
Supplementary Material
Below we give an overview of the structure of the supplementary material.

• App. A contains additional technical background on Markov processes and Koopman
operators, notably on Koopman Mode Decomposition.

• In App. B we provide detailed proofs of the results presented in Sec. 3. In particular, we
provide bounds on the distance between spectra of the Koopman operator and its estimation
in App. B.1, and discuss a duality between Koopman operator regression (KOR) and
conditional mean embeddings (CME) in App. B.2.

• In App. C we expand the content of Sec. 4. In App. C.1 we discuss the computation of three
estimators considered in this work, while in App. C.2 we show how to compute their modal
decompositions.

• In App. D we prove the statistical learning bounds presented in Sec. 5 and briefly discuss
their implications and future research directions.

• Finally, in App. E we provide more details on the experimental section, as well as present
additional experiments.

A Background on the Koopman Operator Theory

We now recall basic results concerning the theory of Koopman (i.e. transfer) operators. As mentioned
in the main text, the natural function space F in which the Koopman operator can be defined is
F = L

1
(X ). In this case, given a transition kernel p, by integrating, we can define the transfer

operator acting either on L
1

(X )-measurable functions (from the right) or �-finite measures on ⌃X

(from the left).
Definition 1 (Transfer operator). We define the linear transfer operator P acting on the right on
functions f 2 L

1
(X )

(Pf)(x) :=

Z

X

p(x, dy)f(y) = E [f(Xi+1)|Xi = x] (15a)

and on the left on �-finite measures on ⌃X

(µP )(B) :=

Z

X

µ(dx)p(x, B) B 2 ⌃X . (15b)

We notice that (15a) acts exactly as the Koopman operator defined in the main text, although
on a different function space. Equation (15b), on the other hand, can be interpreted as evolving
distributions. Indeed, given an initial distribution of states µ, evolving each state for one step forward,
will yield the distribution µP . If the transition kernel is non-singular, that is for all B 2 ⌃X such that
µ(B) = 0 one has (µP )(B) = 0, in view of the Radon–Nikodym theorem we also have that (15b)
can be interpreted as the adjoint of (15a) with respect to the Banach duality pairing between L

1
(X , µ)

and L
1
(X , µ), see e.g. [26]. From (15b) it also follows that ⇡ being an invariant distribution means

that ⇡P = ⇡, i.e. it is a fixed point of the transfer operator acting on the left. The following lemma
proves that if ⇡ is an invariant distribution, (15a) is a non-expansive operator in every Lebesgue space
L
q
(X ,⇡) with 1  q <1.

Lemma 2. If ⇡ is an invariant probability measure, the operator P is a weak contraction on Lq(X ,⇡)

for all 1  q <1. Additionally, it holds that kPk = 1.

Proof. For the first part, Jensen’s inequality and the invariance of ⇡ directly give
Z

X

|(Pf)(dx)|q⇡(dx) =

Z

X

⇡(dx)

✓Z

X

p(x, dy)|f(y)|
◆q


Z

X

⇡(dx)

Z

X

p(x, dy)|f(y)|q

=

Z

X

(⇡P )(dy)|f(y)|q =

Z

X

P (dy)|f(y)|q.

For the second part we notice that for any constant function c, one has kck = kPck  kPkkck, that
is kPk � 1. This fact coupled with the first part of the lemma yields kPk = 1.

16



Corollary 1. If ⇡ is an invariant probability measure, the operator P is well defined in Lq(X ,⇡) for
all 1  q <1, and in particular for q = 2, the case explored in the main text.

We just proved that whenever an invariant probability measure ⇡ exists, (15a) can be defined directly
in L

2

⇡(X ). An interesting question is therefore what is the equivalent of (15b), seen as the adjoint
of (15a) with respect to the Banach duality pairing. To characterize the adjoint operator P

⇤, we define
the time reversal of p as the Markov transition kernel p

⇤
(x, B) := P {Xt�1 2 B|Xt = x}, and a

simple calculation shows that P
⇤
: L

2

⇡(X )! L
2

⇡(X ) is given by:

(P
⇤
f)(x) :=

Z

X

p
⇤
(x, dy)f(y), (16)

which can be seen as the backward transfer operator [P
⇤
f ](x) = E[f(Xt�1) | Xt = x]. Notice

that when the transfer operator on L
2

⇡(X ) is self-adjoint, i.e. P = P
⇤, the Markov chain is called

time-reversal invariant which is a relevant case in various fields such as physics and chemistry [53].

The following example shows that the basic tools developed in the classical theory of (deterministic)
dynamical systems [26] can be easily recovered in terms of transfer operators.

Example 2 (Deterministic Dynamical System). Let Xi+1 = F (Xi) for all i, with F : X ! X .
Clearly, the transition kernel for this Markov chain is

p(x, B) =

⇢
1 if F (x) 2 B

0 otherwise
. (17)

This corresponds to p(·, A) = 1B � F = 1F�1(B), which in turn implies that

(µP )(A) =

Z

F�1(A)

µ(dx). (18)

This is the Perron-Frobenius operator [26] as defined in the classical theory of dynamical systems.
Analogously, p(x, ·) = �F (x) (the Dirac measure centered at F (x)) and

(Pf)(x) = f(F (x)) (19)

is the deterministic Koopman operator [26]. When an invariant measure ⇡ exists, the Koopman
operator defined in L

2

⇡(X ) is known to be unitary [8] and hence normal. In this respect, see [19],
where general misconceptions on the Koopman operator (such as the one of always being a unitary)
are discussed in detail.

We conclude this section recalling the notion of spectra of linear operators. Let T be a bounded linear
operator on some Hilbert space H. The resolvent set of the operator T is defined as

Res(T ) := {� 2 C : T � �I is bijective} .

If � /2 Res(T ), then � is said to be in the spectrum Sp(T ) of T . Recalling that T � �I bijective
implies that it has a bounded inverse (T � �I)

�1, in infinite-dimensional spaces we can distinguish
three subsets of the spectrum:

1. Any x 2 H such that x 6= 0 and Tx = �x for some � 2 C is called an eigenvector of T

with corresponding eigenvalue �. If � is an eigenvalue, the operator T � �I is not injective
and � 2 Sp(T ). The set of all eigenvalues is called the point spectrum of T .

2. The set of all � 2 Sp(T ) for which T � �I is not surjective and the range of T � �I is
dense in H is called the continuous spectrum.

3. The set of all � 2 Sp(T ) for which T � �I is not surjective and the range of T � �I is not
dense in H is called the residual spectrum.

Finally if T is a compact operator, the Riesz-Schauder theorem [49], assures that Sp(T ) is a discrete
set having no limit points except possibly � = 0. Moreover, for any nonzero � 2 Sp(T ), then � is an
eigenvalue (i.e. it belongs to the point spectrum) of finite multiplicity.
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B Learning Theory in RKHS

We begin by proving the identity (3), which we restate in the following proposition.
Proposition 4. Let G 2 HS (H) and let (hi)i2N be complete a orthonormal system of H, then

X

i2N

E(x,y)⇠⇢ [(S⇡hi)(y)� (S⇡Ghi)(x)]
2

= kS⇡k2HS
� kZ⇡k2HS

+ kZ⇡ � S⇡Gk2
HS

. (20)

Proof. Given A : H! L
2

⇡(X ) for an arbitrary h 2 H, denoting f = S⇡h, we have that

E(x,y)⇠⇢ [f(y)� (Ah)(x)]
2

=

Z

X⇥X

⇡(dx)p(x, dy)

⇣
(f(y)

2 � 2f(y)(Ah)(x) + (Ah)(x)
2

⌘
.

Using that ⇡(dy) =
R
X
⇡(dx)p(x, dy), we have both

Z

X⇥X

⇡(dx)p(x, dy)f(y) =

Z

X

⇡(dy)f(y) and
Z

X⇥X

⇡(dx)p(x, dy)f(y)
2

=

Z

X

⇡(dy)f(y)
2
.

A direct computation then gives that

E(x,y)⇠⇢ [f(y)� (Ah)(x)]
2

= kfk2 � kA⇡fk2 + kA⇡f �Ahk2.

Replacing A and in the above expression by S⇡G and summing over i 2 N, we obtain
X

i2N

E(x,y)⇠⇢ [(S⇡hi)(y)� (S⇡Ghi)(x)]
2

= kS⇡k2HS
� kZ⇡k2HS

+ kZ⇡ � S⇡Gk2
HS

.

Now, since kZ⇡ � S⇡GkHS <1, by Tonelli’s theorem we can exchange summation and expectation
Ex⇠⇡, and the proof is completed. We remark that in the risk definition (3) in the main text, we
slightly abused notation as hi 2 H, but the expectation value is defined in L

2

⇡(X ). The formally
correct version of (3) is obtained with the substitution hi 7! S⇡hi.

Next, we prove our main result on the approximation of the Koopman operator via RKHS. We show
that if an RKHS H is, up to its closure in L

2

⇡(X ), invariant subspace of the Koopman operator A⇡,
then finite rank non-defective operators on H approximate arbitrarily well the restriction of A⇡ onto
H.
Proposition 1. If Im(Z⇡) ✓ cl(Im(S⇡)), then for every � > 0 there exists a finite rank non-defective
operator G 2 HS (H) such that E(G) < �.

Proof. Let us start by observing that Z⇡ 2 HS
�
H, L

2

⇡(X )
�
, according to the spectral theorem for

positive self-adjoint operators, has an SVD, i.e. there exists at most countable positive sequence
(�j)j2J , where J := {1, 2, . . . , } ✓ N, and ortho-normal systems (`j)j2J and (hj)j2J of cl(Im(Z⇡))

and Ker(Z⇡)
?, respectively, such that Z⇡hj = �j`j and Z

⇤

⇡`j = �jhj , j 2 J .

Now, recalling that [[·]]r denotes the r-truncated SVD, i.e. [[Z⇡]]r =
P

j2[r] �j`j ⌦ hj , since kZ⇡ �
[[Z⇡]]rk2HS

=
P

j>r �
2

j , for every � > 0 there exists r 2 N such that kZ⇡ � [[Z⇡]]rkHS < �/3.

Next, since Im(Z⇡) ✓ cl(Im(S⇡)), for every j 2 [r], we have that `j 2 cl(Im(Z⇡)) ✓ cl(Im(S⇡)),
which implies that there exists gj 2 H s.t. k`j�S⇡gjk  �

3r , and, denoting Br :=
P

j2[r] �jgj⌦hj

we conclude k[[Z⇡]]r � S⇡BrkHS  �/3.

Finally we recall that the set of non-defective matrices is dense in the space of matrices [59],
implying that the set of non-defective rank-r linear operators is dense in the space of rank-r linear
operators on a Hilbert space. Therefore, there exists a non-defective G 2 HSr(H) such that
kG�BrkHS < �/(3�1(S⇡)). So, we conclude

kZ⇡ � S⇡GkHS  kZ⇡ � [[Z⇡]]rkHS + k[[Z⇡]]r � S⇡BrkHS + kS⇡(G�Br)kHS = �.

18



As a consequence of the previous result, we see that if H (as a subspace of L
2

⇡(X )) is spanned by
finitely many Koopman eigenfunctions, we have that Z⇡ can be approximated arbitrarily well. In
practice such an assumption is not easy to check. On the other hand, for universal kernels we have
that Im(Z⇡) ✓ L

2

⇡(X ) = cl(Im(S⇡)), and hence we can learn Z⇡ arbitrarily well.

We end this section with a brief discussion of the well-specified and misspecified cases mentioned
in Rem. 2 and prove the claim of Rem. 3 in the proposition that follows. To discuss this, we first
introduce the following Tikhonov regularized version of problem (5),

min
G2HS(H)

R(G) + �kGk2
HS

, � > 0 (21)

and note, by strong convexity, that its unique solution is given by G� = (S
⇤

⇡S⇡ + �IH)
�1

S
⇤

⇡Z⇡ .

The well-specified case: There exists GH 2 HS (H) such that Z⇡ = S⇡GH. In this case, H as a
subspace of L

2

⇡(X ) is an invariant subspace of A⇡, and, hence, GH : H ! H defines ⇡-a.e. the
Koopman operator on the observable space H, i.e. GHf = E[f(Xt+1) | Xt = ·] ⇡-a.e. for every
f 2 H. Moreover, in this case one has that GH = (S

⇤

⇡S⇡)
†
S
⇤

⇡Z⇡ = lim�!0 G� , where (·)† denotes
the densely defined Moore–Penrose pseudoinverse operator [54].

The misspecified case: is when RKHS H as a space of observables doesn’t admit Hilbert-Schmidt
⇡-a.e. Koopman operator. This can clearly bring difficulties in learning A⇡ since, while one reduces
E(G), the HS norm kGkHS may become progressively large. Note, however, that in this case it still
might happen that operator norm kGk stays bounded, and, even more, that H as a subspace of L

2

⇡(X )

is an invariant set of A⇡ , i.e. Im(Z⇡) ✓ Im(S⇡). As the following result shows, this always happens
when one learns self-adjoint Koopman operator via a universal kernel.
Proposition 5. If the Markov process is reversible and Im(Z⇡) ✓ cl(Im(S⇡)), then kG�k  1 and
for every " > 0, there exists � > 0 such that kZ⇡ � S⇡G�k  ".

Proof. Let us start by observing that S⇡ 2 HS
�
H, L

2

⇡(X )
�
, according to the spectral theorem for

positive self-adjoint operators, has an SVD, i.e. there exists at most countable positive sequence
(�j)j2J , where J := {1, 2, . . . , } ✓ N, and ortho-normal systems (`j)j2J and (hj)j2J of cl(Im(S⇡))

and Ker(S⇡)
?, respectively, such that S⇡hj = �j`j and S

⇤

⇡`j = �jhj , j 2 J .

Using the above, we first prove that there exists a positive real non-increasing sequence (�n)n2N such
that limn!1 �n = 0 and limn!1kZ⇡ � S⇡G�k = 0. To that end, let P and Q denote orthogonal
projectors in L

2

⇡(X ) onto cl(Im(S⇡)) and in H onto Ker(S⇡)
?, respectively, i.e. P =

P
j2J `j ⌦ `j

and Q =
P

j2J hj ⌦ hj . So, for every � > 0 we have

kZ⇡ � S⇡G�k = kPZ⇡ � S⇡G�k = k(P � S⇡(S
⇤

⇡S⇡ + �IH)
�1

S
⇤

⇡)Z⇡k,

where the first equality is due to the fact that Im(Z⇡) ✓ cl(Im(S⇡)). Moreover, we have that
S⇡ =

P
j2J �j`j ⌦ hj , and, hence,

P � S⇡(S
⇤

⇡S⇡ + �IH)
�1

S
⇤

⇡ =

X

j2J

�

� + �2

j

`j ⌦ `j � IL2
⇡(X ), and

S
⇤

⇡(P � S⇡(S
⇤

⇡S⇡ + �IH)
�1

S
⇤

⇡)
2
S⇡ =

X

j2J

�
2
�
2

j

(� + �2

j )
2
hj ⌦ hj � �Q.

imply kP�S⇡(S
⇤

⇡S⇡+�IH)
�1

S
⇤

⇡k  1 and k(P�S⇡(S
⇤

⇡S⇡+�IH)
�1

S
⇤

⇡)S⇡k 
p
�, respectively.

Now, since Im(Z⇡) ✓ cl(Im(S⇡)), according to Prop. 1, for every n 2 N there exists a finite rank
operator Bn : H! H such that kZ⇡ �S⇡Bnk  1/n. Thus, denoting Qj :=

P
i2[j] hi⌦hi, j 2 J ,

we have that for every n 2 N there exists jn 2 J such that

kS⇡(Q�Qjn)Bnk  kS⇡(Q�Qjnk)kBnk = kS⇡ � [[S⇡]]jnkkBnk  1/n,

and, hence, kZ⇡ � S⇡QjnBnk  2/n.

Therefore, for every n 2 N, there exists jn 2 J such that for every � > 0 it holds that

kZ⇡ � S⇡G�k = k(P � S⇡(S
⇤

⇡S⇡ + �IH)
�1

S
⇤

⇡)(Z⇡ ± S⇡QjnBn)k  2/n +
p
�kQjnBnk.
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On the other hand, for the bounded operator QjnBn, let h 2 H be such that khk = 1 and
kQjnBnhk = kQjnBnk. So, since QjnBnh 2 Ker(S⇡)

?,

kS⇡QjnBnk
kQjnBnk

=
kS⇡QjnBnkkhk
kQjnBnhk � kS⇡QjnBnhk

kQjnBnhk =
kS⇡QjnQjnBnhk
kQjnBnhk � �+

min
(S⇡Qjn) = �jn ,

and, thus, kQjnBnk  kS⇡QjnBnk/�jn  (kZ⇡k + 2/n)/�jn . So, defining a sequence �n :=
1

n2�
2

jn , we obtain

kZ⇡ � S⇡G�nk 
1

n

✓
kS⇡k+

2

n

◆
+

2

n
,

which converges to zero as n!1.

Finally, since one has that S
⇤

⇡Z⇡ is self-adjoint and that S
⇤

⇡Z⇡ � S
⇤

⇡S⇡ ,

kG�k2 = k(S⇤

⇡S⇡ + �IH)
�1

(S
⇤

⇡Z⇡)
2
(S

⇤

⇡S⇡ + �IH)
�1k  1.

B.1 Approximating Koopman Mode Decomposition by DMD

In this section we prove results stated in Thm. 1 and Rem. 4.
Theorem 1. Let G 2 HSr(H) and (�i, ⇠i, i)

r
i=1

its spectral decomposition. Then for every f 2 H

E[f(Xt) | X0 = x] =

X

i2[r]

�
t
i�

f
i  i(x) + kZ⇡ � S⇡Gk err

f
(x), x 2 X , (7)

where err
f 2 L

2

⇡(X ), and kerrfk  (t� 1)kGfk+ kfk, t � 1. Moreover, for any i2[r],

kA⇡S⇡ i � �iS⇡ ik 
kZ⇡ � S⇡Gk kGk

�r(S⇡G)
kS⇡ ik. (8)

Proof. Given f 2 H, denote g := (Z⇡ � S⇡G)f , and gi := (Z⇡ � S⇡G) i, i 2 [r]. Then,
for every t � 1 we have A

t
⇡S⇡f = A

t�1

⇡ Z⇡f = A
t�1

⇡ S⇡Gf + A
t�1

⇡ g. Hence, using S⇡Gf =Pr
i=1

�i�
f
i S⇡ i and Z⇡ i = �iS⇡ i + gi, i 2 [r], we obtain

A
t
⇡S⇡f = A

t�1

⇡

� rX

i=1

�i�
f
i S⇡ i

�
+ A

t�1

⇡ g = A
t�2

⇡

� rX

i=1

�i�
f
i Z⇡ i

�
+ A

t�1

⇡ g

= A
t�2

⇡

� rX

i=1

�
2

i �
f
i S⇡ i

�
+ A

t�2

⇡

� rX

i=1

�i�
f
i gi

�
+ A

t�1

⇡ g

= · · ·

=

rX

i=1

�
t
i�

f
i S⇡ i +

� t�2X

k=0

A
k
⇡

�� rX

i=1

�i�
f
i gi

�
+ A

t�1

⇡ g.

However, having that A
t�1

⇡ g = A
t�1

⇡ (Z⇡ � S⇡G)f and
rX

i=1

�i�
f
i gi =

rX

i=1

�igihf, ⇠iiH =

rX

i=1

�i(Z⇡ � S⇡G) ihf, ⇠iiH = (Z⇡ � S⇡G)Gf

we obtain

A
t
⇡S⇡f �

rX

i=1

�
t
i�

f
i S⇡ i =

� t�2X

k=0

A
k
⇡

�
(Z⇡ � S⇡G)Gf + A

t�1

⇡ (Z⇡ � S⇡G)f.

So, to conclude (7), it suffices to recall that kA⇡k = 1 and apply norm in L
2

⇡(X )

kAt
⇡S⇡f �

rX

i=1

�
t
i�

f
i S⇡ ik  kZ⇡ � S⇡Gk

�
(t� 1)kGfk+ kfk

�
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We now prove (8). Since gi = Z⇡ i � S⇡(�i  i) = A⇡(S⇡ i)� �i(S⇡ i), i 2 [r], we obtain that

k(A⇡(S⇡ i)� �i(S⇡ i)k = kgik  kZ⇡ � S⇡Gkk ik.

However, since  i 2 Im(G) \ {0}, there exists hi 2 Ker(G)
? so that  i = Ghi. Recalling

that C� = C + �IH is positive definite for � > 0, we have that Im(G
⇤
) = Im(G

⇤
C

1/2
� ), and,

consequently, Ker(G)
?

= Ker(C1/2
� G)

?. Thus, since

inf

h2Ker(C1/2
� G)?

kC1/2
� Ghk
khk = �

+

min
(C

1/2
� G) = �r(C

1/2
� G),

we obtain that kC1/2
�  ik � �r(C

1/2
� G)khik, which letting � ! 0 implies that kS⇡ ik �

�r(S⇡G)khik. Hence, we derive k ik  kGkkhik  kGkkS⇡ ik/�r(S⇡G), which proves (8).

In the following example we show that the bound (8) w.r.t. arbitrary estimator is tight.
Example 3. As a specific instance of Exm. 1 is the equidistant sampling of Ornstein–Uhlenbeck
process Xt+1 = FXt + !t, where F 2 Rd⇥d and the noise !t is Gaussian. For simplicity,
let F = F

⇤ with eigenvalues �i in ]0, 1[, and let the noise be i.i.d. from N (0, Id). It is well-
known [38, Chapter 10.5], that the invariant distribution is N (0, C), where C = (Id � F

2
)
�1.

If the linear kernel is used, it is readily checked that the corresponding RKHS H is a closed
invariant subspace of A⇡ and, moreover, Z⇡ = S⇡GH, where GH is given by F . Now, consider
the rank-r estimator G = 2[[GH]]r. Denoting �i = �i/

p
1� �2i > 0, i 2 [n], we have that

E(G) = kZ⇡�S⇡Gk = k(Id�F
2
)
�1/2

(F �2[[F ]]r)k = �1, kGk = 2kFk = 2�1 and �r(S⇡G) =

2k(Id � F
2
)
�1/2

[[F ]]rk = 2�r. Therefore, for every eigenpair (�i, vi) of F , i 2 [r], we have
 i = hvi, ·iH 2 H and G i = 2�i i, so, consequently, k(A⇡(S⇡ i) � 2�i(S⇡ i)k = �ikS⇡ ik.
Therefore, assuming that �1 = . . . = �r, for this estimator, we attain equality in (8) for all i 2 [r].

We conclude this section with the result that links the introduced risk to two key concepts of
eigenvalue perturbation analysis. First is Stewart’s definition of spectral separation between two
bounded operators on (possibly different) Hilbert spaces, see [56],

sep(A, B) := min
kCkHS=1

kAC � CBkHS, (22)

and the second is pseudospectrum of bounded linear operators, see [59],

Sp"(A) :=

[

kBk"

Sp(A + B) = {z 2 C | k(A� zI)
�1k�1  "}, (23)

with the convention k(A� zI)
�1k�1

= 0 whenever z is not in the resolvent set of A, i.e. z 2 Sp(A).
Corollary 2. If the eigenfunctions of G 2 HSr(H) are not ⇡-a.e. zero, then

sep(A⇡, G) 
p

E(G)kS⇡kHS, (24)

and
Sp(G) ✓ Sp"(A⇡), for " = kZ⇡ � S⇡GkkGk/�r(S⇡G). (25)

Consequently, if A⇡ is normal, then for every � 2 Sp(G) there exists �⇡ 2 Sp(A⇡) such that
|�⇡��|  kZ⇡�S⇡GkkGk/�r(S⇡G). If additionally G is normal, then |�⇡��| 

p
E(G)kS⇡kHS.

Proof. Inequality (24) is a direct consequence of the definition of the separation. On the other hand,
(25) follows immediately from (8) and the fact that

k(zIL2
⇡(X ) �A⇡)

�1k�1

L2
⇡(X )

= min
f2L2

⇡(X )

kA⇡f � zfk
kfk , z 2 Res(A⇡), (26)

by taking S⇡ i 6= 0 in place of f and �i in place of z.
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Now, using that, see [59], for any normal operator A

min
z02Sp(A)

|z � z
0|  ", z 2 Sp"(A), (27)

and that for any two normal operators A and B

sep(A, B) = min{|z � z
0| | z 2 Sp(A), z

0 2 Sp(B)}, (28)
the last two statements follow.

Remark 6. In App. A we discussed two important cases in which Koopman operator on L
2

⇡(X ) is
normal, namely the case of deterministic dynamical systems when A⇡ is unitary (cf. Ex. 2) and the
case of time reversible Markov chains, i.e. when A⇡ is self-adjoint (cf. Rem. 1). In such cases, the
previous result motivates one to consider normal estimators of the Koopman operator.

B.2 Duality Between KOR and CME

In this section we clarify Rem. 5 on the relationship between conditional mean embeddings (CME)
and Koopman operator regression (KOR). Recalling the definition of CME in (9) and the restriction
of the Koopman operator on H, Z⇡ := A⇡S⇡ , it is easy to see that for every f 2 H it holds

(Z⇡f)(x) = E[f(Xt+1) | Xt = x] = E[hf,�(Xt+1)iH, | Xt = x] = hf, gp(x)i
H

. (29)
The CME of the Markov transition kernel p is therefore just the Riesz representation of the functional
evaluating the Koopman operator restricted to H.

We now prove the identity (10) in the main text.
Proposition 6. For every G 2 HS (H) the risk (3) can be equivalently written as

E(x,y)⇠⇢k�(y)�G
⇤
�(x)k2

| {z }
R(G)

= E(x,y)⇠⇢kgp(x)� �(y)k2
| {z }

R0

+ Ex⇠⇡kgp(x)�G
⇤
�(x)k2

| {z }
E(G)

. (30)

Proof. Starting from (3) and using the reproducing property we obtain

R(G) =

X

i2N

E(x,y)⇠⇢[hi(y)� (Ghi)(x)]
2

=

X

i2N

E(x,y)⇠⇢[hhi,�(y)i
H
� hGhi,�(x)i

H
]
2

=

X

i2N

E(x,y)⇠⇢[hhi,�(y)i
H
� hhi, G

⇤
�(x)i

H
]
2

=

X

i2N

E(x,y)⇠⇢hhi,�(y)�G
⇤
�(x)i2

H

= E(x,y)⇠⇢

X

i2N

hhi,�(y)�G
⇤
�(x)i2

H
= E(x,y)⇠⇢k�(y)�G

⇤
�(x)k2

H
.

By the reproducing properties of (Z⇡hi)(x) = hhi, gp(x)i
H

and (S⇡hi)(x) = hhi,�(x)i
H

and
Proposition 4 we have that

E(G) = kZ⇡ � S⇡Gk2
HS

=

X

i2N

kZ⇡hi � S⇡Ghik2 =

X

i2N

Ex⇠⇡[|(Z⇡hi)(x)� (S⇡Ghi)(x)|2]

= Ex⇠⇡

hX

i2N

hhi, gp(x)�G
⇤
�(x)i2

H

i
= Ex⇠⇡

h
kgp(x)�G

⇤
�(x)k2

i
.

Moreover, since S
⇤

⇡S⇡ = Ey⇠⇡[�(y)⌦ �(y)] and Z
⇤

⇡Z⇡ = Ex⇠⇡[gp(x)⌦ gp(x)], we have

E(x,y)⇠⇢k�(y)� gp(x)k2 = tr(S⇤

⇡S⇡)� 2E(x,y)⇠⇢h�(y), gp(x)i
H

+ tr(Z⇤

⇡Z⇡),

which, along with Prop. 4 and the identity E(x,y)⇠⇢h�(y), gp(x)i
H

= Ex⇠⇡E[h�(Y ), gp(x)i
H

| X =

x] = Ex⇠⇡hgp(x), gp(x)i
H

= tr(Z⇤

⇡Z⇡) completes the proof.

Prop. 6 implies that G? is a solution of the KOR problem (5) if and only if G
⇤

? is a solution of the
CME regression problem minG E(x,y)⇠⇢k�(y)�G�(x)k2. In this sense the Koopman regression
problem is dual to learning CME of the Markov transition kernel p.

Moreover, from the perspective of CME, well-specified case is identified by gp(·) = G
⇤

H
�(·), i.e.

it is the case when regression operator gp belongs to the vector-valued RKHS G defined by the
operator-valued kernel g(x, x

0
) := k(x, x

0
)IH. This vector-valued RKHS is isometrically isomorphic

to HS (H), where the isomorphism is given by HS (H) 3 A ! A�(·) 2 G, see [10, Ex.3.6(i)]. On
the other hand, the misspecified case is simply when gp 62 G.
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C Empirical Risk Minimization

In this section we provide details on computing the estimators of the Koopman operator. For
convenience, we denote the regularized risk by

bR�
(G) := k bZ � bSGk2

HS
+ �kGk2

HS
, G 2 HS (H) . (31)

C.1 Computation of the Estimators

In Theorem 4 we derive the closed form solution of (13) and in Theorem 5 we formulate it in a
numerically computable representation. In Theorem 6 we show the same for the PCR estimator,
highlighting its equivalence to the kernel DMD algorithm [25].

Theorem 4. The optimal solution of problem (13) is given by bGr,� = bC�
1

2

� [[ bC�
1

2

� bT ]]r. Moreover,
bR�

( bGr,�) = tr( bD)�
Pr

i=1
�
2

i , where �1 � · · · � �r are leading singular values of bC�
1

2

� bT .

Proof. Start by observing that, according to (11),

bR�
(G) =

1

n

nX

i=1

k�(yi)�G
⇤
�(xi)k2 + �kGk2

HS

=
1

n

nX

i=1

tr(�(yi)⌦ �(yi))� 2h�(yi), G
⇤
�(xi)iH + tr(GG

⇤
�(xi)⌦ �(xi)) + � tr(GG

⇤
)

= tr( bD) + tr(GG
⇤ bC�)� 2 tr(G⇤ bT ) = tr( bD)� k bC�

1

2

� bTk2
HS

+ k bC
1

2

� G� bC�
1

2

� bTk2
HS

.

The last equality follows from simple algebra after adding and subtracting the term k bC�
1

2

� bTk2
HS

.

We now focus on the last term of the previous equation, the only one entering the minimization. We
have

k[[ bC�
1

2

� bT ]]r � bC
�

1

2

� bTk2
HS

= min
B2HSr(H)

kB � bC�
1

2

� bTk2
HS
 min

G2HSr(H)

k bC
1

2

� G� bC�
1

2

� bTk2
HS

. (32)

The equality above comes from the Eckart–Young–Mirsky theorem, while the inequality from the fact
that G 2 HSr(H) =) B := bC

1

2

� G 2 HSr(H). From (32) we conclude that bGr,� = bC�
1

2

� [[ bC�
1

2

� bT ]]r

minimizes bR� . The same theorem also guarantees that k bC
1

2

� bGr,� � bC
�

1

2

� bTk =
P

1

i=r+1
�
2

i , hence

bR�
( bGr,�) = tr( bD)�

1X

i=1

�
2

i +

1X

i=r+1

�
2

i = tr( bD)�
rX

i=1

�
2

i .

While the previous theorem provides a method to compute the RRR estimator when the RKHS is
finite-dimensional (in fact, an efficient one when the number of features is smaller than the number
of samples), the following result shows how one can compute RRR for infinite-dimensional RKHSs.
Theorem 5. If Ur = [u1 | . . . |ur] 2 Rn⇥r is such that (�

2

i , ui) are the solutions of the generalized
eigenvalue problem

LKui = �
2

i K�ui normalized such that u
>

i KK�ui = 1, i 2 [r] (33)

and Vr = KUr, then the optimal solution of (13) is given by bGr,� = bS⇤
UrV

>

r
bZ. Moreover, we have

bR�
( bGr,�) = tr(L)�

rX

i=1

�
2

i and bR( bGr,�) = tr
⇣�

I �KUrV
>

r � �K(UrV
>

r )
2
�
L

⌘
. (34)

Proof. Start by observing that, according to Thm 4, bGr,� is obtained from the truncated SVD of
the operator ( bC + �IH)

�
1

2 bT = (bS⇤ bS + �IH)
�

1

2 bS⇤ bZ = bS⇤
(bS bS⇤

+ �IH)
�

1

2 bZ = bS⇤
K

�
1

2

� bZ. Its
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leading singular values �1 � . . . � �r and the corresponding left singular vectors g1, . . . , gr 2 H
are obtained by solving the eigenvalue problem

⇣
bS⇤

K
�

1

2

� bZ
⌘⇣
bS⇤

K
�

1

2

� bZ
⌘⇤

gi = �
2

i gi, i 2 [r]. (35)

From the above equation, clearly gi 2 Im(bS⇤
K

�
1

2

� ) = Im(bS⇤
K

1

2

� ), and we can represent the singular
vectors as gi = bS⇤

K
1

2

� ui for some ui 2 Rn, i 2 [r]. Therefore, substituting gi = bS⇤
K

1

2

� ui in (35)
and simplifying one has the finite-dimensional eigenvalue equation

LKui = �
2

i K�ui, i 2 [r]. (36)

Solving (36) and using that gi = bS⇤
K

1

2

� ui, one obtains (�
2

i , gi), i 2 [r], the solutions of the
eigenvalue problem (35). In order to have properly normalized gi, it must hold for all i 2 [r] that

1 = g
⇤

i gi = u
>

i K
1

2

� bS bS⇤
K

1

2

� ui = u
>

i KK�ui. (37)

Now, the subspace of the leading left singular vectors is Im(bS⇤
K

1

2

� Ur). As the columns of Ur are
properly normalized according to (37), the orthogonal projector onto the range of bS⇤

K
1

2

� Ur is given
by ⇧r := bS⇤

K
1

2

� UrU
>

r K
1

2

� bS. We therefore have that [[ bC�
1

2

� bT ]]r = ⇧r
bC�

1

2

� bT = bS⇤
K

1

2

� UrU
>

r K bZ.
Thus, defining Vr := KUr, we conclude that

bGr,� = bC�
1

2

� bS⇤
K

1

2

� UrV
>

r
bZ = bS⇤

UrV
>

r
bZ.

To conclude the proof we have to evaluate the error bR( bGr,�). We notice that tr( bD) = tr(L) and that

bR( bGr,�) = tr(L)� 2 tr(VrV
>

r L) + tr(VrV
>

r VrV
>

r L) = tr
⇣�

I �KUrV
>

r � �K(UrV
>

r )
2
�
L

⌘
.

Here, along with some simple algebric manipulations, we have used U
>

r K(K + �I)Ur = I , i.e.
V

>

r Vr + �V
>

r Ur = I .

Remark 7. Since for r = n the estimators RRR and KRR coincide, the previous result implies that
the empirical risk for the KRR estimator can be written as

bR( bG�) = tr
⇣�

I �KK
�1

� + �KK
�2

�

�
L

⌘
= �

2 tr
�
K

�2

� L
�
. (38)

As discussed above, see also [25], for the choice of linear kernel PCR estimator bGPCR

r = [[ bC]]
†

r
bT is

known as DMD, while for the finite-dimensional (nonlinear) kernels it is known as extended EDMD.
In these cases previous formula gives also a practical way to compute it. On the other hand, for
infinite-dimensional kernels, PCR is known as kernel DMD, and in this case its practical computation
can be done using the following result.

Theorem 6. The PCR estimator bGPCR

r = [[ bC]]
†

r
bT can be equivalently written as bGPCR

r = bS⇤
UrV

>

r
bZ,

where [[K]]
†

r = Vr⌃rV
>

r is r-trunacted SVD and Ur = Vr⌃
†

r. Moreover, it holds that

bR( bGPCR

r ) = tr((In �KUrV
>

r )L). (39)

Proof. Without loss of generality assume that rank( bC) � r. As for the proof of Theorem 5, the
leading r singular vectors (gi)i2[r] of bC can be written in the form gi = bS⇤

vi/
p
�i, where vi are

the eigenvectors corresponding to the r leading eigenvalues �i of K. Then, it readily follows that
[[ bC]]

†

r
bT = bS⇤

Vr⌃
�2

r V
>

r
bS bS⇤ bZ. We therefore conclude that

bGPCR

r = bS⇤
Vr⌃

�2

r (KVr)
> bZ = bS⇤

Vr⌃
�1

r V
>

r
bZ = bS⇤

UrV
>

r
bZ

Finally, since bR( bGPCR

r ) = tr(L)�2 tr(VrV
>

r L)+ tr(VrV
>

r VrV
>

r L), using that VrV
>

r is orthogonal
projector and KUr = Vr we obtain (39).
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C.2 Mode Decomposition and Prediction

In this section we show how an estimator of the Koopman operator can be used to predict future
states of the system and how its mode decomposition can be evaluated. We will address a slightly
more general setting than the one presented in Sec. 4, that is we allow for vectorial observables
f = (f`)

m
`=1
2 Hm for which the action of the Koopman operator is naturally extended as A⇡f =

(A⇡f`)`2[m]. To that end, given the data D and a vector valued observable f = (f`)
m
`=1
2 Hm we

denote the observable evaluated along the data points as �
f

=
⇥
f(y1) | . . . | f(yn)

⇤
2 Rm⇥n.

Remark 8. If X ✓ Rd, we will argue that an important observable of the system is given by the
identity function Id : X ! X . If the projection onto the i-th component is a function belonging to H
for all i 2 [d], then Id 2 Hd and Thm. 1 holds for this specific observable. While this may not hold
in general, note that for every kernel we can take the sum with a linear kernel to obtain RKHS that
contains Id.

Prediction. Each empirical estimator bG = bS⇤
W bZ allows one to estimate a future state given a

starting point. According to the bound (7) in Thm. 1 we obtain that given f = (f`)
m
`=1
2 Hm, if x is

the current state of the Markov process, the expected value of f at the next iteration is approximated
as [A⇡f ](x) = [ bGf ](x) + err

f
(x), i.e.

E[f(Xt+1) | Xt = x] =

nX

j=1

�
f
j k(xj , x) +

q
E( bG) err

f
(x), (40)

where �f
=

1

n�
f
W

> 2 Rm⇥n and err
f 2 (L

2

⇡(X ))
m such that k(errf)`k  kf`k, ` 2 [m]. If

f = Id, we obtain a prediction of the future state E[Xt+1 | Xt = x].

Modal Decomposition & Forecasting. A more general instance of prediction is given by fore-
casting through modal decomposition as showed (7). The main ingredient needed to forecast via
mode decomposition is the spectral decomposition of the estimator bG. We now prove a slightly
more general version of Theorem 2, allowing us to compute the eigenvalue decomposition of bG
numerically.

Theorem 7. Let bG = bS⇤
UrV

>

r
bZ, with Ur, Vr 2 Rn⇥r. If V

>

r MUr 2 Rr⇥r is full rank and non-
defective, the spectral decomposition (�i, ⇠i, i)i2[r] of bG can be expressed in terms of the spectral
decomposition (�i, eui, evi)i2[r] of V

>

r MUr. Indeed, for all i 2 [r], one has ⇠i = bZ⇤
Vreui/�i and

 i = bS⇤
Urevi. In addition, for every f 2 Hm dynamic modes are �fi = �

f
(eu⇤

i V
>

r )
>

/(�i
p

n) 2 Cm.

Proof. First note that since in general bG is not self-adjoint, its eigenvalues may come in complex
conjugate pairs. Hence, for ⇠i 2 H and  i 2 H left and right eigenfunctions of bG corresponding to its
eigenvalue �i, we have bG⇤

⇠i = �i⇠i and bG i = �i i, i 2 [r]. To avoid cluttering, in the following
we will only show the explicit calculation of the right eigenfunctions  i. We stress, however, that the
calculation of the left eigenfucntions ⇠i follows exactly the same arguments.

From Im( bG) ✓ Im(bS⇤
) it follows that for all i 2 [r],  i 2 S := {

Pn
j=1

wj�(xj) | w 2 Cn}. Using
[42, Prop. 3.8], we have that  i = bS⇤bvi, where bvi 2 Cn \ {0} are eigenvectors of UrV

>

r M . Since
all the eigenvalues �i we are considering are nonzero, the spectral decomposition of UrV

>

r M is
equivalent [57] to

V
>

r MUrevi = �ievi and bvi = Urevi, i 2 [r]. (41)

Therefore  i = bS⇤
Urevi are the right eigenfunctions of bG = bS⇤

UrV
>

r
bZ. With the same arguments

we can show that ⇠i = bZ⇤
Vreui are the left eigenfunctions, eui being the leading eigenvectors of

U
>

r M
>

Vr. Re-normalizing ⇠j = bZ⇤
Vreuj/�j we obtain that for every i, j 2 [r]

h i, ⇠jiH = eu⇤

jV
>

r
bZ bS⇤

Urevi/�j = eu⇤

jV
>

r MUrevi/�j = (U
>

r M
>

Vreuj)
⇤evi/�j = eu⇤

jevi = �ij ,

which assures that (�i, ⇠i, i)i2[r] is the spectral decomposition of bG. Above we have assumed
(without loss of generality) that eu⇤

jevi = �ij , i, j 2 [r], i.e. that the left and right eigenvectors of
V

>

r MUr are mutually orthonormal.
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Finally, since bG =
P

i2[r] �i i ⌦ ⇠i we have that bGf` =
P

i2[r] �i ihf`, ⇠iiH and, consequently

�
f
i = (hf`, ⇠iiH)`2[m] = (heu⇤

i V
>

r Zf`iH/�i)`2[m] = �
f
(eu⇤

i V
>

r )
>

/(�i
p

n) 2 Cm
.

Remark 9. The previous result can also be applied to KRR estimator bG� since we can always take
r = n, and take Ur = In and Vr = K

�1

� to represent K
�1

� = UrV
>

r . As a consequence, we can
compute spectral decomposition of bG� by solving a generalized eigenvalue problem

M
>evi = �iK�evi, i 2 [n], (42)

and setting eU := eV �⇤. This is possible when K
�1

� M
> is non-defective matrix, which is typically the

case for kernel Gram matrices from real data.

D Learning Bounds

D.1 Uniform Bounds for i.i.d. Data

We first present a concentration inequality for bounded finite rank self-adjoint operators, which is a
natural extension of [34, Theorem 4], that dealt with positive operators.
Proposition 7. Let A1, . . . , An be independent random operators of finite rank ⌧ and kAik  1,
i 2 [n]. Then

P

(�����

nX

i=1

Ai � EAi

����� > s

)
 8(n⌧)

2
exp

(
�s

2

36k
P

i E(A⇤

i Ai)
1

2 k+ 12s

)
. (43)

Proof. Let Bi =


0 Ai

A
⇤

i 0

�
= Pi �Ni, where

Pi =
1

2


(AiA

⇤

i )
1

2 Ai

A
⇤

i (A
⇤

i Ai)
1

2

�
and Ni =

1

2


(AiA

⇤

i )
1

2 �Ai

�A
⇤

i (A
⇤

i Ai)
1

2

�
.

One verifies that the operators Pi and Ni are positive semi-definite, have the same rank as Ai, and
kPik = kNik = kAik. Then

P

(�����

nX

i=1

Ai � EAi

����� > s

)
= P

(�����

nX

i=1

Bi � EBi

����� > s

)

 P

(�����

nX

i=1

Pi � EPi

�����+

�����

nX

i=1

Ni � ENi

����� > s

)

 P

(�����

nX

i=1

Pi � EPi

����� >
s

2

)
+ P

(�����

nX

i=1

Ni � ENi

����� >
s

2

)

 8(n⌧)
2
exp

⇢
�s

2

36 max{k
P

i EPik, k
P

i ENik} + 12s

�

where the first inequality follows by triangle inequality, the second by the union bound and
the last from [34, Thm. 7-(i)]. The result follows by noting that k

P
i EPik = k

P
i ENik 

k
P

i E(A
⇤

i Ai)
1

2 k.

A special case of the above proposition is Prop. 2 which we restate here for the reader’s convenience.
Proposition 2. With probability at least 1� � in the i.i.d. draw of (xi, yi)

n
i=1

from ⇢,

��� bT � T

���  12
ln

8n2

�

n
+ 6

s
kCk ln

8n2

�

n
.
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Proof. We apply Prop. 7 with Ai = �(xi)⌦ �(yi) and ⌧ = 1. We have

Pi =
1

2


�(xi)⌦ �(xi) �(xi)⌦ �(yi)

�(yi)⌦ �(xi) �(yi)⌦ �(yi)

�
and Ni =

1

2


�(xi)⌦ �(xi) ��(xi)⌦ �(yi)

��(yi)⌦ �(xi) �(yi)⌦ �(yi)

�
.

Since (x1, y1), . . . , (xn, yn) are i.i.d. from ⇢, for every i 2 [n]

EPi =
1

2


C T

T
⇤

D

�
and ENi =

1

2


C �T

�T
⇤

D

�
(44)

Thus kEPik = kENik  max{kCk, kDk} = kCk, where the last equality is due to ⇡ being
invariant measure and, hence, D = C. Then setting the r.h.s. of (43) equal to � and solving for s

gives Prop. 2.

Theorem 3. Let Gr,� = {G 2 HSr(H) : kGkHS  �} and define �2
= E(k�(y)k2 � Ek�(y)k2)2.

With probability at least 1� � in the i.i.d. draw of (xi, yi)
n
i=1

from ⇢, we have for every G 2 G�,r

|R(G)� bR(G)| 

s
2�2 ln

6

�

n
+3(4

p
2r�+�

2
)

s
kCk ln

24n2

�

n
+

(1+24�
p

r) ln
6

� +6�
2
ln

24n2

�

n
.

Proof. Recalling the definition of the risk R(G) = tr
⇥
D
⇤
+ tr

⇥
GG

⇤
C
⇤
� 2 tr

⇥
G

⇤
T
⇤
, and, analo-

gously, empirical risk, a direct computation gives that

R(G)� bR(G) = tr
�
D � bD

�
+ tr

�
GG

⇤
(C � Ĉ)

�
� 2 tr

�
G

⇤
(T � T̂ )

�

 tr
�
D � bD

�
+ �

2kC � bCk+ 2
p

r�kT � bTk, (45)

where we have used Hölder inequality in to obtain the last two terms in (45). First, we use Bernstein’s
inequality for bounded random variables [62, Thm 2.8.4] to bound the first term in the r.h.s. of (45),
obtaining

tr(D � bD) 
ln

2

�

3n
+

s
2�2 ln

2

�

n
.

Then we use [34, Theorem 7-(i)] to bound the second term in the r.h.s. of (45), and Prop. 2 to bound
the last term. The result then follows by a union bound.

We expand some of the remarks stated after Thm. 3 in the main body of the paper. First, note that
when the measure ⇡ is not assumed to be invariant, we can cover the general CME case. In that case
the term kCk in the bound should be replaced by max{kCk, kDk}, where, recall, D is the covariance
of the output. Second, using [40, Cor. 3.1] in place of Prop. 2 one can derive a related bound which
essentially replaces the term kCk with kEAA

⇤k where A := (�(x)⌦�(y)�T ). This bound is more
difficult to turn into a data dependent bound, but it allows for a more direct comparison to (potentially
much larger) bounds without the rank constraint, where the quantity kEAA

⇤k is replaced by the
potentially much larger term tr E[�(x)⌦ �(x)k�(y)k2 � T

⇤
T ].

Finally, Thm. 3 can be used to derive an excess risk bound in well specified case Z⇡ = S⇡GH. The
analysis follows the pattern in [29]. We use the decomposition

E( bG)  2 sup
G2Gr,�

|R(G)� bR(G)| + E(Gr,�) (46)

where Gr,� = argminG2Gr,�
kS⇡(GH � G)k2

HS
. We bound the first term in the r.h.s. of (46) by

Thm. 3. The second term is the approximation error of GH in the class Gr,� . We next optimize
over �. A natural choice is � = k[[GH]]rkHS so that Gr,� = [[GH]]r, the truncated rank r SVD of
GH. For this choice the approximation error R(G�,r) is ✏r := kS⇡(GH � [[GH]]r)k2HS

. If GH has
a fast decaying spectrum this error will be small for moderate sizes of r. In general since GH is
Hilbert-Schmidt ✏r ! 0 as r !1. Replacing � = k[[GH]]rkHS in the uniform bound, then yields
the excess risk bound (discarding O

�
1/n

�
terms and simplifying the constants)

E( bG)  3k[[GH]]rkHS

⇣
6
p

r + k[[GH]]rkHS

⌘
s
kCk ln

24n2

�

n
+

s
2�2 ln

6

�

n
+ kGH � [[GH]]rk2HS

.

This bound may be further optimized over r if information on the spectrum decay of GH is available.
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D.2 Uniform Bounds for Data from a Trajectory

To prove Lem. 1 we temporarily introduce extra notation. For a set I ✓ N and a strictly stationary
process X = (Xi)i2N we let ⌃I for the �-algebra generated by {Xi}i2I and µI for the joint
distribution of {Xi}i2I . Notice that µI+i = µI . In this notation ⇡ = µ{1} and ⇢⌧ = µ{1,1+⌧}.

Then the definition of the mixing coefficients reads
�X (⌧) = sup

B2⌃⌦⌃

��µ{1,1+⌧} (B)� µ{1} ⇥ µ{1} (B)
��

which by the Markov property is equivalent to

�X (⌧) = sup

B2⌃I⌦⌃J

|µI[J (B)� µI ⇥ µJ (B)| ,

where I, J ⇢ N with j > i + ⌧ for all i 2 I and j 2 J . The latter is the definition of the mixing
coefficients for general strictly stationary processes, for which we prove Lemma 1. We first need the
following lemma.
Lemma 3. Let B 2 ⌃[1:m]. Then

���µ[1:m] (B)� µ
m
{1}

(B)

���  (m� 1)�X (1) .

Proof. By stationarity, Fubini’s Theorem and the definition of the mixing coefficients, we have for
k 2 [m], that

���µk�1

{1}
⇥ µ[k:m] (B)� µ

k�1

{1}
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Then, again with stationarity and a telescopic expansion,
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m
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 (m� 1)�X (1) .

Now recall the definition of the blocked variables

Yj =

(2j�1)⌧X

i=2(j�1)⌧+1

Xi and Y
0

j =

2j⌧X

i=(2j�1)⌧+1

Xi, for j 2 N.

Since the blocked variables are separated by ⌧ we have �Y(1) = �Y0(1) = �X(⌧).
Lemma 1. Let X be strictly stationary with values in a normed space (X , k·k), and assume n = 2m⌧

for ⌧, m 2 N. Moreover, let Z1, . . . , Zm be m independent copies of Z1 =
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i=1
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where the last inequality follows from identical distribution of Yj and Yj+1. The conclusion then
follows from applying Lem. 3 to the event B =

���
Pm

j=1
Yj

��� >
s
2

.
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Figure 3: Noise distribution ⌦, invariant distribution ⇡ and Koopman eigenfunction corresponding to
the eigenvalue �2 for the case N = 20. In the middle panel, the invariant distribution for the noiseless
case (N !1) is [26] ⇡N!1(dx) :=

�
⇡
2
x(1� x)

��1/2
dx.

Any available bound on the probability in the right hand side of Lem. 1 can then be substituted to
give a bound on the trajectory. To illustrate this we give a proof of Prop. 3 which we restate here for
convenience.
Proposition 3. Let � > (m� 1)�X(⌧ � 1). With probability at least 1� � in the draw x1 ⇠ ⇡, xi ⇠
p(xi�1, ·), i 2 [2:n],

k bT � Tk  48
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+ 12
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m
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.

Proof. We use this Lem. 1 with Xi = �(xi)⌦ �(xi+1)� T . We have
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To bound the rightmost probability we then use Prop. 7 with Ai i.i.d. operator 1

⌧

P⌧
i=1

�(xi)⌦�(xi+1)

and E(A
⇤

i Ai)
1

2  kCk. We then solve for � > (m� 1)�(⌧ � 1).

E Experiments

We developed a Python module implementing different algorithms to perform KOR Both CPUs
and GPUs are supported. Code and experiments can be found at https://github.com/CSML-IIT-
UCL/kooplearn. The experiments have been conducted on a workstation equipped with an Intel(R)
CoreTM i9-9900X CPU @ 3.50GHz, 48GB of RAM and a NVIDIA GeForce RTX 2080 Ti GPU.

E.1 Noisy Logistic Map

We now show how the trigonometric noise introduced in [45] allows the evaluation of the true
invariant distribution, transition kernel and Koopman eigenvalues.

Trigonometric Noise. We consider the noisy logistic map

xt+1 = (4xt(1� xt) + ⇠t) mod 1 = (F (xt) + ⇠t) mod 1

over the state space X = [0, 1]. We have defined the logistic map F (x) := 4x(1 � x) for later
convenience. Here, ⇠t is i.i.d. additive noise with law (N being an even integer) given by

⌦(d⇠) := CN cos
N

(⇡⇠)d⇠ ⇠ 2 [�0.5, 0.5].

The normalization constant is given by CN := ⇡/B
�
N+1

2
,
1

2

�
, where B(·, ·) is Euler’s beta function.

The noise is additive and as noted in Example 1 of Sec. 2, the transition kernel is

p(x, dy) = ⌦(dy � F (x)) = CN cos
N

(⇡y � ⇡F (x)) dy. (47)
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We now show that the transition kernel (47) is separable. Indeed, for i 2 [0:N ] let us define the
functions

�i(x) :=

s

CN

✓
N

i

◆
cos

i
(⇡x) sin

N�i
(⇡x), and ↵i(x) := (�i � F ) (x).

By a simple application of the binomial theorem one has that (with a slight abuse of notation)

p(x, y) =

NX

i=0

↵i(x)�i(y),

implying that the transition kernel is separable and of finite rank N + 1. Therefore, the Koopman
operator A⇡ is compact operator of a finite rank operator at most N + 1. Moreover, with the proper
choice of the kernel k, we have that ↵i 2 H for all i 2 [0:N ], implying that the Koopman operator
regression problem is well-specified.

Further, the eigenvalue equation for the Koopman operator requires to find h : [0, 1] ! [0, 1] and
� 2 C satisfying

�h(x) =

Z
1

0

h(y)p(x, y)dy for all x 2 [0, 1]. (48)

The solution of this homogeneous Fredholm integral equation of the second kind (48) is easily
obtained since the transition kernel is separable (see e.g. Section 23.4 of [50]). Indeed, let P be the
(N + 1)⇥ (N + 1) matrix whose elements are Pij :=

R
1

0
�i(x)↵j(x)dx. For any � eigenvalue of P

with corresponding eigenvector (ci)
N
i=0

, the function h(x) :=
PN

i=0
↵i(x)ci is an eigenfunction of

the Koopman operator with eigenvalue �. With a similar argument, let (di)
N
i=0

be the eigenvector of
P

T corresponding to the eigenvalue � = 1. The invariant distribution (up to a normalization constant)
⇡ is given by

⇡(x)dx =

 
NX

i=0

�i(x)di

!
dx.

Every result presented in the main text concerned the case N = 20. In Fig. 3 we show the noise
distribution ⌦, invariant distribution ⇡ and Koopman eigenfunction corresponding to the eigenvalue
�2 for the case N = 20.

E.2 Additional experiment: the Lorenz63 Dynamical System

The Lorenz63 system is given by the solution the differential equation

dx

dt
=

 
�(x2 � x1)

x1(µ� x3)

x1x2 � �x3

!
.

In our experiments we have used the standard parameters � = 10, µ = 28 and � = 8/3. The solution
to the ODE was obtained using the explicit Runge-Kutta method of order 5(4) as implemented by the
function solve_ivp of the Python library Scipy [63]. We discarted any data before t = 100 to
give time to the solution to converge to the stable attractor [60] and then sampled a data point every
�t = 0.1 (in natural time units). The Lorenz63 attractor is also known to be mixing [31].

E.3 Additional details on the numerical verification of the uniform bounds

In this section we discuss how we have obtained the results presented in Fig. 1 of the main main text
for the logistic map and in Fig. 4 for the Lorenz63 dynamical system.

As remarked in the main text, the proposed RRR estimator and the classical PCR estimator satisfy
the same uniform bound. However, the empirical risk may be (possibly much) smaller for the RRR
estimator and hence preferable. To this end, we evaluated, as a function of the number of training
points, the empirical risk of PCR and RRR estimators under the same HS-norm constraint, needed to
satisfy the assumption of Theorem 3.

30



103 104

Traning samples n

0.42

0.44

0.46

0.48

0.50

Training vs. Test errors

PCR Train error
PCR Test error
RRR Train error
RRR Test error

103 104

Training samples n

10�3

10�2

Excess risk

PCR
RRR

n�1/2 decay

Figure 4: Numerical verification of the uniform bound presented in Theorem 3 for the Lorenz63.
Left panel: the training and test risk for RRR are consistently than PCR. Right panel: the deviation
between training and test risk decreases faster than n

�1/2 as a function of the number of training
samples.

Table 2: Comparison of the estimators trained for the Beijing air quality experiment.
Estimator Training error Test error

PCR 0.5809 0.5923
RRR 0.5780 0.5899

To achieve the same HS norm for both estimators we first trained the PCR estimator and computed its
HS norm. We then adjusted the Tikhonov regularization for the RRR estimator to a value yielding the
same HS norm of the PCR estimator. We remark that this procedure in general does not yield the best
(w.r.t. the regularization parameter) RRR estimator, but allows us to compare PCR and RRR within
the Ivanov setting considered in Theorem 3. Moreover, we have also verified that the upper bound on
the scaling ⇡ n

�1/2 derived in Theorem 3 empirically holds.

In both Logistic map and Lorenz63 each experiment was independently repeated 100 times, the
number of test points is 5⇥ 10

4 and RRR consistently attains smaller empirical risk than PCR.

Table 3: Delay between wind speed peaks and PM2.5 concentration peaks. Positive values correspond
to peaks in wind speed occurring after peaks in PM2.5 concentration. Coupled modes correspond to
complex conjugate pairs. Modes 1, 6, 9 and 10 correspond to real eigenvalues and delays can’t be
evaluated.

Station Mode 1 Modes 2-3 Modes 4-5 Mode 6 Modes 7-8 Mode 9 Mode 10

Guanyuan - 1.92 hrs. 2.74 hrs. - 1.69 hrs. - -
Aotizhongxin - 1.89 hrs. 2.61 hrs. - 1.64 hrs. - -

Wanshouxigong - 2.01 hrs. 2.82 hrs. - 1.87 hrs. - -
Tiantan - 2.0 hrs. 2.92 hrs. - 1.83 hrs. - -

Nongzhanguan - 2.01 hrs. 2.96 hrs. - 1.84 hrs. - -
Gucheng - 2.06 hrs. 2.54 hrs. - 1.77 hrs. - -

Wanliu - 2.01 hrs. 3.08 hrs. - 1.66 hrs. - -
Changping - 2.04 hrs. 2.79 hrs. - 1.51 hrs. - -

Dingling - 2.0 hrs. 2.67 hrs. - 1.31 hrs. - -
Huairou - 2.02 hrs. 2.31 hrs. - 1.45 hrs. - -
Shunyi - 1.93 hrs. 2.56 hrs. - 1.42 hrs. - -
Dongsi - 1.97 hrs. 2.76 hrs. - 1.8 hrs. - -
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Figure 5: 60 hours of data collected in the Gucheng station. Three peaks of PM2.5 concentration
followed by peaks in wind speed. We have annotated the delay in hours between the two peaks.

E.4 Alanine dipeptide: additional plots

Figure 6: Estimated eigenfunctions in the dihedral angle space of Alanine dipeptide. Each point
correspond to a data point in the trajectory. The color encodes the value of the eigenfunction.

E.5 Additional experiment: Beijing Air Quality Dataset

This dataset [69] consists of hourly measurements of six different air-pollutants along with relevant
meteorological variables. Measurements were collected at twelve air-quality monitoring sites in
Beijing, from March 1, 2013 to February 28, 2017. The analysis in [69] showed that the presence of
Particolate Matter smaller than 2.5 µm (PM2.5) is highly correlated to meteorological variables, like
humidity and low Wind Speeds (WSPM). In this experiment we show how the modal decomposition
of the Koopman operator can enrich the analysis in [69] with dynamical insights. Following this
work, we analyse each season of the year separately for better meteorological homogeneity.

We report data for RRR and PCR estimators (r = 10) over 7000 out of the 8564 hourly data points
collected in winter using an Exponential kernel. Training and test errors are summarised in Tab. 2,
RRR achieving slightly smaller test and training errors. The optimal regularization parameter for
RRR was chosen by grid search, splitting the data via the TimeSeriesSplit as implemented in
the scikit-learn [47] package. Regularization � = 10

�4 turned out to be optimal.

As showed in [48], analysing the phase difference of modes corresponding to different observables
allows us to infer whether variations of one observable are followed or anticipated by variations of
another. Indeed, the modes corresponding to wind speed (WSPM) and PM2.5 concentration reported
in Table 3, consistently point out that peaks in PM2.5 are followed by peaks in WSPM with a delay
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of ⇡ 2 hours. This is reasonable as high wind speeds favour the dispersion of PM2.5, and as wind
ramps up toward a peak, PM2.5 concentration is reduced. Reference [64], indeed, argue that pollution
concentration is fully readjusted on the basis of wind conditions already after 4 hours.

As a a final illustrative example, in Fig. 5 we show an excerpt spanning 60 hours of data collected in
the Gucheng station. We have manually identified three peaks in the PM2.5 concentration followed
only ⇡ 2/3 hours later by peaks in the wind speed.

E.6 Koopman Operator Regression with Deep Learning Embeddings

We have used a Linear kernel `�1 hx, x
0i and a Gaussian kernel with length scale `. Here ` =

28⇥28 = 784 is the number of pixels in each image. The regularization parameter was chosen by grid
search, splitting the data via the TimeSeriesSplit as implemented in the scikit-learn [47]
package. The optimal regularization parameters are, respectively �lin=48.33 and �gauss=7.85 · 10

�3.

The CNN kernel is h�✓(x),�✓(x
0
)i, where the architecture of the network is given by �✓ :=

Conv2d(1, 16; 5) ! ReLU ! MaxPool(2) ! Conv2d(16, 32; 5) ! ReLU ! MaxPool(2) !
Dense(1568, 10). Here, the arguments of the convolutional layers are Conv2d(in_channels,
out_channels; kernel_size). The Tikhonov regularization parameter for the CNN kernel is
�CNN = 10

�4. The network �✓ has been pre-trained as a digit classifier using the cross entropy loss
function. Training was performed with the Adam optimizer (learning rate = 0.01) for 20 epochs
(batch size = 100). The training dataset corresponds to the same 1000 images used to train the
Koopman estimators.

In Fig. 7 we compare Linear, Gaussian, and CNN kernels for different initial seeds. As it can be
noticed the CNN kernel remains strong across the board, while the forecasting ability of the linear
and Gaussian kernels quickly deteriorate as t increases.
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Figure 7: Comparison of different kernels in the generation of a series of digits. Starting from a seed
image, the next ones are obtained by iteratively using a rank-10 RRR Koopman operator estimator.
As in the main text, the first row of each panel corresponds to the Linear kernel, second to Gaussian
kernel and last row to CNN kernel.
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