set K together with an associative and commutative operation
⊕ and an associative operation⊗, with respective identities 0̄ and 1̄, such that⊗ distributes over⊕, and
0̄⊗x = x⊗0̄ = 0̄. The real semiring (R+,+,×, 0, 1) is used when the weights represent probabilities.
The log semiring (R∪ {−∞},⊕log,+,−∞, 0), isomorphic to the real semiring via the log mapping,
is often used in practice for numerical stability.2 The tropical semiring (R∪ {−∞},max,+,−∞, 0)
is often used in shortest-path applications.

A weighted finite-state automaton (WFSA) A = (Σ, Q, i, F, ρ, E) over a semiring K is specified by a
finite alphabet Σ, a finite set of states Q, an initial state i ∈ Q, a set of final states F ⊆ Q, a final state
weight assignment ρ : F → K, and a finite set of transitions E ⊆ Q× (Σ∪ {ε})×K×Q (ε denotes
the empty label sequence). Given a transition e ∈ E, p[e] denotes its origin or previous state, n[e]
its destination or next state, o[e] its label, and ω[e] its weight. A path π = e1 . . . ek is a sequence of
consecutive transitions ei ∈ E: n[ei−1] = p[ei], i = 2, . . . k. The functions n, p, and ω on transitions
can be extended to paths by setting: n[π] = n[ek] and p[π] = p[e1] and by defining the weight of a
path as the ⊗-product of the weights of its constituent transitions: ω[π] = ω[e1]⊗ · · · ⊗ ω[ek]). An
unweighted finite-state automaton (FSA) A = (Σ, Q, i, F,E) is simply a WFSA whose transitions
and final states are all weighted by 1̄.

Π(Q1, Q2) is the set of all paths from a subset Q1 ⊆ Q to a subset Q2 ⊆ Q. Π(Q1,y, Q2)
is the subset of all paths of Π(Q1, Q2) with label sequence y = y1 . . . yU , yi ∈ Σ. A path in
Π({i}, F ) is said to be accepting or successful. The weight associated by WFSA A to any label
sequence y is given by A(y) =

⊕
π∈Π({i},y,F ) ω[π] ⊗ ρ(n[π]). The weight of A is the ⊕-sum of

weights of all accepting paths W (A) =
⊕

π∈Π({i},F ) ω[π]⊗ ρ(n[π]). For a semiring K where ⊗ is
also commutative, the intersection (or Hadamard product) of two WFSA A1 and A2 is defined as:
(A1 ∩A2)(y) = A1(y)⊗A2(y). [28] gives an algorithm to compute the intersection. We can view
y as a WFSA that accepts only y with weight 1̄, then A(y) = W (A ∩ y).

3.2 Probabilistic Modeling and Inference on Acyclic Recognition Lattices

For any feature sequence x = x1 . . . xT , we use a model with trainable parameters θ to induce a recog-
nition lattice WFSA Aθ,x = (Σ, Qθ,x, iθ,x, Fθ,x, ρθ,x, Eθ,x). For a label sequence y = y1 . . . yU ,
the weight associated with it, Aθ,x(y), is interpreted under the log semiring as the unnormalized
negative log conditional probability Pθ(y | x) =

exp(Aθ,x(y))
exp(W (Aθ,x)) =

exp(W (Aθ,x∩y))
exp(W (Aθ,x)) .

The recognition lattice Aθ,x is designed to be acyclic, and therefore the weight of the automata in
both the numerator and denominator above can be efficiently computed by visiting the states of the
corresponding WFSA in topological order [27]. See Appendix C for our accelerator friendly version
of this algorithm. We can thus train an ASR model by minimizing the negative log-conditional-
likelihood on the training corpus D, and choosing θ? = arg minθ E(x,y)∈D[− log(Pθ(y | x))] =
arg minθ E(x,y)∈D[W (Aθ,x)−W (Aθ,x ∩ y)].

2a⊕log b = log
(
ea + eb

)
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In general, there can be more than one path in Aθ,x that accepts the same y. During inference, finding
the optimal ŷ = arg maxy Pθ(y|x) requires running the potentially expensive WFSA disambiguation
algorithm [30] on Aθ,x. As a cheaper approximation, we instead look for the shortest path π̂ in Aθ,x
under the tropical semiring, and use the corresponding label sequence as the prediction, again using
the standard shortest path algorithm for an acyclic WFSA [27].

3.3 Inducing the WFSA

Our framework decomposes the sequence prediction task in ASR into three components, each playing
a specific role in inducing the recognition lattice Aθ,x.

• The context dependency FSA C = (Σ, QC , iC , FC , EC) is an ε-free, unweighted FSA,
whose states encode the history of the label sequence produced so far. C is fixed for a given
model, independent of input x.

• The alignment lattice FSA LT = (Σ, QT , iT , FT , ET ) is an acyclic, unweighted FSA,
whose states encode the alignment between input frames x and output labels y. LT depends
on only the length T of input x.

• The weight function ωθ,x : QT × QC × (Σ ∪ ε) → K. ωθ,x is the only component
that contains trainable parameters and requires full access to x. This function defines the
transition weights in the recognition lattice Aθ,x.

We will discuss how one can define these components in detail in the next section. With (C,LT , ωθ,x)
given, the recognition lattice Aθ,x is defined as follows:

Qθ,x = QT ×QC
iθ,x = (iT , iC)

Fθ,x = FT × FC

EAθ,x =
{(

(qa, qc), y, ωθ,x(qa, qc, y), (q′a, q
′
c)
)
|

y ∈ Σ, (qa, y, q
′
a) ∈ ET , (qc, y, q

′
c) ∈ EC

}
∪
{(

(qa, qc), ε, ωθ,x(qa, qc, ε), (q
′
a, qc)

)
|

(qa, ε, q
′
a) ∈ ET , qc ∈ QC

}
ρAθ,x(q) = 1̄, ∀q ∈ Fθ,x

In other words, the topology (states and unweighted transitions) of the recognition lattice Aθ,x is the
same as the FSA intersectionLT ∩C (see Figure 1c for a concrete example); and the transition weights
are defined using ωθ,x. The ε-freeness of C and the acyclicity of LT implies that the recognition
lattice Aθ,x is also acyclic.

4 Components of a GNAT Model

In this section, we define globally normalized autoregressive transducer (GNAT) through the frame-
work above, by specifying each model component.

4.1 Context Dependency

GNAT uses an n-gram context-dependency defined by Cn = (Σ, Qn, in, Fn, En), where Qn = Σ≤n

corresponds to a label history of length up to n. The initial state in = ε is the empty label sequence.
The transitions En ⊆ Qn × Σ×Qn correspond to truncated concatenation: En =

{
(q, y, q′) | q ∈

Q, y ∈ Σ
}

where q′ is the suffix of qy with length at most n. For example, when n = 2, the transition
(ab, c, bc) goes from state ab to state bc with label c. All states are final: Fn = Qn. See Figure 1a
for the FSA C1 when Σ = {a, b}. Appendix C demonstrates how Cn can be efficiently intersected
during the shortest distance computation thanks to the highly regular structure of Cn.

Although not studied in this paper, our modular framework makes it easy to switch to a more
sophisticated context dependency, such as clustered histories often used for context-dependent phone
models, or a variable context length as used in n-gram language models [29].
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(a) n-gram context-dependency automaton C1 for
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(c) Recognition lattice topology: intersection of (a) and (b) with all paths for output ab highlighted.
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(d) k-constrained label and frame dependent align-
ment lattice with T = 3, k = 2.
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(e) Label dependent alignment lattice with l(T ) =
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Figure 1: Examples of GNAT components

4.2 Alignment Lattices

Given the input feature sequence length T , the alignment lattice FSA LT defines all the possible
alignments between the feature sequence and allowed label sequences. Since the feature sequence
length T usually differs from the label sequence length U , many different alignments between the
feature sequence and a label sequence can be defined. The states in an alignment lattice FSA encode
how the next label or ε-transition corresponds to some position in the feature sequence.

We can choose different structures for LT by encoding one or both of the positions in the feature
sequence and the label sequence. A simple example is the frame dependent alignment similar to [14],
where each frame is aligned to at most one label:

QT = {0, . . . , T}
iT = 0

FT = {T}
ET =

{
(t− 1, y, t) | y ∈ Σ ∪ {ε}, 1 ≤ t ≤ T

}
Here any state t < T represents a position in the feature sequence. We start by aligning to the initial
frame of the feature sequence, and repeatedly shift to the next frame for every subsequent label or
ε-transition until all frames have been visited. Figure 1b depicts a frame dependent alignment lattice.
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To allow a label sequence longer than the feature sequence, we can use the k-constrained label and
frame dependent alignment similar to [13]:

QT =
{

(t, n) | 0 ≤ t ≤ T − 1, 0 ≤ n ≤ k
}
∪
{

(T, 0)
}

iT = (0, 0)

FT =
{

(T, 0)
}

ET =
{(

(t, n− 1), y, (t, n)
)
|

y ∈ Σ, 0 ≤ t ≤ T − 1, 1 ≤ n ≤ k
}

∪
{(

(t− 1, k), ε, (t, 0)
)
| 1 ≤ t ≤ T

}
Here, up to k consecutive label transitions can align to any single frame. An ε-transition is then taken
to explicitly shift the alignment to the next frame. The number of labels aligned to one frame is
constrained by a constant k solely in order to impose acyclicity. Figure 1d depicts a k-constrained
label and frame dependent alignment lattice.

Some models may only depend on the position in the label sequence, similar to [8]. In this case
we can bound the length of the label sequence by some function l(T ), and use the following label
dependent alignment:

QT =
{

0, . . . , l(T )
}

iT = 0

FT = {l(T )}
ET =

{
(u− 1, y, u) | y ∈ Σ, 1 ≤ u ≤ l(T )

}
∪
{

(u, ε, l(T )) | 0 ≤ u ≤ l(T )− 1
}

Here, each label can be seen as aligning to the entire feature sequence, and the ε-transition serves as
an explicit termination of the label sequence. Figure 1e depicts a label dependent alignment lattice.

4.3 Weight functions

The weight function ωθ,x translates trainable parameters into transition weights for states in the
recognition lattice Aθ,x. The choice of the weight function depends on the choice of the context and
alignment lattice FSA, especially the alignment lattice where the meaning of a state directly affects
how the weight function can access x.

The experiments discussed in this paper use frame dependent and k-constrained label and frame
dependent alignment lattices. In these two types of alignment lattices, a non-final state qa in QT
contains a position τ(qa) in the feature sequence (the state itself in the case of frame dependent
alignment lattices; the first value in the state in the case of label and frame dependent alignment
lattices). Weight functions can thus be defined in three steps,

1. Feed x into an encoder, such as unidirectional or bidirectional RNN, or a self-attention
encoder to obtain the sequence of hidden units h of dimension D. In the experiments we
compared streaming vs non-streaming encoders.

2. Map a single frame of hidden units h[t] and context state qc to a (|Σ| + 1)-dimensional
vector, corresponding to the unnormalized transition weights for y ∈ Σ ∪ {ε}.

3. Optionally locally normalize transition weights across y ∈ Σ ∪ {ε} given (qa, qc).

For step 2, we experiment with the following concrete modelling choices with varying degree of
parameter sharing,

Per-state linear projection (unshared) For every context state qc, we obtain a D × (|Σ| + 1)
projection matrix Wqc and a (|Σ|+ 1)-dim bias vector bqc from θ, and define for y ∈ Σ ∪ {ε}:

ωθ,x(qa, qc, y) =
(
Wqc · h[τ(qa)] + bqc

)
[y]

Shared linear projection with per-state embedding (shared-emb) We obtain from θ (a) for every
context state qc aD-dimensional state embeddingEqc , (b) independent of context states aD×(|Σ|+1)
projection matrix W and a (|Σ|+ 1)-dim bias vector b , and define for y ∈ Σ ∪ {ε}:

ωθ,x(qa, qc, y) =
(
W · tanh(h[τ(qa)] + Eqc) + b

)
[y]
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Shared linear projection with RNN state embedding (shared-rnn) Similar to shared linear projec-
tion with per-state embedding but Eqc is obtained from running an RNN (e.g. LSTM) on the n-gram
label sequence represented by qc.

5 Discussion

A Modular Framework All the existing locally normalized models can be explained within
the modular framework presented in Section 3 with a particular choice of context size, alignment
lattice and of course with constraining the weights to be locally normalized using softmax function.
Appendix B presents how CE, CTC, LAS, RNNT and HAT models can be expressed within this
framework. This allows controlled comparison of different components as well as creating new
models by mixing different modeling choices. Like locally and globally normalized models in general,
when the weights are locally normalized, the denominator of models defined in our framework is one.

Finally, our framework is very different from traditional uses of finite state machines via a cascade
of weighted finite state transducer compositions. The separation of the weight function from the
automaton topology allows an arbitrarily complex, non-linear weight function to model the depen-
dency among alignment states, context states, and output label, which is impossible with composition
cascades. The idea of weight function has been proposed before (e.g. [38]), although as we shall see
in experiments, the exact architecture of a weight function plays a crucial role in model accuracy.

Related Globally Normalized Models There is a rich literature on the applications of globally
normalized models [5, 26, 35, 24], as well as theoretical studies on the label bias problem [24, 2, 12].
In ASR, there is a lot of research on applying globally normalized models [3, 7, 6, 16, 25, 45, 18].
Among these, MMI [3, 7] is the most relevant to our work. In MMI, a sequence level score is
factorized into an acoustic model (AM) score and a language model (LM) score. The denominator
is usually approximated over a pruned lattice. Recently [34] introduced lattice-free MMI, which
replaces the word level LM with a 4-gram phone LM during training. Both the GNAT and MMI are
globally normalized. The GNAT model differs from MMI in several ways: (1) Unlike MMI, GNAT
does not require an external LM, nor does it impose any constraint on how the sequence level scores
are defined. (2) In MMI training, the LM is kept frozen while the AM parameters are optimized. In
GNAT all the model parameters are trained together. (3) GNAT’s recognition lattice encodes the same
set of weighted alignment paths during training and inference, therefore the denominator computation
in GNAT is exactly matched between training and inference. This does not hold for the standard
MMI, because by using different LM topologies between training and inference, the denominator
computation in training time only serves as an approximation of the denominator during inference.

Implementation-wise, GNAT trains from scratch without any need for initialization or special regular-
ization techniques as used in the lattice-free version of MMI [34]. In addition we were able to train
GNAT models with accelerators without any techniques discussed in [34].

The concept of global normalization has also been visited with deep neural networks [17, 10, 42, 44].
These models can be seen as special cases of MMI based on aspects such as how the sequence
level scores are factorized, their use of fixed LM for training, and the mismatching training and
inference LMs. Thus the comparison between MMI and GNAT applies here as well. Their use of
WFST composition cascades results in weaker modelling power compared to our weight function
formulation, and their use of non-streaming encoders combined with their model formulation makes
globally normalized models equally expressive to the locally normalized counterparts (Appendix E).

Challenges The main challenge with the GNAT model is its scalability to a larger number of
label contexts. At each training step, the model requires O(|QC | × |Σ|) semiring multiplications and
additions. For n-gram context dependency, |Qc| = (|Σ|n+1 − 1)/(|Σ| − 1), thus the computation
scale exponentially by value of n. However as shown in Appendix D, due to the particular structure
of this space the practical computation and memory cost benchmarks do not scale exponentially
with 0 ≤ n ≤ 2. We also note that large value of n might also not be necessary: The HAT model
[40] reports that a Seq2Seq model with a label history of just the two previous phonemes performs
on par with a similar model with a full history trained on very large voice-search corpus. Similar
observations are reported in studies with grapheme and wordpiece units [43, 11]. Due to the data
sparsity there might not be enough training data to fully represent all n-gram context states, so
increasing the value of n might not necessarily lead to a WER reduction. One way of dealing with
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larger numbers of states is to use standard pruning techniques to keep only some of the most common
states in the training data.

6 Experiments

Data We use the full 960-hour Librispeech corpus [32] for experiments. The input features are
80-dim. log Mel extracted from a 25 ms window of the speech signal with a 10 ms shift. The
SpecAugment library with baseline recipe parameters were used [15]. The ground truth transcription
is used without any processing and tokenized by the 28 graphemes that appear in the training data.

Architecture Attention-based architectures allows using the same parameterization for streaming
and non-streaming models, thus for all the experiments we used 12-layer Conformer encoders [15]
with model dimension 512, followed by a linear layer with output dimension 640. The Conformer
parameters are set such that the only difference between streaming and non-streaming models is
the right context: at each time frame t, the streaming models only access the left context (feature
frames from 1 to t), while the non-streaming models can see the entire acoustic feature sequence. To
enforce the consistency of the encoder architecture between streaming and non-streaming modes, we
removed all the sub-architecture which behaved differently between these two modes. Specifically, we
removed the convolution sub-sampling layer, and also forced the stacking layers to only stack within
the left context. The baseline experiments use a shared-rnn weight function defined in section 4.3. A
single layer LSTM is used with 640 cells. The experiments with the unshared weight function use a
linear layer of size (|QC | × |Σ|)× 640 to project the encoder activation at each time frame into the
transition weights of the recognition lattice. In our experiments, |Σ| = 32. For the n-gram context
dependency, |Qc| = (|Σ|n+1 − 1)/(|Σ| − 1). The experiments with the shared-emb weight function
use an embedding table of size |Qc| × 128.

Training All models are trained on 8× 8 TPUs with a batch size 2048. The training examples
with more than 1961 feature frames or more than 384 labels are filtered out. We used Adam optimizer
[22] (β1 = 0.9, β2 = 0.98, and ε = 10−9) with the Transformer learning rate schedule [41] (10k
warm-up steps and peak learning rate 0.05/

√
512). We applied the same regularization techniques

and the training hyperparameters used in the baseline recipe of [15].

Evaluation We report WER results on standard Librispeech test sets: test_clean and test_other.
The WER is either computed with sum-path algorithm or max-path algorithm. The sum-path algorithm
approximately merges the alignment hypothesis corresponding to the same label sequence prefix
after removal of epsilons. In ideal decoding, sum-path should result in the most likely output label
sequence. The max-path algorithm computes the highest scoring alignment path using algorithms in
Appendix C.

Baselines The RNN-T baselines are presented in the rows corresponding to the “RNN-T” context
dependency in Table 1a. Unlike the other rows in Table 1a, the decoder RNN in RNN-T in principle
encodes an unlimited output history as context. The standard RNN-T model effectively uses the label
frame dependent alignment lattice with an infinite k. The rows corresponding to the frame dependent
alignment lattice represent a slightly modified RNN-T model, where each frame is aligned to exactly
one output (either a blank, or a lexical label). The WER differences between non-streaming RNN-T
baselines in Table 1a and [15] are mainly due to our modifications to the Conformer encoder for a
controlled comparison against streaming models.

Choice of the context dependency Table 1a compares effect of n-gram context dependency for
n = 1, 2, 3 and baseline RNN-T models. The general observation is that increasing n leads to better
WER independent of the other choices of the modeling parameters. However, the model with 3-gram
context dependency already performs on par with RNN-T baseline. The 2-gram context dependency
perform almost on par as baseline on clean test set while still lagging on the other test set. This is
consistent with the earlier observations in [40, 43, 11].

Choice of the alignment lattice The comparison of different alignment lattices in Table 1a
suggests that this choice does not significantly contribute to the model performance. While there is
a performance gap for 1-gram context dependency, we do not think there is a principal argument
in favor of frame dependent alignment lattice. We speculate that this is more due to the choice
of optimization parameters. However, the choice of lattice type can have some side effects. For
example as k in k-constrained label frame dependent alignment lattice increases, the model has more
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context alignment weight fn WER [%]
dep. lattice streaming clean other

1-gram
frame no 4.0 10.0

yes 7.1 16.0

label frame no 6.7 10.2
yes 8.8 14.5

2-gram
frame no 2.8 6.0

yes 4.9 10.0

label frame no 2.5 5.6
yes 5.1 10.3

3-gram
frame no 2.5 5.3

yes 4.9 9.7

label frame no 2.5 5.3
yes 5.0 9.8

RNN-T
frame no 2.5 5.3

yes 5.1 9.8

label frame no 2.5 5.5
yes 5.0 9.8

(a) Locally normalized baselines with different context-
dependency and alignment lattice. All models used a
shared-rnn weight function with or without a streaming
encoder. (sum-path decoding)

context weight function WER [%]
dep. streaming normalization clean other

1-gram
no local 3.4 8.7

global 3.3 8.4

yes local 7.0 17.4
global 5.5 14.0

2-gram
no local 2.8 6.7

global 2.8 6.7

yes local 4.9 11.0
global 3.8 9.5

(b) Weight function parameters: normalization and
streaming. (max-path decoding)

weight function WER [%]
type normalization clean other

unshared local 4.9 10.7
global 4.2 10.6

shared-emb local 5.4 13.1
global 4.1 9.9

shared-rnn local 4.9 11.0
global 3.8 9.5

(c) Comparison of different weight function types (max-
path decoding).

Table 1: Experiment results

ability to delay its prediction to the end of the signal. This implicit lookahead can translate into
performance gains particularly for unidirectional models. By limiting this quantity to 1, we observed
that performance on clean and other sets degrades by 34.9% and 36.7%, respectively.

Choice of the weight function normalization Table 1b examines the effect of weight normal-
ization on non-streaming and streaming models. Here we present models with 1-gram and 2-gram
context dependency with a frame dependent alignment lattice. Note that for 0-gram context depen-
dency with a frame dependent alignment lattice it is easy to show that locally normalized and globally
normalized models are equivalent. For non-streaming models, the normalization seems to not have an
impact on the performance quality neither for 1-gram nor for 2-gram context dependency experiments.
This is validates our argument in the end of Section 2.2 that locally and globally normalized models
express the same class of conditional distributions under this particular setting. On the other hand,
streaming models significantly benefit from global normalization: For the clean test set, the globally
normalized model outperforms the locally normalized model by about 21% relative WER for 1-gram
context dependency and by about 20% relative gain for 2-gram context dependency.

The globally normalized model with 2-gram context dependency also beat the baseline streaming
RNN-T model in Table 1a and performs significantly closer to the non-streaming RNN-T baseline.
The equivalent streaming RNN-T model performs 5.1% on test clean and the non-streaming model
performs 2.5% on same test set. The globally normalized model decoded with max-path algorithm
performs 3.8% on same test set. The globally normalized model effectively closed almost 50% of the
performance gap between streaming and non-streaming models.

The reported performance for the globally normalized models is from max-path decoding, while the
baselines benefit from sum-path decoding. Comparing the locally normalized models’ WER from
max-path decoding in Table 1b and their counterparts in Table 1a, it is clear that sum-path decoding
leads to an extra WER gain. This gain is more significant on test_other. So we expect the globally
model performs even better when decoded with sum-path.

The standard sum-path algorithms use several heuristics particularly for path merging and pruning.
While similar merging techniques can be applied to the globally normalized models, the pruning
heuristics require several adjustments. This is particularly due to the nature of the globally normalized
models where the transition weights are not constrained and can take any value, unlike locally
normalized models where the transition weights are constrained to be positive number between 0 and
1 and sum to 1 for all the weights leaving the same state in recognition lattice. We plan to explore
approaches to improve globally normalized model decoding in the future.
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Choice of the weight function architecture Finally Table 1c compares different choices of the
architectures for a streaming model with 2-gram context dependency and frame dependent alignment
lattice. While the unshared and shared-rnn architectures are very different in terms of parameter
sharing among states, both perform well, though the shared-rnn architecture performs slightly better.
The shared-emb architecture performs significantly worst than shared-rnn architecture. Note that the
shared-rnn model is able to learn common structures across states in the context dependency while
shared-emb does not have such capability.

7 Conclusion

The GNAT model was proposed and evaluated with the focus on the label bias problem and its impact
on the performance gap between streaming and non-streaming locally normalized ASR. The finite
context property of this model allows exact computation of the sequence level normalization which
makes this model differ from existing globally normalized models. Furthermore, the same property
allows accelerator friendly training and inference. We showed that the streaming models with globally
normalized criteria can significantly close the gap between streaming and non-streaming models
by more than 50%. Finally, the modular framework introduced in this paper to explain the GNAT
model encompasses all the common neural speech recognition models. This enables fair and accurate
comparison of different models via controlled modelling choices and creation of new ASR models.
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