
CARLANE: A Lane Detection Benchmark for
Unsupervised Domain Adaptation from Simulation to

multiple Real-World Domains

Julian Gebele∗,1 Bonifaz Stuhr∗,1,2 Johann Haselberger∗,1,3

1University of Applied Science Kempten
2Autonomous University of Barcelona

3Technische Universität Berlin
carlane.benchmark@gmail.com

Abstract

Unsupervised Domain Adaptation demonstrates great potential to mitigate do-
main shifts by transferring models from labeled source domains to unlabeled
target domains. While Unsupervised Domain Adaptation has been applied to a
wide variety of complex vision tasks, only few works focus on lane detection
for autonomous driving. This can be attributed to the lack of publicly available
datasets. To facilitate research in these directions, we propose CARLANE, a 3-
way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE
encompasses the single-target datasets MoLane and TuLane and the multi-target
dataset MuLane. These datasets are built from three different domains, which
cover diverse scenes and contain a total of 163K unique images, 118K of which
are annotated. In addition we evaluate and report systematic baselines, including
our own method, which builds upon Prototypical Cross-domain Self-supervised
Learning. We find that false positive and false negative rates of the evaluated do-
main adaptation methods are high compared to those of fully supervised baselines.
This affirms the need for benchmarks such as CARLANE to further strengthen
research in Unsupervised Domain Adaptation for lane detection. CARLANE, all
evaluated models and the corresponding implementations are publicly available at
https://carlanebenchmark.github.io.

1 Introduction

Vision-based deep learning systems for autonomous driving have made significant progress in the
past years [1–5]. Recent state-of-the-art methods achieve remarkable results on public, real-world
benchmarks but require labeled, large-scale datasets. Annotations for these datasets are often hard to
acquire, mainly due to the high expenses of labeling in terms of cost, time, and difficulty. Instead,
simulation environments for autonomous driving, such as CARLA [6], can be utilized to generate
abundant labeled images automatically. However, models trained on data from simulation often
experience a significant performance drop in a different domain, i.e., the real world, mainly due to
the domain shift [7]. Unsupervised Domain Adaptation (UDA) methods [8–15] try to mitigate the
domain shift by transferring models from a fully-labeled source domain to an unlabeled target domain.
This eliminates the need for annotating images but assumes that the target domain is accessible at
training time. While UDA has been applied to complex tasks for autonomous driving such as object
detection [1, 16] and semantic segmentation [17, 18], only few works focus on lane detection [19, 5].
This can be attributed to the lack of public UDA datasets for lane detection.

∗Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://carlanebenchmark.github.io

MoLane TuLane

Source

Target

Figure 1: Images sampled from our CARLANE Benchmark.

To compensate for this data scarcity and encourage future research, we introduce CARLANE, a
sim-to-real domain adaptation benchmark for lane detection. We use the CARLA simulator for data
collection in the source domain with a free-roaming waypoint-based agent and data from two distinct
real-world domains as target domains. This enables us to construct a benchmark that consists of three
datasets:
(1) MoLane focuses on abstract lane markings in the domain of a 1/8th Model vehicle. We collect
80K labeled images from simulation as the source domain and 44K unlabeled real-world images from
several tracks with two lane markings as the target domain. Further, we apply domain randomization
as well as data balancing. For evaluation, we annotate 2,000 validation and 1,000 test images with
our labeling tool.
(2) TuLane incorporates 24K balanced and domain-randomized images from simulation as the source
domain and the well-known TuSimple [20] dataset with 3,268 real-world images from U.S. highways
with up to four labeled lanes as the target domain. The target domain of MoLane is a real-world
abstraction from the target domain of TuLane, which may result in interesting insights about UDA.
(3) MuLane is a balanced combination of MoLane and TuLane with two target domains. For the
source domain, we randomly sample 24K images from MoLane and combine them with TuLane’s
synthetic images. For the target domains, we randomly sample 3,268 images from MoLane and
combine them with TuSimple. This allows us to investigate multi-target UDA for lane detection.
To establish baselines and investigate UDA on our benchmark, we evaluate several adversarial
discriminative methods, such as DANN [12], ADDA [13] and SGADA [21]. Additionally, we
propose SGPCS, which builds upon PCS [22] with a pseudo labeling approach to achieve state-of-
the-art performance.

Our contributions are three-fold: (1) We introduce CARLANE, a 3-way sim-to-real benchmark,
allowing single- and multi-target UDA. (2) We provide several dataset tools, i.e., an agent to collect
images with lane annotations in CARLA and a labeling tool to annotate the real-world images
manually. (3) We evaluate several well-known UDA methods to establish baselines and discuss
results on both single- and multi-target UDA. To the best of our knowledge, we are the first to adapt a
lane detection model from simulation to multiple real-world domains.

2 Related Work

2.1 Data Generation for Sim-to-Real Lane Detection

In recent years, much attention has been paid to lane detection benchmarks in the real world, such as
CULane [3], TuSimple [20], LLAMAS [23], and BDD100K [24]. Despite the popularity of these
benchmarks, there is few research that focuses on sim-to-real lane detection datasets. Garnett et al.
[4] propose a method for generating synthetic images with 3D lane annotations in the open-source
engine blender. Their synthetic-3D-lanes dataset contains 300K train, 1,000 validation and 5,000
test images, while their real-world 3D-lanes dataset consists of 85K images, which are annotated
in a semi-manual manner. Utilizing the data generation method from [4], Garnett et al. [19] collect
50K labeled synthetic images to perform sim-to-real domain adaptation for 3D lane detection. At this
point, the source domain of the dataset is not publicly available.

Recently, Hu et al. [5] investigated UDA techniques for 2D lane detection. Their proposed data
generation method relies on CARLA’s built-in agent to automatically collect 16K synthetic images.

2

However, the dataset is not publicly available at this point. In comparison, our method leverages
an efficient and configurable waypoint-based agent. Furthermore, in contrast to the aforementioned
works, considering only single-source single-target UDA, we additionally focus on multi-target UDA.

2.2 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation has been extensively studied in recent years [9]. In an early
work, Ganin et al. [8] propose a gradient reversal layer between the features extractor and a domain
classifier to learn similar feature distributions for distinct domains. Early discrepancy-based methods
employ a distance metric to measure the discrepancy of the source and target domain [10, 25]. A
prominent example is DAN [10] which uses maximum mean discrepancies (MMD) [26, 27] to match
embeddings of different domain distributions. Recently, DSAN [11] builds upon DAN with local
MMD and exploits fine-grained features to align subdomains accurately.

Domain alignment can also be achieved through adversarial learning [28]. Adversarial discriminative
methods such as DANN [12] or ADDA [13] employ a domain classifier or discriminator, encouraging
the feature extractor to produce domain-invariant representations. While these methods mainly rely
on feature-level alignment, adversarial generative methods [29, 30] operate on pixel-level.

In a recent trend, self-supervised learning methods are leveraged as auxiliary tasks to improve
domain adaptation effectiveness and to capture in-domain semantic structures [14, 15, 31, 22, 32].
Furthermore, self-supervised learning is utilized for cross-domain alignment as well, by matching
class-discriminative features [31, 33], task-discriminative features [34], class prototypes [35, 22] or
equivalent samples in the domains [36].

Furthermore, other recent works mitigate optimization inconsistencies by minimizing the gradients
discrepancy of the source samples and target samples [37] or by applying a meta-learning scheme
between the domain alignment and the targeted classification task [38].

3 Data Generation

To construct our benchmark, we gather image data from a real 1/8th model vehicle, and the CARLA
simulator [6]. Ensuring the verification of results and transferability to real driving scenarios, we
extend our benchmark with the TuSimple dataset [20]. This enables gradual testing, starting from
simulation, followed by model cars, and ending with full-scale real word experiments. Data variety
is achieved through domain randomization in all domains. However, naively performing domain
randomization might lead to an imbalanced dataset. Therefore, similar driving scenarios are sampled
across all domains, and a bagging approach is utilized to uniformly collect lanes by their curvature
with respect to the camera position. We strictly follow TuSimple’s data format [20] to maintain
consistency across all our datasets.

3.1 Real-World Environment

As shown in Figure 2, we build six different 1/8th race tracks, where each track is available in two
different surface materials (dark and light gray). We vary between dotted and solid lane markings,
which are pure white and 50 mm thick. The lanes are constantly 750 mm wide, and the smallest
inner radius is 250 mm. The track layouts are designed to roughly contain the same proportion of
straight and curved segments to obtain a balanced label distribution. We construct these tracks in four
locations with alternating backgrounds and lighting conditions.

3.2 Real-World Data Collection

Raw image data is recorded from a front-facing Stereolabs ZEDM camera with 30 FPS and a
resolution of 1280× 720 pixels. A detailed description of the 1/8th car can be found in the Appendix.
The vehicle is moved with a quasi-constant velocity clockwise and counter-clockwise to cover both
directions of each track. All collected images from tracks (e) and (f) are used for the test subset. In
addition, we annotate lane markings with our labeling tool for validation and testing, which is made
publicly available.

3

(a) (b) (c) (d) (e) (f)

Figure 2: Overview of our track types for MoLane. (a) - (d) show the black version of the training
and validation tracks. These tracks are also constructed using a light gray surface material. (e) and (f)
depict our test tracks.

3.3 Simulation Environment

We utilize the built-in APIs from CARLA to randomize multiple aspects of the agent and environment,
such as weather, daytime, ego vehicle position, camera position, distractor vehicles, and world objects
(i.a., walls, buildings, and plants). Weather and daytime are varied systematically by adapting
parameters for cloud density, rain intensity, puddles, wetness, wind strength, fog density, sun azimuth,
and sun altitude. For further details, we refer to our implementation. To occlude the lanes similar to
real-world scenarios, up to five neighbor vehicles are spawned randomly in the vicinity of the agent.
We consider five different CARLA maps in urban and highway environments (Town03, Town04,
Town05, Town06, and Town10) to collect our dataset, as the other towns’ characteristics are not
suitable for our task (i.a., mostly straight lanes). In addition, we collect data from the same towns
without world objects to strengthen the focus on lane detection, similar to our model vehicle target
domain.

3.4 Simulation Data Agent

We implement an efficient agent based on waypoint navigation, which roams randomly and reliably
in the aforementioned map environments and collects 1280× 720 images. In each step, the waypoint
navigation stochastically traverses the CARLA road map with a fixed lookahead distance of one
meter. In addition, we sample offset values ∆yk from the center lane within the range ±1.20 m.

To avoid saturation at the lane borders, which would occur with a sinusoidal function, we use the
triangle wave function:

∆yk =
2m

π
arcsin(sin(ik)) (1)

where m is the maximal offset and ik is incremented by 0.08 for each simulation step k. Per frame,
our agent moves to the next waypoint with an increment of one meter, enabling the collection of
highly diverse data in a fast manner. We use a bagging approach for balancing, which allows us to
define lane classes based on their curvature.

4 The CARLANE Benchmark

The CARLANE Benchmark consists of three distinct sim-to-real datasets, which we build from our
three different domains. The details of the individual subsets can be found in Table 1.
MoLane consists of images from CARLA and the real 1/8th model vehicle. For the abstract real-world
domain, we collect 46,843 images with our model vehicle, of which 2,000 validation and 1,000 test
images are labeled. For the source domain, we use our simulation agent to gather 84,000 labeled
images. To match the label distributions between both domains, we define five lane classes based
on the relative angle β of the agent to the center lane for our bagging approach: strong left curve

4

Table 1: Dataset overview. Unlabeled images denoted by *, partially labeled images denoted by **
Dataset domain total images train validation test lanes

MoLane CARLA simulation 84,000 80,000 4,000 - ≤ 2
model vehicle 46,843 43,843* 2,000 1,000 ≤ 2

TuLane CARLA simulation 26,400 24,000 2,400 - ≤ 4
TuSimple [20] 6,408 3,268 358 2,782 ≤ 4

MuLane CARLA simulation 52,800 48,000 4,800 - ≤ 4
model vehicle + TuSimple [20] 12,536 6,536** 4,000 2,000 ≤ 4

(β ≤−45◦), soft left curve (−45◦ < β ≤ −15◦), straight (−15◦ < β < 15◦), soft right curve (15◦

≤ β < 45◦) and strong right curve (45◦≤ β). In total, MoLane encompasses 130,843 images.
TuLane consists of images from CARLA, and a cleaned version of the TuSimple dataset [20], which
is licensed under the Apache License, Version 2.0. To clean test set annotations, we utilize our
labeling tool to ensure that the up to four lanes closest to the car are correctly labeled. We adapt
the bagging classes to align the source dataset with TuSimple’s lane distribution: left curve (−12◦

< β ≤ 5◦), straight (−5◦ < β < 5◦) and right curve (5◦ ≤ β < 12◦).
MuLane is a multi-target UDA dataset and is a balanced mixture of images from MoLane and TuLane.
For MuLane’s entire training set and its source domain validation and test set, we use all available
images from TuLane and sample the same amount of images from MoLane. We adopt the 1,000
test images from MoLane’s target domain and sample 1,000 test images from TuSimple to form
MuLane’s test set. For the validation set, we use the 2,000 validation images from MoLane and 2,000
of the remaining validation and test images of TuLane’s target domain. In total, MuLane consists of
65,336 images.

To further analyze CARLANE, we visualize the ground truth lane distributions in Figure 3. We
observe that the lane distributions of source and target data from our datasets are well aligned.

MoLane, TuLane, and MuLane are publicly available at https://carlanebenchmark.github.io and
licensed under the Apache License, Version 2.0.

4.1 Dataset Format

For each dataset, we split training, validation, and test samples into source and target subsets. Lane
annotations are stored within a .json file containing the lanes’ y-values discretized by raw anchors, the
lanes’ x-values, and the image file path following the data format of TuSimple[20]. Additionally, we
adopt the method from [2] to generate .png lane segmentations and a .txt file containing the linkage
between the raw images and their segmentation as well as the presence and absence of a lane.

4.2 Dataset Tasks

The main task of our datasets is UDA for lane detection, where the goal is to predict lane annotations
Yt ∈ RR×G×N given the input image Xt ∈ RH×W×3 from the unlabeled target domain DT =
{(Xt)}t∈T . R defines the number of row anchors, G the number of griding cells, and N the number
of lane annotations available in the dataset, where the definition of Yt follows [20]. During training
time, the images Xs ∈ RH×W×3, corresponding labels Ys ∈ RH×W×C from the source domain
DS = {(Xs, Ys)}s∈S , and the unlabeled target images Xt are available. Additionally, MuLane
focuses on multi-target UDA, where DT = {(Xt1) ∪ (Xt2)}t1∈T1,t2∈T2 .

Although we focus on sim-to-real UDA, our datasets can be used for unsupervised and semi-
supervised tasks and partially for supervised learning tasks. Furthermore, a real-to-real transfer
can be performed between the target domains of our datasets.

5 Benchmark Experiments

We conduct experiments on our CARLANE Benchmark for several UDA methods from the literature
and our proposed method. Additionally, we train fully supervised baselines on all domains.

5

https://carlanebenchmark.github.io

MoLane TuLane MuLane

Source

Target

Figure 3: Lane annotation distributions of the three subsets of CARLANE. Since the real-world
training data of MoLane and MuLane is unlabeled, we utilize their validation data for visualization.

5.1 Metrics

For evaluation, we use the following metrics:

(1) Lane Accuracy (LA) [2] is defined by LA = pc

py
, where pc is the number of correctly predicted

lane points and py is the number of ground truth lane points. Lane points are considered as correct
if their L1 distance is smaller than the given threshold tpc = 20

cos(ayl)
, where ayl is the angle of the

corresponding ground truth lane.

(2) False Positives (FP) and False Negatives (FN) [2]: To further determine the error rate and to draw
more emphasis on mispredicted or missing lanes, we measure false positives with FP =

lf
lp

and false

negatives with FN = lm
ly

, where lf is the number of mispredicted lanes, lp is the number of predicted
lanes, lm is the number of missing lanes and ly is the number of ground truth lanes. Following [2],
we classify lanes as mispredicted, if the LA < 85%.

5.2 Baselines

We use Ultra Fast Structure-aware Deep Lane Detection (UFLD) [2] as baseline and strictly adopt
its training scheme and hyperparameters. UFLD treats lane detection as a row-based classification
problem and utilizes the row anchors defined by TuSimple [20]. To achieve a lower bound for
the evaluated UDA methods, we train UFLD as a supervised baseline on the source simulation
data (UFLD-SO). Furthermore, we train our baseline on the labeled real-world training data for a
surpassable fully-supervised performance in the target domain (UFLD-TO). Since the training images
from MoLane and MuLane have no annotations, we train UFLD-TO in these cases on the labeled
validation images and validate our model on the entire test set.

5.3 Compared UDA Methods

We evaluate the following feature-level UDA methods on the CARLANE Benchmark by adopting
their default hyperparameters and tuning them accordingly. Each model is initialized with the pre-
trained feature encoder of our baseline model (UFLD-SO). The optimized hyperparameters can be
found in Table 2.
(1) DANN [12] is an adversarial discriminative method that utilizes a shared feature encoder and a
dense domain classifier connected via a gradient reversal layer.
(2) ADDA [13] employs a feature encoder for each domain and a dense domain discriminator.
Following ADDA, we freeze the weights of the pre-trained classifier of UFLD-SO to obtain final
predictions.

(3) SGADA [21] builds upon ADDA and utilizes its predictions as pseudo labels for the target training
images. Since UFLD treats lane detection as a row-based classification problem, we reformulate
the pseudo label selection mechanism. For each lane, we select the highest confidence value from
the griding cells of each row anchor. Based on their griding cell position, the confidence values are
divided into two cases: absent lane points and present lane points. Thereby, the last griding cell

6

Table 2: Optimized hyperparameters to achieve the reported results. C denotes domain classifier
parameters, D denotes domain discriminator parameters, adv the adversarial loss from [13] and cls
the classifier loss, sim the similarity loss and aux the auxiliary loss from [2]. Loss weights are set to
1.0 unless stated otherwise.

Method Initial Learning Rate Scheduler Batch Size Epochs Losses Other Changes

UFLD-SO 4e−4 Cosine Annealing 4 150 cls, sim, aux -

DANN 1e−5 , C: 1e−3 1e−5

(1+10p)0.75
4 30 cls, sim, aux, adv [12] C: 3 fc layers (1024-1024-2)

ADDA 1e−6 , D: 1e−3 Constant 16 30 map [13], adv [13] D: 3 fc layers (500-500-2)
SGADA 1e−6 , D: 1e−3 Constant 16 15 map [13], adv [13], pseudo: 0.25 Pseudo label selection

SGPCS 4e−4 Cosine Annealing 16 10 in-domain [22], cross-domain [22] -cls, sim, aux, pseudo: 0.25
UFLD-TO 4e−4 Cosine Annealing 4 300 cls, sim, aux -

represents absent lane points as in [2]. For each case, we calculate the mean confidence over the
corresponding lanes. We then use the thresholds defined by SGADA to decide whether the prediction
is treated as a pseudo label.

(4) SGPCS (ours) builds upon PCS [22] and performs in-domain contrastive learning and cross-
domain self-supervised learning via cluster prototypes. Our overall objective function comprises the
in-domain and cross-domain loss from PCS, the losses defined by UFLD, and our adopted pseudo loss
from SGADA. We adjust the momentum for memory bank feature updates to 0.5 and use spherical
K-means [39] with K = 2, 500 to cluster them into prototypes.

5.4 Implementation Details

We implement all methods in PyTorch 1.8.1 and train them on a single machine with four RTX 2080
Ti GPUs. Tuning all methods took a total amount of compute of approximately 3.5 petaflop/s-days.
The training times for each model range from 4-13 days for UFLD baselines and 6-44 hours for
domain adaption methods. In addition, we found that applying output scaling on the last linear layer
of the model yields slightly better results. Therefore, we divide the models’ output by 0.5. Our
implementation is publicly available at https://carlanebenchmark.github.io.

5.5 Evaluation

Quantitative Evaluation. In Table 3 we report the results on MoLane, TuLane, and MuLane across
five different runs. We observe that UFLD-SO is able to generalize to a certain extent to the target
domain. This is mainly due to the alignment of semantic structure from both domains. ADDA,
SGADA, and our proposed SGPCS manage to adapt the model to the target domain slightly and
consistently. However, DANN suffers from negative transfer [40] when trained on MoLane and
MuLane. The negative transfer of DANN for complex domain adaptation tasks is also observed
in other works [35, 41, 40, 42] and can be explained by the source domain’s data distribution and
the model complexity [40]. In our case, the source domain contains labels not present in the target
domain, as shown in Figure 3, which is more pronounced in MoLane and MuLane.

We want to emphasize that with an accuracy gain of a maximum of 4.55% (SGPCS) and high false
positive and false negative rates, the domain adaptation methods are not able to achieve comparable
results to the supervised baselines (UFLD-TO). Furthermore, we observe that false positive and false
negative rates increase significantly on MuLane, indicating that the multi-target dataset forms the
most challenging task. False positives and false negatives represent wrongly detected and missing
lanes which can lead to crucial impacts on autonomous driving functions. These results affirm the
need for the proposed CARLANE Benchmark to further strengthen the research in UDA for lane
detection.

Qualitative Evaluation. We use t-SNE [43] to visualize the features of the features encoders for
the source and target domains of MuLane in Figure 4. t-SNE visualizations of MoLane and TuLane
can be found in the Appendix. In accordance with the quantitative results, we observe only a slight
adaptation of the source and target domains features for ADDA, SGADA, and SGPCS compared
to the supervised baseline UFLD-SO. Consequently, the examined well-known domain adaptation
methods have no significant effect on feature alignment. In addition, we show results from the
evaluated methods in Figure 5 and observe that the models are able to predict target domain lane

7

https://carlanebenchmark.github.io

Table 3: Performance on the test set. Lane accuracy (LA), false positives (FP), and false negatives
(FN) are reported in %.

ResNet-18 MoLane TuLane MuLane
LA FP & FN LA FP FN LA FP FN

UFLD-SO 89.39 25.25 87.43 34.21 23.48 88.02 50.24 26.08
DANN [12] 87.65±0.48 29.97±1.21 88.74±0.32 32.71±0.52 21.64±0.65 86.01±0.67 55.33±1.22 36.30±1.90
ADDA [13] 92.85±0.17 10.61±0.77 90.72±0.15 29.73±0.36 17.67±0.42 89.83±0.33 46.79±0.43 20.57±0.63

SGADA [21] 93.82±0.10 7.13±0.22 91.70±0.13 28.42±0.34 16.10±0.43 90.71±0.10 45.13±0.32 17.26±0.36
SGPCS (ours) 93.94±0.04 7.16±0.16 91.55±0.13 28.52±0.21 16.16±0.26 91.57±0.22 45.49±0.63 17.39±0.88

UFLD-TO 97.35 0.50 94.97 18.05 3.84 96.57 34.06 2.49

ResNet-34 LA FP & FN LA FP FN LA FP FN

UFLD-SO 90.35 22.25 89.42 32.35 21.19 89.17 48.86 23.67
DANN [12] 90.91±0.42 19.73±1.51 91.06±0.14 30.17±0.20 18.54±0.25 88.76±0.22 48.93±0.47 24.16±0.89
ADDA [13] 92.39±0.26 12.17±0.84 91.39±0.16 28.76±0.30 16.63±0.36 90.22±0.39 45.84±0.54 19.49±0.90

SGADA [21] 93.31±0.10 9.41±0.16 92.04±0.09 28.18±0.20 15.99±0.24 91.63±0.03 44.18±0.12 16.23±0.16
SGPCS (ours) 93.53±0.25 8.24±0.91 93.29±0.18 25.68±0.48 12.73±0.59 91.55±0.17 44.75±0.28 16.41±0.44

UFLD-TO 97.21 0.30 94.43 20.74 7.20 96.54 33.76 2.03

UFLD-SO DANN ADDA SGADA SGPCS

Figure 4: t-SNE visualization of MuLane dataset. The source domain is marked in blue, the real-world
model vehicle target domain in red, and the TuSimple domain in green.

annotations in many cases but are not able to achieve comparable results to the supervised baseline
(UFLD-TO).

In summary, we find quantitatively and qualitatively that the examined domain adaptation methods
do not significantly improve the performance of lane detection and feature adaptation. For this reason,
we believe that the proposed benchmark could facilitate the exploration of new domain adaptation
methods to overcome these problems.

6 Conclusion

We present CARLANE, the first UDA benchmark for lane detection. CARLANE was recorded in
three domains and consists of three datasets: the single-target datasets MoLane and TuLane and
the multi-target dataset MuLane, which is a balanced combination of both. Based on the UFLD
model, we conducted experiments with different UDA methods on CARLANE and found that the
selected methods are able to adapt the model to target domains slightly and consistently. However,
none of the methods achieve comparable results to the supervised baselines. The most significant
performance differences are noticeable in the high false positive and false negative rates of the UDA
methods compared to the target-only baselines, which is even more pronounced in the MuLane
multi-target task. These false-positive and false-negative rates can negatively impact autonomous
driving functions since they represent misidentified and missing lanes. Furthermore, as shown in the
t-SNE plots of Figure 4, the examined well-known domain adaptation methods have no significant
effect on feature alignment. The current difficulties of the examined UDA methods to adequately
align the source and target domains confirm the need for the proposed CARLANE benchmark. We
believe that CARLANE eases the development and comparison of UDA methods for lane detection.
In addition, we open-source all tools for dataset creation and labeling and hope that CARLANE
facilitates future research in these directions.

Limitations. One limitation of our work is that we only use a fixed set of track elements within our
1/8th scaled environment. These track elements represent only a limited number of distinct curve
radii. Furthermore, neither buildings nor traffic signs exist in MoLane’s model vehicle target domain.

8

MoLane TuLane MuLane

UFLD-SO

DANN

ADDA

SGADA

SGPCS

UFLD-TO

Figure 5: Qualitative results of target domain predictions. Ground truth lane annotations are marked
in blue, predictions in red.

Moreover, the full-scale real-world target domain of TuLane is derived from TuSimple. TuSimple’s
data was predominantly collected under good and medium conditions and lacks variation in weather
and time of day. In addition, we want to emphasize that collecting data for autonomous driving
is still an ongoing effort and that datasets such as TuSimple do not cover all possible real-world
driving scenarios to ensure safe, practical use. For the synthetically generated data, we limited
ourselves to using existing CARLA maps without defining new simulation environments. Despite
these limitations, CARLANE serves as a supportive dataset for further research in the field of UDA.
Ethical and Responsible Use. Considering the limitations of our work, UDA methods trained on
TuLane and MuLane should be tested with care and under the right conditions on a full-scale car.
However, real-world testing with MoLane in the model vehicle domain can be carried out in a safe
and controlled environment. Additionally, TuLane contains open-source images with unblurred
license plates and people. This data should be treated with respect and in accordance with privacy
policies. In general, our work contributes to the research in the field of autonomous driving, in which
a lot of unresolved ethical and legal questions are still being discussed. The step-by-step testing
possibility across three domains makes it possible for our benchmark to include an additional safety
mechanism for real-world testing.

Acknowledgments and Disclosure of Funding

The authors would like to thank all anonymous reviewers for their helpful comments and recommen-
dations, which contributed to the quality of the paper. This work was supported exclusively by the
University of Applied Sciences Kempten.

References
[1] F. Munir, S. Azam, and M. Jeon, “SSTN: Self-Supervised Domain Adaptation Thermal Object

Detection for Autonomous Driving,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 206–213, 2021.

[2] Z. Qin, H. Wang, and X. Li, “Ultra Fast Structure-aware Deep Lane Detection,” in The European
Conference on Computer Vision (ECCV), 2020.

9

[3] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial As Deep: Spatial CNN for Traffic Scene
Understanding,” in AAAI Conference on Artificial Intelligence (AAAI), February 2018.

[4] N. Garnett, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, “3D-LaneNet: End-to-End 3D Multiple
Lane Detection,” in ICCV, pp. 1013 – 1021, 2019.

[5] C. Hu, S. Hudson, M. Ethier, M. Al-Sharman, D. Rayside, and W. Melek, “Sim-to-Real Domain
Adaptation for Lane Detection and Classification in Autonomous Driving,” 2022.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open Urban
Driving Simulator,” 2017.

[7] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,”
in European conference on computer vision, pp. 213–226, Springer, 2010.

[8] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Interna-
tional conference on machine learning, pp. 1180–1189, PMLR, 2015.

[9] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” ACM Transac-
tions on Intelligent Systems and Technology (TIST), vol. 11, no. 5, pp. 1–46, 2020.

[10] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning Transferable Features with Deep Adapta-
tion Networks,” in Proceedings of the 32nd International Conference on Machine Learning,
vol. 37, (Lille, France), pp. 97–105, PMLR, 07–09 Jul 2015.

[11] Y. Zhu, F. Zhuang, J. Wang, G. Ke, J. Chen, J. Bian, H. Xiong, and Q. He, “Deep Subdomain
Adaptation Network for Image Classification,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[12] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and
V. Lempitsky, “Domain-Adversarial Training of Neural Networks,” Journal of Machine Learning
Research, vol. 17, no. 59, pp. 1–35, 2016.

[13] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adap-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[14] J. Xu, L. Xiao, and A. M. López, “Self-Supervised Domain Adaptation for Computer Vision
Tasks,” IEEE Access, vol. 7, pp. 156694–156706, 2019.

[15] Y. Sun, E. Tzeng, T. Darrell, and A. A. Efros, “Unsupervised Domain Adaptation through
Self-Supervision,” 2019.

[16] Q. Xu, Y. Zhou, W. Wang, C. R. Qi, and D. Anguelov, “SPG: Unsupervised Domain Adaptation
for 3D Object Detection via Semantic Point Generation,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 15426–15436, 2021.

[17] X. Wu, Z. Wu, H. Guo, L. Ju, and S. Wang, “DANNet: A One-Stage Domain Adaptation
Network for Unsupervised Nighttime Semantic Segmentation,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2021.

[18] S. Zhao, B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, and K. Keutzer, “Multi-source Domain
Adaptation for Semantic Segmentation,” in Advances in Neural Information Processing Systems,
2019.

[19] N. Garnett, R. Uziel, N. Efrat, and D. Levi, “Synthetic-to-Real Domain Adaptation for Lane
Detection,” in ACCV, 2020.

[20] TuSimple, “TuSimple-benchmark.” https://github.com/TuSimple/
tusimple-benchmark/tree/master/doc/lane_detection. Accessed: 2021-11-16.

[21] I. B. Akkaya, F. Altinel, and U. Halici, “Self-Training Guided Adversarial Domain Adaptation
for Thermal Imagery,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 4322–4331, June 2021.

10

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

[22] X. Yue, Z. Zheng, S. Zhang, Y. Gao, T. Darrell, K. Keutzer, and A. Sangiovanni-Vincentelli,
“Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adap-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021.

[23] K. Behrendt and R. Soussan, “Unsupervised Labeled Lane Markers Using Maps,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019.

[24] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “BDD100K:
A Diverse Driving Dataset for Heterogeneous Multitask Learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[25] B. Sun, J. Feng, and K. Saenko, “Return of Frustratingly Easy Domain Adaptation,” in AAAI
Conference on Artificial Intelligence, 2016.

[26] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A Kernel Method for
the Two-Sample-Problem,” in Advances in Neural Information Processing Systems, vol. 19,
pp. 513–520, MIT Press, 2007.

[27] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A Kernel Two-Sample
Test,” Journal of Machine Learning Research, vol. 13, no. 25, pp. 723–773, 2012.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative Adversarial Nets,” in Advances in Neural Information Processing
Systems, vol. 27, Curran Associates, Inc., 2014.

[29] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T. Darrell,
“CyCADA: Cycle Consistent Adversarial Domain Adaptation,” in International Conference on
Machine Learning (ICML), 2018.

[30] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised Pixel-
Level Domain Adaptation with Generative Adversarial Networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 95–104, 2017.

[31] D. Kim, K. Saito, T.-H. Oh, B. A. Plummer, S. Sclaroff, and K. Saenko, “Cross-domain
Self-supervised Learning for Domain Adaptation with Few Source Labels,” 2020.

[32] X. Xie, J. Chen, Y. Li, L. Shen, K. Ma, and Y. Zheng, “Self-supervised cyclegan for object-
preserving image-to-image domain adaptation,” in European Conference on Computer Vision,
pp. 498–513, Springer, 2020.

[33] H. Wang, T. Shen, W. Zhang, L.-Y. Duan, and T. Mei, “Classes matter: A fine-grained adversarial
approach to cross-domain semantic segmentation,” in European conference on computer vision,
pp. 642–659, Springer, 2020.

[34] G. Wei, C. Lan, W. Zeng, Z. Zhang, and Z. Chen, “Toalign: Task-oriented alignment for
unsupervised domain adaptation,” Advances in Neural Information Processing Systems, vol. 34,
pp. 13834–13846, 2021.

[35] K. Tanwisuth, X. Fan, H. Zheng, S. Zhang, H. Zhang, B. Chen, and M. Zhou, “A prototype-
oriented framework for unsupervised domain adaptation,” Advances in Neural Information
Processing Systems, vol. 34, pp. 17194–17208, 2021.

[36] Y. Zhao, L. Cai, et al., “Reducing the covariate shift by mirror samples in cross domain
alignment,” Advances in Neural Information Processing Systems, vol. 34, pp. 9546–9558, 2021.

[37] Z. Du, J. Li, H. Su, L. Zhu, and K. Lu, “Cross-domain gradient discrepancy minimization for
unsupervised domain adaptation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3937–3946, 2021.

[38] G. Wei, C. Lan, W. Zeng, and Z. Chen, “Metaalign: Coordinating domain alignment and
classification for unsupervised domain adaptation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16643–16653, 2021.

11

[39] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs,” IEEE
Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[40] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, “Characterizing and avoiding negative transfer,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11293–11302, 2019.

[41] H. Fan, X. Chang, W. Zhang, Y. Cheng, Y. Sun, and M. Kankanhalli, “Self-supervised global-
local structure modeling for point cloud domain adaptation with reliable voted pseudo labels,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6377–6386, 2022.

[42] D. Kim, K. Saito, T.-H. Oh, B. A. Plummer, S. Sclaroff, and K. Saenko, “Cross-domain
self-supervised learning for domain adaptation with few source labels,” arXiv preprint
arXiv:2003.08264, 2020.

[43] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine learning
research, vol. 9, no. 11, 2008.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 6.
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract,
Section 5.4 and the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4, Section 5, Section 5.4, Table 1, Table 2 and the
supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Table 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Section 5.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the TuSimple

dataset [20].
(b) Did you mention the license of the assets? [Yes] See Section 4.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] TuSimple is open-source and licensed under the Apache License,
Version 2.0 (January 2004).

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Section 6

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Data Generation for Sim-to-Real Lane Detection
	Unsupervised Domain Adaptation

	Data Generation
	Real-World Environment
	Real-World Data Collection
	Simulation Environment
	Simulation Data Agent

	The CARLANE Benchmark
	Dataset Format
	Dataset Tasks

	Benchmark Experiments
	Metrics
	Baselines
	Compared UDA Methods
	Implementation Details
	Evaluation

	Conclusion

