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Abstract

We study a class of dynamical systems modelled as Markov chains that admit an
invariant distribution via the corresponding transfer, or Koopman, operator. While
data-driven algorithms to reconstruct such operators are well known, their relation-
ship with statistical learning is largely unexplored. We formalize a framework to
learn the Koopman operator from finite data trajectories of the dynamical system.
We consider the restriction of this operator to a reproducing kernel Hilbert space
and introduce a notion of risk, from which different estimators naturally arise. We
link the risk with the estimation of the spectral decomposition of the Koopman
operator. These observations motivate a reduced-rank operator regression (RRR)
estimator. We derive learning bounds for the proposed estimator, holding both in
i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results
suggest RRR might be beneficial over other widely used estimators as confirmed
in numerical experiments both for forecasting and mode decomposition.

1 Introduction

Dynamical systems [26, 38] provide a framework to study a variety of complex phenomena in science
and engineering. For instance, they find wide applications in diverse fields such as finance [46],
robotics [6, 16], atomistic simulations [32, 36, 53], open quantum system dynamics [20, 28], and
many more. Because of their practical importance, research around dynamical systems is and has
been abundant, see e.g. [17, 58] and references therein.

In light of recent machine learning progress, it is appealing to ask if the properties of dynamical
systems can be estimated (learned) from empirical data. Beyond machine learning this question
has a long history in dynamical systems [7]. The go-to reference for data-driven algorithms to
reconstruct dynamical systems is [25], where numerous methods based on so-called dynamic mode
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decomposition (DMD) are discussed along with interesting applications. The literature on various
theoretical aspects of dynamical systems is also rich [35, 38]. Our starting observation is that although
data-driven algorithms to reconstruct dynamical systems are well known, their relationship with
statistical learning [61] is largely unexplored. Our broad goal is to build a tie between these two
important areas of research and to establish firm theoretical grounds for data driven approaches, to
derive statistical guarantees and a foundation in which learning dynamical systems can be tackled in
great generality.

In this paper, we present a framework for learning dynamical systems from data obtained from one or
multiple trajectories. The focus is both predicting the future states of the system and interpreting the
underlying dynamic. The initial observation is the fact that, under suitable assumptions, a dynamical
system can be completely characterized by a linear operator, known as Koopman (or transfer)
operator [8, 35]. More precisely, the Koopman operator describes how functions (observables) of the
state of the system evolve over time along its trajectories. Further, the spectral decomposition of the
Koopman operator, along with the mode decomposition, allows us to interpret the dynamical and
spatial properties of the system [11, 39, 52]. In view of these results, learning a dynamical system
can be cast as the problem of learning the corresponding Koopman operator and associated mode
decomposition.

A key insight in our approach is to consider the restriction of Koopman operators to reproducing kernel
Hilbert spaces. With this choice, Hilbert-Schmidt operators become the natural hypothesis space
and kernel methods can be exploited [24]. We further link the proposed framework to conditional
mean embeddings [21, 24, 43]. This allows us to formalize the estimation of the Koopman operator
as a risk minimization problem and derive a number of estimators as instances of classical empirical
risk minimization under different constraints. We dub the problem Koopman operator regression.
In our framework DMD and some of its variants [25] are recovered as special cases. Moreover, our
analysis highlights the importance of rank constrained estimators, and, following this observation,
we introduce and analyze an estimator akin to reduced rank regression (RRR) [22]. Within our
statistical learning framework the learning properties of the studied estimators can be characterized
in terms of non asymptotic error bounds derived from concentration of measure results for mixing
processes. Theoretical results are complemented by numerical experiments where we investigate the
properties the estimators, and show they can be smoothly interfaced with deep learning techniques.
We note that, both kernel methods [1, 5, 13, 23, 24, 67] and deep learning approaches [4, 15, 30],
have been recently considered to learn Koopman operators. Compared to these works (notably [24],
whose setting is closely related to ours), we provide a statistical learning framework connecting to
the classical notions of risk, which we further link to the estimation of the spectrum of the Koopman
operator. Moreover, we derive non asymptotic and non-i.i.d. learning bounds and introduce and study
a novel constrained rank estimator RRR.

Contributions. In summary our main contributions are: 1) We present a statistical learning frame-
work for Koopman operator regression; 2) We bound the error in estimating the Koopman mode
decomposition and its eigenvalues by the risk of an estimator (Theorem 1); 3) We present a novel
reduced-rank estimator and show that it can be computed and used efficiently (Theorem 2); 4) We
provide a statistical risk bound supporting the proposed estimator (Theorem 3) and introduce a new
tool (Lemma 1) which is key in extending the bound to the non-i.i.d. setting.

Notation. For any non-negative integers n, m with n > m we use the notation [m:n] = {m, . . . , n}
and [n] = [1:n]. L

2

⇡(X ) := L
2
(X ,⇡) is the space of real valued functions on X , that are square-

integrable with respect to ⇡. Given two separable Hilbert spaces H and G, we let HS (H, G) be the
Hilbert space of Hilbert-Schmidt (HS) operators from H to G endowed with the norm kAk2

HS
⌘P

i2N kAeik2G , for A 2 HS (H, G), where (ei)i2N is an orthonormal basis of H. We use the
convention HS (H) =HS (H, H). The standard norms in Hilbert spaces and operator norms are
denoted by k·k, where the space is clear from the context. Given an operator A 2 HS (H), we denote
with [[A]]r its r-truncated singular value decomposition and its i-th singualr value by �i(A).

2 Background on Koopman operator theory

We briefly recall the basic notions related to Markov chains and Koopman operators and refer to
App. A and [26, 35, 38] for further details.
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Let X := {Xt : t 2 N} be a family of random variables with values in a measurable space (X , ⌃X ),
called state space. We call X a Markov chain if P{Xt+1 2 B | X[t]} = P{Xt+1 2 B | Xt}. Further,
we call X time-homogeneous if there exists p : X ⇥ ⌃X ! [0, 1], called transition kernel, such that,
for every (x, B) 2 X ⇥ ⌃X and every t 2 N,

P {Xt+1 2 B | Xt = x} = p(x, B).

In this work we consider only discrete Markov chains with t 2 N, but we note that any continuous
Markov process with t 2 R can be reduced to a discrete chain by sampling it at times tn = n�t with
n 2 N and �t fixed. For an alternative approach to approximate continuous dynamics see e.g. [51].

For a set F of real valued and measurable functions on X , the Markov transfer operator AF : F ! F
is defined as

AFf(x) :=

Z

X

p(x, dy)f(y) = E [f(Xt+1) | Xt = x] , f 2 F , x 2 X . (1)

A possible choice is F = L
1

(X ), the space of bounded functions on X [26]. We are inter-
ested in another common choice related to the existence of an invariant measure ⇡ satisfying
⇡(B)=

R
X
⇡(dx)p(x, B), B 2 ⌃X . In this case, it is possible to take F = L

2

⇡(X ), and easy to see
that kAFk  1, that is the Markov transfer operator is a bounded linear operator. In the following,
we denote by A⇡ the Markov transfer operator on L

2

⇡(X ), and always assume the existence of an
invariant measure. We note that, its existence can be proven for large classes of Markov chains,
see e.g. [12]. Also, to derive the statistical bounds in Sec. 5 we assume that the Markov chain is
mixing [26].
Example 1. An important example of the above construction is given by discrete dynamical systems
with additive noise. That is, given a state space X ✓ Rd, a mapping F : X !X and a probability
distribution ⌦ on X we let Xt+1 = F (Xt) + !t, t 2 N, where !t are i.i.d. zero mean random
variables with law ⌦. The corresponding transition kernel is p(x, B) = ⌦(B�F (x)), for which the
existence of an invariant measure is ensured e.g. when ⌦ is absolutely continuous with respect to the
Lebesgue measure and its density is strictly positive (see Remark 10.5.4 in [26]).
Remark 1. Whenever ⇡(dx)p(x, dy) = ⇡(dy)p(y, dx) the Markov chain is said to be reversible.
In this case it readily follows that the Koopman operator is self-adjoint A⇡ = A

⇤

⇡. In statistical
physics the reversibility condition is also called detailed balance and is linked to the symmetry with
respect to time reversal. Since a large amount of microscopical equations of motion in both classical
and quantum physics are time-reversal invariant, learning self-adjoint Koopman operators is of
paramount importance in the field of machine learning for physical sciences.

Koopman Operator and Mode Decomposition. In dynamical systems, AF is known as the
(stochastic) Koopman operator on the space of observables F . An important fact is that its linearity
can be exploited to compute a spectral decomposition. Indeed, in many situations, and notably for
compact Koopman operators, there exist scalars �i 2 C, and observables  i 2 L

2

⇡(X ) satisfying
the eigenvalue equation A⇡ i = �i i. Leveraging the eigenvalue decomposition, the dynamical
system can be decomposed into superposition of simpler signals that can be used in different
tasks such as system identification and control, see e.g. [7]. More precisely, given an observable
f 2 span{ i | i 2 N} there exist corresponding scalars �fi 2 C known as Koopman modes of f , such
that

A
t
⇡f(x) = E[f(Xt) | X0 = x] =

X

i2N

�
t
i�

f
i  i(x), x 2 X , t 2 N. (2)

This formula is known as Koopman Mode Decomposition (KMD) [2, 8]. It decomposes the expected
dynamics observed by f into stationary modes �fi that are combined with temporal changes governed
by eigenvalues �i and spatial changes governed by the eigenfunctions  i. We notice however that
the Koopman operator, in general, is not a normal compact operator, hence its eigenfunctions may
not form a complete orthonormal basis of the space which makes learning KMD challenging.

In many practical scenarios the transition kernel p, hence A⇡, is unknown, but data from one or
multiple system trajectories are available. We are then interested into learning the Koopman operator,
and corresponding mode decomposition, from the data. Next we discuss how to accomplish this task
with the aid of kernel methods.
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3 Statistical Learning Framework

In this section we choose the space of observables F to be a reproducing kernel Hilbert space (RKHS)
and present a framework for learning the Koopman operator on L

2

⇡(X ) restricted to this space and
the associated Koopman mode decomposition.

Learning Koopman Operators. Let H be an RKHS with kernel k : X ⇥ X ! R [3] and let
� : X ! H be an associated feature map, such that k(x, y) = h�(x),�(y)i

H
for all x, y 2 X . We

assume that that k(x, x) < 1, ⇡-almost surely. This ensures that H ✓ L
2

⇡(X ) and the injection
operator S⇡ : H ! L

2

⇡(X ) given by (S⇡f)(x) = f(x), x 2 X is a well defined Hilbert-Schmidt
operator [9, 55]. Then, the Koopman operator restricted to H is given by

Z⇡ := A⇡S⇡ : H ! L
2

⇡(X ).

Note that unlike A⇡, Z⇡ is Hilbert-Schmidt since S⇡ is so. It is then natural to approximate Z⇡ by
means of Hilbert-Schmidt operators. More precisely, for G 2 HS (H) we approximate Z⇡ by S⇡G,
and measure the corresponding error as kZ⇡�S⇡Gk2

HS
. To that end, given an an orthonormal basis

(hi)i2N of H, we introduce the risk

R(G) :=

X

i2N

Ex⇠⇡E
⇥
[hi(Xt+1) � (Ghi)(Xt)]

2 |Xt = x
⇤

(3)

as the cumulative expected one-step-ahead prediction error over all observables in H. One can show
(see Prop. (4) in App. B) that such risk can be decomposed as R(G) = R0 + E(G), where

R0 := kS⇡k2
HS

� kZ⇡k2
HS

� 0 and E(G) = kZ⇡ � S⇡Gk2
HS

, (4)

are the irreducible risk and the excess risk, respectively. As clear from the above discussion, the
Koopman operator and corresponding risk are typically not available in practice and what is available
is a dataset of observations D := (xi, yi)

n
i=1

2 (X ⇥ X )
n. Here, xi and yi are two consecutive

observations of the state of the system. In classical statistical learning, the data is assumed sampled
i.i.d. from the joint probability measure ⇢(dx, dy) := ⇡(dx)p(x, dy). In the case of dynamical
systems, it is natural to assume the the data are obtained by sampling a trajectory yi = xi+1, for
i 2 [n� 1]. Then, the problem of learning A⇡ on a RKHS, named here Koopman operator regression,
reduces to:

Given the data D, solve min
G2HS(H)

R(G). (5)

As discussed in Sec. 2, a central idea associated to Koopman operators is the corresponding mode
decomposition. It is then natural to ask whether an approximate mode decomposition can be derived
from a Koopman estimator. The following proposition provides a useful step in this direction. Here
and in the rest of the paper by cl(·) we denote the closure of a subspace of the Hilbert space, and we
say that a finite rank operator G 2 HS (H) is non-defective if and only if its matrix representation is
non-defective, i.e. (not necessarily unitarily) diagonalizable.
Proposition 1. If Im(Z⇡) ✓ cl(Im(S⇡)), then for every � > 0 there exists a finite rank non-defective
operator G 2 HS (H) such that E(G) < �.

The above proposition shows that if the RKHS H is, up to its closure in L
2

⇡(X ), an invariant subspace
of the Koopman operator A⇡ , then finite rank non-defective HS operators on H approximate arbitrarily
well the restriction of A⇡ onto H. In particular, this is always true for a wide class of kernels, called
universal kernels [55], for which H is dense in L

2

⇡(X ), i.e. cl(Im(S⇡)) = L
2

⇡(X ).
Remark 2. Since in the above proposition infG2HS(H) E(G) = 0, we can distinguish between
two cases depending on whether the infimum is attained or not. In the former case, known in
the literature as well-specified case, there exists GH 2 HS (H) such that Z⇡ = S⇡GH, which
implies that GH : H ! H defines ⇡-a.e. the Koopman operator on the observable space H, i.e.
GHf = E[f(Xt+1) | Xt = ·] ⇡-a.e. for every f 2 H. In the latter case, known as misspecified case,
H does not admit a Hilbert-Schmidt Koopman operator H ! H.
Remark 3. In the misspecified case, a Koopman operator on H might still exist as a bounded albeit
not Hilbert-Schmidt operator. In App. B.2 we show that for reversible Markov processes (see Rem. 1),
if Im(Z⇡) ✓ cl(Im(S⇡)), there exists an estimator of the Koopman operator G such that kZ⇡�S⇡Gk
is arbitrarily small and kGk  1.
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Learning the Koopman mode decomposition. Techniques to estimate the Koopman mode decom-
position (2) from data, are broadly referred to as Dynamic Mode Decomposition (DMD) [25]. We
next introduce a DMD approach following the discussion above. Let r 2 N and a non-defective
G 2 HSr(H) := {G 2 HS (H) | rank(G)  r}. Then, there exists a spectral decomposition of G

given by (�i, ⇠i, i)
r
i=1

where �i 2 C and ⇠i and  i are complex-valued function with components
in H, such that G =

Pr
i=1

�i i ⌦ ⇠i, where G i = �i i, G
⇤
⇠i = �i⇠i and h i, ⇠jiH = �ij , where

�ij is Kronecker delta symbol, i, j 2 [r]. This implies, for any f 2 H, that

G
t
f =

P
i2[r]�

t
i�

f
i  i, t � 1. (6)

The coefficients �fi := hf, ⇠iiH, i 2 [r], are called dynamic modes of the observable f and expres-
sion (6) is known as the DMD corresponding to G. Next, we upper bound the error in estimating the
mode decomposition of A⇡ (see Eq. (2)) by the DMD of a non-defective operator G 2 HSr(H).
Theorem 1. Let G 2 HSr(H) and (�i, ⇠i, i)

r
i=1

its spectral decomposition. Then for every f 2 H

E[f(Xt) | X0 = x] =

X

i2[r]

�
t
i�

f
i  i(x) + kZ⇡ � S⇡Gk err

f
(x), x 2 X , (7)

where err
f 2 L

2

⇡(X ), and kerr
fk  (t � 1)kGfk + kfk, t � 1. Moreover, for any i2[r],

kA⇡S⇡ i � �iS⇡ ik  kZ⇡ � S⇡Gk kGk
�r(S⇡G)

kS⇡ ik. (8)

This theorem provides KMD approximation results for the DMD obtained from an estimator G

in HSr(H). First, since kZ⇡ � S⇡Gk 
p

E(G), equation (7) shows that DMD for an estimate
G 2 HSr(H) incurs an error which is at most proportional to the (square root) of the corresponding
excess risk E(G). Further, the error degrades as t increases. This implies that the prediction error
(t = 1) is only controlled by the risk but forecasting (t � 1) will get in general increasingly harder for
larger t. Second, inequality (8) shows that (�i, S⇡ i) is approximately an eigenpair of the Koopman
operator A⇡. Indeed, it guarantees that all the eigenfunctions of the estimator G, considered as an
equivalence class in L

2

⇡(X ), approximately satisfy the Koopman eigenvalue equation. Inequality (8)
provides a relative error bound controlled by the excess risk E(G), where the approximation quality
worsen as higher ranks are considered. This provides additional motivation to study low rank
estimators of A⇡ , see Sec. 4. Moreover, we point out that the bounds in Thm. 1 are tight, since on any
RKHS H spanned by a finite-number of Koopman eigenfunctions it exists a finite rank GH yielding
kZ⇡ � S⇡GHkHS = 0. For additional discussions see Exm. 3 of App. B.1.

We conclude this section with two remarks regarding the estimation of the eigenvalues of A⇡ and a
connection to conditional mean embeddings [54].
Remark 4 (Spectral Estimation). Eq. (8) alone is not sufficient to derive strong guarantees on how
well the spectra of G estimates the spectra of A⇡. While we address this in detail in App. B.1, here
we comment that in general it may happen that S⇡G ⇡ A⇡S⇡, while Sp(A⇡) is far from Sp(G).
If A⇡ is a normal compact operator, however, for G 2 HSr(H) and every i 2 [r], there exists
�⇡,i 2 Sp(A⇡) such that |�i��⇡,i|  kZ⇡ �S⇡Gk kGk/�r(S⇡G). If additionally G is also normal,
then |�i � �⇡,i| 

p
E(G) kS⇡kHS.

Remark 5 (Link to Conditional Mean Embeddings). The Koopman operator is a specific form
of conditional expectation operator and can be studied within the framework of conditional mean
embeddings [54]. Here, the goal is to learn the function gp : X ! H defined as

gp(x) := E[�(Xt+1) | Xt = x] =

Z

X

p(x, dy)�(y), x 2 X , (9)

called the conditional mean embedding (CME) of the conditional probability p into H. In App. B.2
we show a “duality” between Koopman operator regression and CME expressed by the reproducing
property (Z⇡f)(x) = hf, gp(x)i

H
. In particular, recalling that ⇢ is the joint probability measure on

X ⇥ X defined by ⇢(dx, dy) = p(x, dy)⇡(dx), the risk we proposed in (3) can be written as

E(x,y)⇠⇢k�(y) � G
⇤
�(x)k2

| {z }
R(G)

= E(x,y)⇠⇢kgp(x) � �(y)k2
| {z }

R0

+ Ex⇠⇡kgp(x) � G
⇤
�(x)k2

| {z }
E(G)

(10)

In this sense the Koopman operator regression problem (5) is equivalent to learning CME of the
Markov transition kernel p.
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4 Empirical Risk Minimization

We next describe different estimators for the Koopman operator. Let bS, bZ 2 HS (H, Rn
) be the

sampling operators of the inputs and outputs defined, for every f 2 H, as bSf =
�
n
�

1

2 f(xi)
�n
i=1

and bZf =
�
n
�

1

2 f(yi)
�n
i=1

, respectively. The Koopman operator is estimated by minimizing, under
different constraints, the empirical risk

bR(G) :=

��� bZ � bSG

���
2

HS

=
1

n

X

i2[n]

k�(yi) � G
⇤
�(xi)k2, G 2 HS (H) . (11)

The first expression is the empirical version of the risk in (3), while the second expression is the
empirical version of the risk as in (10), with a remark that sampling operator bZ is not an estimator of
the regression operator Z⇡ and that, since ⇡ is an invariant measure, we have E[ bZ⇤ bZ] = E[bS⇤ bS] =

S
⇤

⇡S⇡. Further, notice that for the linear kernel �(x) = x Eq. (11) is essentially the problem
minimized by the classical DMD, whereas if � is built from a dictionary of functions it is minimized
by the extended DMD [25].

Before discussing further, we introduce the empirical input, output and cross covariances, given by
bC := bS⇤ bS, bD := bZ⇤ bZ and bT := bS⇤ bZ, respectively, and the corresponding kernel Gram matrices
given by K := bS bS⇤, L := bZ bZ⇤ and M := bZ bS⇤. We also let bC� := bC + �IH be the regularized
empirical covariance and K� := K + �In the regularized kernel Gram matrix.

Kernel Ridge Regression (KRR). A natural approach is to add a Tikhonov regularization term
to (11) obtaining a Kernel Ridge Rregression (KRR) estimator

bG� := arg min
� bR(G) + � kGk2

HS
: G 2 HS (H)

 
. (12)

It is easy to see that bG� = bC�1

�
bT = bS⇤

K
�1

�
bZ. One issue with the above estimator is that the compu-

tation of its spectral decomposition becomes unstable with large datasets, see below. Consequently,
low rank estimators have been advocated [25] as a way to overcome these limitations.

Principal Component Regression (PCR). A standard strategy to obtain a low-rank estimator is
Principal Component Regression (PCR). Here, the input data are projected to the principal subspace
of the covariance matrix bC, and ordinary least squares on the projected data is performed, yielding the
estimator bGPCR

r = [[ bC]]
†

r
bT = bS⇤

[[K]]
†

r
bZ. In the context of dynamical systems, this estimator is known

as kernel Dynamic Mode Decomposition, and is of utter importance in a variety of applications [7, 25].
Note, however, that PCR does not minimize the empirical risk under the low-rank constraint.

Reduced Rank Regression (RRR). The optimal rank r empirical risk minimizer is

bGr,� := arg min
� bR(G) + � kGk2

HS
: G 2 HSr(H)

 
. (13)

In classical linear regression this problem is known as reduced rank regression (RRR) [22]. While
extensions to infinite dimensions have been considered [44, 65], we are not aware of any work
considering the HS operator setting presented here. The minimizer of (13) is given by bGr,� =

bC�
1

2

� [[ bC�
1

2

� bT ]]r = bS⇤
UrV

>

r
bZ. Here Vr = KUr and Ur = [u1 | . . . |ur] 2 Rn⇥r is the matrix whose

columns are the r leading eigenvectors of the generalized eigenvalue problem LKui = �
2

i K�ui,
normalized as u

>

i KK�ui = 1, i 2 [r].

Forecasting and Modal Decomposition. The above estimators are all of the form bG = bS⇤
W bZ,

for some n ⇥ n matrix W . Given f 2 H, the one-step-ahead expected value E[f(Xt+1) | Xt = x] is
estimated by

[ bGf ](x) = [bS⇤
W bZf ](x) =

1

n

nX

i=1

(Wfn)ik(x, xi),

where fn = (f(yi))
n
i=1

and we used the definition of bS and bZ. Computing the above estimator
is demanding in large scale settings, mostly because a large kernel matrix needs be stored and
manipulated. Predicting with KRR, therefore, is tantamount to solve a linear system of dimension n,
whereas for rank r estimators we only need matrix multiplications. Notice that the computational
complexity of both PCR and RRR estimators is of order O(r

2
n
2
), which is better than the O(n

3
)
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complexity of KRR. However, a number of recent ideas for scaling kernel methods can be applied for
KRR, see e.g. [18, 37] and references therein. Perhaps more importantly, specific to the context of
dynamical systems is the fact that an approximate mode decomposition needs to be further computed,
requiring the spectral decomposition of bG. As showed in App. C.2, this reduces to computing the
spectral decomposition of an n ⇥ n matrix WM , where recall M = bZ bS⇤. For KRR computing
the spectral decomposition, in general, has complexity O(n

3
) and may become numerically ill-

conditioned for theoretically optimal regularization parameters. In contrast, the low rank structure of
PCR and RRR estimators allows efficient and numerically stable spectral computation of complexity
O(r

2
n
2
) as we show next.

Theorem 2. Let bG = bS⇤
UrV

>

r
bZ, with Ur, Vr 2 Rn⇥r. If V

>

r MUr 2 Rr⇥r is full rank and non-
defective, the spectral decomposition (�i, ⇠i, i)i2[r] of bG can be expressed in terms of the spectral
decomposition (�i, eui, evi)i2[r] of V

>

r MUr. Namely, ⇠i = bZ⇤
Vreui/�i and  i = bS⇤

Urevi, for all
i 2 [r]. In addition, for every f 2 H, its dynamic modes are given by �fi = eu⇤

i V
>

r fn/(�i
p

n) 2 C.

In addition to the estimators presented above, several other popular DMD methods are captured by
our Koopman operator regression framework. In App. C we review some of them providing also the
proof of Thm. 2. We now turn to the study of risk bounds for the proposed low rank estimators.

5 Learning Bounds

In this section, we bound the deviation of the risk from the empirical risk, uniformly over a prescribed
set of HS operators on H. The analysis here is presented for Ivanov regularization for simplicity, but
our results can be linked to Tikhonov regularization (see [29] and reference therein for a discussion).
To state the result, we denote (true) input, output and cross covariances by C := Ex⇠⇡[�(x) ⌦ �(x)],
D := Ey⇠⇡[�(y)⌦�(y)] and T := E(x,y)⇠⇢[�(x)⌦�(y)], respectively. Note that since ⇡ is invariant
measure, the input covariance and output covariance are the same C = D = S

⇤

⇡S⇡, while for the
cross covaraince we have T = S

⇤

⇡Z⇡. Without loss of generality we present the results in the case
that k�(x)k  1, for all x 2 X (the bounds below need otherwise to be rescaled by a constant).

We start by presenting a theorem holding in the setting where the data is sampled i.i.d. from the joint
probability measure ⇢(dx, dy) = ⇡(dx)p(x, dy).
Theorem 3. Let Gr,� = {G 2 HSr(H) : kGkHS  �} and define �2

= E(k�(y)k2 � Ek�(y)k2)2.
With probability at least 1 � � in the i.i.d. draw of (xi, yi)

n
i=1

from ⇢, we have for every G 2 G�,r

|R(G)� bR(G)| 

s
2�2 ln

6

�

n
+3(4

p
2r�+�

2
)

s
kCk ln

24n2

�

n
+

(1+24�
p

r) ln
6

� +6�
2
ln

24n2

�

n
.

A key tool in the proof is the following proposition, which is a natural extension of [34, Theorem 7]
who provided concentration inequalities for classes of positive operators.
Proposition 2. With probability at least 1 � � in the i.i.d. draw of (xi, yi)

n
i=1

from ⇢,

��� bT � T

���  12
ln

8n2

�

n
+ 6

s
kCk ln

8n2

�

n
.

Sketch of the proof of Thm. 3 . Recalling the definition of the true and empirical risk, a direct com-
putation gives

R(G) � bR(G) = tr
⇥
D � bD

⇤
+ tr

⇥
GG

⇤
(C � bC)

⇤
� 2 tr

⇥
G

⇤
(T � bT )

⇤
.

We use Hölder inequality to bound the last two terms in the r.h.s., obtaining

R(G) � bR(G)  tr
⇥
D � bD

⇤
+ �

2kC � bCk + 2
p

r�kT � bTk. (14)

We then bound the first term as tr[D � bD]  ln
2

�
3n +

q
2�2 ln

2

�
n , see App. D.1, use [34, Theorem 7-(i)]

to bound the second term, and Prop. 2 for the last term. The result then follows by a union bound.

We state several remarks on this theorem and its implications.
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1. It is interesting to compare the bound for RRR and PCR estimators. Assuming that both estimators
have the same HS norm, then they will satisfy the same uniform bound. However, the empirical
risk may be (possibly much) smaller for the RRR estimator and hence preferable, see Fig. 1.

2. Using the reasoning in [33, 34] and [41] we can replace the variance term and the term kCk in
the bound with their empirical estimates, obtaining a fully data dependent bound. Notice also that
the bound readily applies to the more general CME case, which could be subject of future work.

3. A related bound can be derived using Cor. 3.1 in [40] in place of Prop. 2. This essentially replaces
the term kCk with kEAA

⇤k where A := (�(x) ⌦ �(y) � T ). This bound is more difficult to turn
into a data dependent bound, but it allows for a more direct comparison to bounds without the
rank constraint, which may be potentially much larger; see the discussion in App. D.1.

4. One can use the uniform bound to obtain an excess risk bound. In the setting of Thm. 3
and well specified case in which Z⇡ = S⇡GH this requires studying the approximation error
minG2G�,r kS⇡(GH � G)k2

HS
.

Dealing with Sampled Trajectories. We now study ERM with time dependent data. We con-
sider that a trajectory x1, . . . , xn+1 has been sampled from the process as x1 ⇠ ⇡, yk�1 = xk ⇠
p(xk�1, ·), k 2 [2:n]. For a strictly stationary Markov process the �-mixing coefficients are the
numbers �X (⌧) defined for ⌧ 2 N by

�X (⌧) = sup
B2⌃⌦⌃

|⇢⌧ (B) � (⇡ ⇥ ⇡) (B)| ,

where ⇢⌧ is the joint distribution of X1 and X1+⌧ . The basic strategy, going back to at least [68],
to transfer a concentration result for i.i.d. variables to the non-i.i.d. case represents the process
X by interlaced block-processes Y and Y0, which are constructed in a way that Yj and Yj+1 are
sufficiently separated to be regarded as independent. Specifically, they are defined as

Yj =

(2j�1)⌧X

i=2(j�1)⌧+1

Xi and Y
0

j =

2j⌧X

i=(2j�1)⌧+1

Xi for j 2 N.

This construction naturally yields the following key lemma, which allows us to extend several results
from the i.i.d. case to time dependent stationary Markov chains. The proof is presented in App. D.2.
Lemma 1. Let X be strictly stationary with values in a normed space (X , k·k), and assume n = 2m⌧

for ⌧, m 2 N. Moreover, let Z1, . . . , Zm be m independent copies of Z1 =
P⌧

i=1
Xi. Then for s > 0

P
n���

nX

i=1

Xi

��� > s

o
 2 P

n���
mX

j=1

Zj

��� >
s

2

o
+ 2 (m � 1)�X (⌧) .

As an application of this result we transfer Prop. 2, which was key in the proof of Thm. 3 to give an
estimation bound for kT � bTk, to the non-i.i.d. setting. Fix ⌧ 2 N and let Z1, . . . , Zm be independent
copies of Z1 =

1

⌧

P⌧
i=1

�(xi) ⌦ �(xi+1) � T . Applying Lem. 1 with �(xi) ⌦ �(xi+1) � T in place
of Xi we obtain the following.
Proposition 3. Let � > (m � 1)�X(⌧ � 1). With probability at least 1 � � in the draw x1 ⇠ ⇡, xi ⇠
p(xi�1, ·), i 2 [2:n],

k bT � Tk  48

m
ln

4m⌧

� � (m � 1)�X (⌧ � 1)
+ 12

s
2 kCk

m
ln

4m⌧

� � (m � 1)�X (⌧ � 1)
.

We notice that, apart from slightly larger numerical constants and a logarithmic term, Prop. 3 is
conceptually identical to Prop. 2 provided the sample size n is replaced by the effective sample size
m ⇡ n/2⌧ . Similar conclusions can be made to bound the other random terms appearing in (14), see
App. D.2 for a discussion.

6 Experiments

In this section we show that the proposed framework can be applied to dissect and forecast dynamical
systems. While we keep the presentation concise, all the technical aspects, as well as additional
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Figure 1: Numerical verification of the uniform bound presented in Thm. 3 for the noisy Logistic map.
Left panel: the training and test risk for RRR are consistently than PCR. Right panel: the deviation
between training and test risk as a function of the number of training samples have ⇡ n

�1/2 decay.

experiments, are deferred to App. E. Along with the code to reproduce the experiments, at the url
https://github.com/CSML-IIT-UCL/kooplearn, we release a Python module implementing sklearn-
compliant [47] estimators to learn the Koopman operator.

Noisy Logistic Map. We study the noisy logistic map, a non-linear dynamical system defined by the
recursive relation xt+1 = (4xt(1�xt)+ ⇠t) mod 1 over the state space X = [0, 1]. Here, ⇠t is i.i.d.
additive trigonometric noise as defined in [45]. The probability distribution of trigonometric noise is
supported in [�0.5, 0.5] and is proportional to cos

N
(⇡⇠), N being an even integer. In this setting,

the true invariant distribution, transition kernel and Koopman eigenvalues are easily computed. In
Tab. 1 we compare the performance of KRR, PCR and RRR (see Sec. 4) trained with a Gaussian
kernel. We average over 100 different training datasets each containing 10

4 data points and evaluate
the test error on 500 unseen points. In Tab. 1 we show the approximation error for the three largest
eigenvalues of the Koopman operator, �1 = 1 and �2,3 = �0.193 ± 0.191i as well as training and
test errors. The following eigenvalues |�4,5| ⇡ 0.027 are an order of magnitude smaller than |�2,3|.
Both PCR and RRR have been trained with the rank constraint r = 3. The regularization parameter �
for KRR and RRR is the value � 2 [10

�7
, 1] minimizing the validation error. The RRR estimator

always outperforms PCR, and in the estimation of the non-trivial eigenvalues �2,3 (�1 corresponding
to the equilibrium mode is well approximated by every estimator) attains the best results. In Fig. 1
we report the results of a comparison between PCR and RRR performed under Ivanov regularization.
This experiment was designed to empirically test the uniform bounds presented in Sec. 5. Again,
RRR consistently outperforms the PCR estimator.

Table 1: Comparison of the estimators proposed in Section 4 on the noisy logistic map.
Estimator Training error Test error |�1 � �̂1|/|�1| |�2,3 � �̂2,3|/|�2,3|

PCR 0.2± 0.003 0.18± 0.00051 9.6 · 10�5 ± 7.2 · 10�5 0.85± 0.03
RRR 0.13± 0.002 0.13± 0.00032 5.1 · 10�6 ± 3.8 · 10�6 0.16± 0.1
KRR 0.032± 0.00057 0.13± 0.00068 7.9 · 10�7 ± 5.7 · 10�7 0.48± 0.17

The molecule Alanine Dipeptide. We analyse a simulation of the small molecule Alanine dipeptide
reported in Ref. [66]. The dataset, here, is a time series of the Alanine dipeptide atomic positions.
The trajectory spans an interval of 250 ns and the number of features for each data point is 45. The
dynamics is Markovian and governed by the Langevin equation [27]. The system supports an invariant
distribution, known as the Boltzmann distribution, and the equations are time-reversal-invariant. The
latter implies that the true Koopman operator is self-adjoint and has real eigenvalues. For Alanine
dipeptide it is well known that the dihedral angles play a special role, and characterize the state
of the molecule. Broadly speaking, we can associate specific regions of the dihedral angles space
to metastable states, i.e. configurations of the molecule which are "stable" over an appreciable
span of time. To substantiate this claim we point to the left panel of Figure 2. From this plot it is
evident that the molecule spend a large amount of time around specific values of the angle  , and
transitions from one region to another are quite rare. We now try to recover the same informations
from the spectral decomposition of the Koopman operator. We train the RRR estimator with rank
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Figure 2: Left: dihedral angle  of the Alanine dipeptide as a function of time. Right: comparison of
different kernels in the generation of a series of digits. Starting from a seed image, the next ones are
obtained by iteratively using the rank-10 RRR Koopman operator estimator.

5 and a standard Gaussian kernel (length scale ` = 0.2). We remark that the dataset is comprised
of atomic positions, and not dihedral angles. We show that the computed eigenfunctions are highly
correlated with the dihedral angles, meaning that our estimator was able to learn the correct physical
quantities starting only from the raw atomic positions. The estimated eigenvalues are �1 = 0.99920,
�2 = 0.9177, �3 = 0.4731, �4 = �0.0042 and �5 = �0.0252. Notice that they are all real (as they
should be, since the system is time-reversal-invariant). In Fig. 6 of App. E.4 we report the plots of
the (non-trivial) eigenfunctions corresponding to �2 and �3 in the dihedral angle space. From these
plots it is clear that the eigenfunctions are to a good approximation piecewise constant and identify
different metastability regions, as expected.

Koopman Operator Regression with Deep Learning Embeddings. To highlight the importance
of choosing the kernel, here we consider a computer vision setting, where standard kernels (e.g.
Matérn or Gaussian), are less suitable than features given by pre-trained deep learning models. We
take a sequence (xt)t2N of images from the MNIST dataset [14] starting from x0 corresponding
to an image depicting a digit 0 and such that for every xt depicting a digit ct 2 {0, . . . , 9} we
sample xt+1 from the set of images depicting the digit ct + 1 (mod 10). We compare the rank-10
RRR estimators using Linear and Gaussian kernels, with a Convolutional Neural Network (CNN)
kernel k✓(x, x

0
) := h�✓(x),�✓(x

0
)i, where �✓ is a feature map obtained from the last layer of a

convolutional neural network classifier trained on the same images in (xt)t2N . We trained the three
Koopman estimators on 1000 samples. The right panel of Fig. 2 shows the first 4 forecasting steps
starting from a digit 0. Only the forecasts by the CNN kernel maintain a sharp (and correct) shape for
the predicted digits. In contrast, the other two kernels are less suited to capture visual structures and
their predictions quickly lose any resemblance to a digit. This effect can be appreciated starting from
other digits, too (see App. E).

7 Conclusions

We proposed a statistical framework to learn Koopman operators in RKHS. In addition, we inves-
tigated how the spectral and modal decompositions of the Koopman estimators approximate the
true ones, providing novel perturbation bounds. In particular, we studied three Koopman operator
estimators, KRR, PCR and the newly proposed RRR. We observed that KRR and PCR correspond to
well-established estimators from the dynamical systems literature. Then, by leveraging recent results
from kernel operator learning we observed that such estimators enjoy strong statistical guarantees.
Focusing on the RRR estimator, we provided generalization bounds, both in i.i.d. and non i.i.d.
settings, one of the key novel contributions of this work.

In this work we consider only time-homogeneous dynamical systems admitting an invariant distribu-
tion. Weakening these assumptions would allow the study of more general systems. Moreover, the
extension of our results to continuous dynamical systems and in general to non-uniformly sampled
datapoints deserves further investigations. Finally, the choice of the kernel is fundamental for efficient
learning. Designing a kernel function incorporating prior knowledge of the dynamical system (such
as structure of the data points, symmetries, smoothness assumptions etc.) is a topic of paramount
interest.

10



Acknowledgements: This work was supported in part by the EU Projects ELISE and ELSA. We
thank all anonymous reviewers for their useful insights and suggestions.

References
[1] Alexander, R. and Giannakis, D. (2020). Operator-theoretic framework for forecasting nonlinear

time series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409:132520.

[2] Arbabi, H. and Mezić, I. (2017). Ergodic theory, dynamic mode decomposition, and computation
of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems,
16(4):2096–2126.

[3] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical
society, 68(3):337–404.

[4] Bevanda, P., Beier, M., Kerz, S., Lederer, A., Sosnowski, S., and Hirche, S. (2021). Koop-
manizingFlows: Diffeomorphically Learning Stable Koopman Operators. arXiv preprint
arXiv.2112.04085.

[5] Bouvrie, J. and Hamzi, B. (2017). Kernel Methods for the Approximation of Nonlinear Systems.
SIAM Journal on Control and Optimization, 55(4):2460–2492.

[6] Bruder, D., Fu, X., Gillespie, R. B., Remy, C. D., and Vasudevan, R. (2021). Data-Driven Control
of Soft Robots Using Koopman Operator Theory. IEEE Transactions on Robotics, 37(3):948–961.
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[35] Mauroy, A., Mezić, I., and Susuki, Y., editors (2020). The Koopman Operator in Systems and
Control. Springer International Publishing.

[36] McCarty, J. and Parrinello, M. (2017). A variational conformational dynamics approach
to the selection of collective variables in metadynamics. The Journal of Chemical Physics,
147(20):204109.

[37] Meanti, G., Carratino, L., Rosasco, L., and Rudi, A. (2020). Kernel methods through the
roof: handling billions of points efficiently. Advances in Neural Information Processing Systems,
33:14410–14422.

[38] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Communica-
tions and Control Engineering. Springer London.
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