
A More Discussion

Why One-step and IQL are imitation-based methods? The core difference between RL-based
and imitation-based methods is that RL-based methods learn a value function of policy π while
imitation-based methods don’t. Learning the value function of π requires off-policy evaluation of
π (i.e., learning Qπ or V π), which is prone to distribution shift. The policy evaluation and policy
improvement will also affect each other as they are coupled.

Imitation-based methods don’t learn Qπ or V π , but some of them do learn a value function. We call
these methods imitation-based because they learn the value function using only dataset samples, the
value function actually tells how advantageous it could be under the behavior policy, much like imita-
tion learning. Also, the policy learning objective of One-step (with exponentially-weighted improve-
ment operator) and IQL can be written as L(π) = E(s,a)∼D [exp (β (Q(s, a)− V (s))) log π(a|s)],
which uses dataset actions to doing behavior cloning with different weights (One-step and IQL learn
different value functions).

Cloning dataset actions can only do action-stitching, which loses the ability to surpass the dataset by
out-of-distribution (action) generalization. For example, in our toy example in Section 4.1, action-
stitching methods at most learn the shortest path that contained in the datset. This is suboptimal
especially when there does not exist one complete path starting from the start location to the goal
location in the offline dataset.

How can we do beyond action-stitching? One way is to use RL-based methods, by querying an
accurate Qπ, we can get a different-yet-optimal action aπ, but Qπ is hard to estimate. Another way
is like what POR did, we learn an out-of-distribution state indicator, i.e., the guide-policy g, to guide
the policy to the optimal next state. If the execute-policy can generalize well, it will also output a
different yet optimal action a = argmaxa π(a|s, g(s)).

B More Related Work

Our work decouples the state-to-action policy into two modules, i.e., the guide-policy and the execute-
policy. The execute-policy is actually an inverse dynamics model, which has been widely used in
various ways in sequential decision-making. In exploration, inverse dynamics can be used to learn
representations of the controllable aspects of the state [39]. In imitation learning, [49] and [33] train
an inverse dynamics model to label the state-only demonstrations with inferred actions. [9] use
inverse dynamics models to translate actions taken in a simulated environment to the real world.

Recently, there has been an emergence of work [45, 15] highlighting the connection of imitation
learning and reinforcement learning. Specifically, rather than learn to map states and actions to
reward, as is typical in reinforcement learning, [45] trains a model to predict actions given a state and
an outcome, which could be the amount of reward the agent is to collect within a certain amount of
time. [15] uses a similar idea, predicting actions conditioned on an initial state, a goal state, and the
amount of time left to achieve the goal. These methods are perhaps the closest work to our algorithm,
however, we study the offline setting and motivate the usage of an inverse dynamics model from a
different perspective (i.e., state-stitching).

C Proof

In this section, we provide the proof of Theorem 1.

Proof. We can rewrite the LHS of Eq.(8) as

∥π(s, g(s))− a∗∥ = ∥π(s, g(s))− π(s, s′) + π(s, s′)− a+ a− ag + ag − a∗∥
≤ ∥π(s, g(s))− π(s, s′)∥+ ∥π(s, s′)− a∥+ ∥a− ag∥+ ∥ag − a∗∥ (Triangle)

≤ L2∥g(s)− s′∥+ ϵ+ L1∥g(s)− s′∥+ ∥ag − a∗∥ (Assumption1&2)

≤ (L1 + L2)∥g(s)− s′∥︸ ︷︷ ︸
l1

+ ∥ag − a∗∥︸ ︷︷ ︸
l2

+ ϵ︸︷︷︸
l3

15



D Experimental Details

In this section, we provide the experimental details of our paper. We use the following hardware and
software for our training:

• GPUs: NVIDIA GeForce RTX 3080Ti
• Python 3.7
• Pytorch 1.10.0
• Gym 0.23.1 [6]
• MuJoCo 2.1.4 [48]
• mujoco-py 2.1.2.14

D.1 D4RL Experiments

Data collection The datasets in D4RL have been generated as follows: random: roll out a randomly
initialized policy for 1M steps. expert: 1M samples from a policy trained to completion with SAC
[17]. medium: 1M samples from a policy trained to approximately 1/3 the performance of the expert.
medium-replay: replay buffer of a policy trained up to the performance of the medium agent.
medium-expert: 50-50 split of medium and expert data. For all datasets we use the v2 version.

Implementation details Our implementation of 10%BC is as follows, we first filter the top 10 %
trajectories in terms of the trajectory return, and then run behaviour cloning on those filtered data.
The hyperparameters of POR are present in Table 2. We use target networks for the V -function and
use clipped double V -learning (take the minimum of two V -functions) for all updates. We normalize
state to [−1, 1] [42] to reduce the prediction error of the guide-policy, it can be deemed as an naïve
method of representation learning.

Table 2: POR Hyperparameters.

Hyperparameter Value

Architecture

Value network hidden dim 256
Value network hidden layers 2
Value network activation function ReLU
Guide-policy hidden dim 256
Guide-policy hidden layers 2
Guide-policy activation function ReLU
Execute-policy hidden dim 512
Execute-policy hidden layers 2
Execute-policy activation function ReLU

POR Hyperparameters.

Optimizer Adam [23]
Value netowrk learning rate 3e-4
Target Value netowrk moving average 0.05
Guide-policy learning rate 1e-3
Execute-policy learning rate 1e-3
Mini-batch size 256
Discount factor 0.99
τ 0.7 (Mujoco), 0.9 (AntMaze)

D.2 Additional Suboptimal Data Experiments

Data collection and settings

In this experiment, we use different part of medium-replay datasets as De and Do. More specific,
we use 30% to 70% transitions to constituteDe and use 20% to 80% transitions to constituteDe∪Do.

16



Implementation details We use the same hyperparamters of POR, shown in Table 2. Our imple-
mentations of TD3+BC† [14], CQL‡ [28] is from the author-provided implenmentation from Github,
and we keep all parameters the same to the author-provided implementation.

Table 3: The hyperparameters of CQL in additional-data experiments.

Hyperparameter Value

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

CQL Hyperparameters

Optimizer Adam [23]
Critic learning rate 3e-4
Actor learning rate 1e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim
Entropy in Q target True
Lagrange False
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10
α 10

Table 4: The hyperparameters of TD3+BC in additional-data experiments.

Hyperparameter Value

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters

Optimizer Adam [23]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
α 2.5

D.3 Four-room Experiments

Environment settings We use the continuous variant of the classic four-room environment from
[19]. This continuous variant of four-rooms is basically the same as the traditional classic four-room
environment in the environment design. There are 19 × 19 grids that consist of four rooms with
only one block channel with neighboring rooms. The goal of this environment is to make the agent

†https://github.com/sfujim/TD3_BC
‡https://github.com/aviralkumar2907/CQL

17

https://github.com/sfujim/TD3_BC
https://github.com/aviralkumar2907/CQL


travel from one location to another different location. Those tasks are challenging as their reward
is extremely spare, they need the agent to have the ability to explore efficiently through the whole
state space. The action and observation space are shown in Table 5. The first and second dimension
of the action space represents the distance to travel on the x-axis and y-axis, respectively. The first
and second dimension of the observation space represents the coordinate on the x-axis and y-axis,
respectively.

Table 5: The action and observation space in the continuous Four-room environment.

Action space Box(-0.1, 0.1, (2,), float32)
Observation space Box(-18, 18, (2,), float32)

Action dimension 2
Observation dimension 2

In task A (Four-room), only reaching the goal will give the agent a reward of 1, otherwise the
agent will get 0 reward. When the agent reaches the target or the agent takes over 500 steps, the
environment will terminate. In task B (Four-room-river), the agent will receive −1 reward if it
falls into the river, and the environment will be terminated. Also, the agent will get 1 reward only
when it reaches the goal. In task C (Four-room-key), the agent gets 1 reward only when it reaches
the goal and gets the key. Falling into the river will also give the agent −1 reward.

Data collection and implementation details The training data consists of trajectories collected by
a goal-reaching controller with the start and end locations sampled randomly at non-wall locations.
To make the data more diverse, we also add trajectories from a random policy. We collect 100,000
transitions for each task. Figure 6 shows the training hyperparameters of POR in the three four-room
environments.

Table 6: The hyperparameters of POR in continuous Four-room environments.

Hyperparameter Value

Architecture

Value network hidden dim 64
Value network hidden layers 2
Value network activation function ReLU
Guide-policy hidden dim 64
Guide-policy hidden layers 2
Guide-policy activation function ReLU
Execute-policy hidden dim 64
Execute-policy hidden layers 2
Execute-policy activation function ReLU

Training Hyperparameters

Optimizer Adam [23]
Value network learning rate 3e-4
Target V moving average 0.05
Guide-policy learning rate 1e-3
Execute-policy learning rate 1e-3
Mini-batch size 256
Discount factor 0.99
Normalize False
τ 0.9

E Learning Curves

In this section, we provide the learning curves of our experiments in the main paper.

18



0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
N

or
m

al
iz

ed
 S

co
re

hopper-random-v2
POR

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
hopper-medium-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
hopper-medium-replay-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
hopper-medium-expert-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
co

re

halfcheetah-random-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
halfcheetah-medium-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
halfcheetah-medium-replay-v2

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
halfcheetah-medium-expert-v2

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
co

re

walker2d-random-v2

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
walker2d-medium-v2

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
walker2d-medium-replay-v2

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
walker2d-medium-expert-v2

Figure 5: Learning curves on MuJoCo locomotion datasets.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-umaze-v2
POR

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100
antmaze-medium-play-v2

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100
antmaze-large-play-v2

0.0 0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-umaze-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100
antmaze-medium-diverse-v2

0.0 0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100
antmaze-large-diverse-v2

Figure 6: Learning curves on D4RL Antmaze datasets.

19



0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
co

re

CQL
More
Main

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
TD3+BC

More
Main

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
POR

Mix
More
Main

Figure 7: Learning curves of additional-data experiments on hopper-medium-replay-v2 datasets.

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 S
co

re

CQL
More
Main

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
TD3+BC

More
Main

0.2 0.4 0.6 0.8 1.0

Training Iterations (1e6)

0

20

40

60

80

100

120
POR

Mix
More
Main

Figure 8: Learning curves of additional-data experiments on walker2d-medium-replay-v2 datasets.

F Ablation Study on the Execute-Policy

We also present an ablation study on the execute-policy, with the aim to answer the following two
questions: 1) How does network capacity affect the performance of the execute-policy? 2) How does
the performance change if we use partial "good" data, instead of full data, to train the execute policy?

To answer the first question, we compare two choices of network size: a big network with (512, 512)
hidden units and a small network with (128, 128) hidden units. To answer the second question, we
compare with the choice that only selects a subset of the dataset to train the execute policy. Concretely,
we choose the top X% trajectories in the dataset, ordered by episode returns. We sweep X over
[10, 25, 40] and choose the best score. We give the mean scores of AntMaze (A) and MuJoCo (M)
datasets in Table 7. It can be seen that adopting a big network consistently gives a better performance,
which is also found in [10]. Using partial data will result in a less-performed policy, especially on
AntMaze datasets. Note that in MuJoCo datasets, the performance didn’t drop too much. This is
because MuJoCo datasets don’t require the compositionality ability, using partial trajectories could
already achieve high scores.

Table 7: Ablation study of the execute-policy on network capacity and dataset size.

Big Network Small Network

Full D A: 76.2, M: 65.7 A: 63.8, M: 57.0
Partial D A: 52.4, M: 60.9 A: 41.5, M: 56.7

20


