
USB: A Unified Semi-supervised Learning Benchmark
for Classification

Yidong Wang1,2,3∗, Hao Chen4∗, Yue Fan5∗, Wang Sun6, Ran Tao4, Wenxin Hou7,
Renjie Wang8, Linyi Yang2, Zhi Zhou8, Lan-Zhe Guo8, Heli Qi9, Zhen Wu8, Yu-Feng Li8,

Satoshi Nakamura9, Wei Ye10, Marios Savvides4, Bhiksha Raj4, Takahiro Shinozaki3,
Bernt Schiele5, Jindong Wang1†, Xing Xie1, Yue Zhang2†

1Microsoft Research Asia, 2Westlake University, 3Tokyo Institute of Technology,
4Carnegie Mellon University, 5Max-Planck-Institut für Informatik, 6Tsinghua University,

7Microsoft STCA, 8Nanjing University, 9Nara Institute of Science and Technology, 10Peking University

Abstract

Semi-supervised learning (SSL) improves model generalization by leveraging
massive unlabeled data to augment limited labeled samples. However, currently,
popular SSL evaluation protocols are often constrained to computer vision (CV)
tasks. In addition, previous work typically trains deep neural networks from scratch,
which is time-consuming and environmentally unfriendly. To address the above
issues, we construct a Unified SSL Benchmark (USB) for classification by select-
ing 15 diverse, challenging, and comprehensive tasks from CV, natural language
processing (NLP), and audio processing (Audio), on which we systematically
evaluate the dominant SSL methods, and also open-source a modular and exten-
sible codebase for fair evaluation of these SSL methods. We further provide the
pre-trained versions of the state-of-the-art neural models for CV tasks to make
the cost affordable for further tuning. USB enables the evaluation of a single SSL
algorithm on more tasks from multiple domains but with less cost. Specifically, on
a single NVIDIA V100, only 39 GPU days are required to evaluate FixMatch
on 15 tasks in USB while 335 GPU days (279 GPU days on 4 CV datasets
except for ImageNet) are needed on 5 CV tasks with TorchSSL.

1 Introduction

Neural models give competitive results when trained using supervised learning on sufficient high-
quality labeled data [1, 2, 3, 4, 5, 6, 7]. However, it can be laborious and expensive to obtain abundant
annotations for model training [8, 9]. To address this issue, semi-supervised learning (SSL) emerges
as an effective paradigm to improve model generalization with limited labeled data and massive
unlabeled data [10, 11, 12, 13, 14, 15].

SSL has made remarkable progress in recent years [16, 17, 18, 19, 20, 21], yet there are still sev-
eral limitations with the popular evaluation protocol in the literature [22, 20, 21]. First, existing
benchmarks are mostly constrained to plain computer vision (CV) tasks (i.e., CIFAR-10/100, SVHN,
STL-10, and ImageNet classification [22, 23, 20, 24, 21], as summarized in TorchSSL [21]), pre-
cluding consistent and diverse evaluation over tasks in natural language processing (NLP), audio
processing (Audio), etc., where the lack of labeled data is a general issue and SSL has gained increas-
ing research attention recently [25, 26, 27]. Second, the existing protocol (e.g., TorchSSL [21]) can
be mainly time-consuming and environmentally unfriendly because it typically trains deep neural

∗Equal contribution. Yidong Wang did this work during his internship at MSRA and Westlake University.
†Correspondence to: jindong.wang@microsoft.com, zhangyue@westlake.edu.cn.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

Table 1: A summary of datasets and training cost used in (a) the existing popular protocol and (b) USB.
USB largely reduces the training cost while providing a diverse, challenging, and comprehensive
benchmark covering a wide range of datasets from various domains. Training cost is estimated
by using FixMatch [20] on a single NVIDIA V100 GPU from Microsoft Azure Machine Learning
platform, except for ImageNet where 4 V100s are used. Experiments in (a) follow the settings in
[21]. More results with different pre-trained backbones are available in Appendix D.

(a) TorchSSL [21]

Domain & Backbone Dataset Classification Task Hours × Settings × Seeds Total GPU Hours Total GPU Hours w/o ImageNet

CV, ResNets

CIFAR-10 Natural Image 110 × 3 × 3

8031 GPU Hours
(335 GPU Days) 6687 GPU Hours

(279 GPU Days)

CIFAR-100 Natural Image 300 × 3 × 3
SVNH Digital 108 × 3 × 3
STL-10 Natural Image 225 × 3 × 3

ImageNet Natural Image 336 hours × 4 GPUs

(b) USB

Domain & Backbone Dataset Classification Task Hours × Settings × Seeds Total GPU Hours

CV, ViTs

CIFAR-100 Natural Image 11 × 2 × 3

924 GPU Hours
(39 GPU Days)

STL-10 Natural Image 18 × 2 × 3
EuroSAT Satellite Image 10 × 2 × 3

TissueMNIST Medical Image 8 × 2 × 3
Semi-Aves Fine-grained, Long-tailed Natural Image 13 × 1 × 3

NLP, Bert

IMDB Movie Review Sentiment 8 × 2 × 3
AG News News Topic 6 × 2 × 3

Amazon Review Product Review Sentiment 8 × 2 × 3
Yahoo! Answer QA Topic 7 × 2 × 3

Yelp Review Restaurant Review Sentiment 8 × 2 × 3

Audio, Wave2Vec 2.0
and HuBert

GTZAN Music Genre 12 × 2 × 3
UrtraSound8k Urban Sound Event 15 × 2 × 3
FSDnoisy18k Sound Event 17 × 1 × 3

Keyword Spotting Keyword 10 × 2 × 3
ESC-50 Environmental Sound Event 18 × 2 × 3

models from scratch [28, 23, 29, 20, 24, 21]. Specifically, as shown in Table 1a, it takes about 335
GPU days (279 GPU days without ImageNet) to evaluate FixMatch [20] with TorchSSL [21]. Such
a high cost can make it unaffordable for research labs (particularly in academia) to conduct SSL
research. Recently, the pre-training and fine-tuning paradigm [30, 31, 32, 33] achieves promising
results. Compared with training from scratch, pre-training has much reduced cost in SSL. However,
there are relatively few benchmarks that offer a fair test bed for SSL with the pre-trained versions of
neural models.

To address the above issues and facilitate general SSL research, we propose USB: a Unified SSL
Benchmark for classification 3. USB offers a diverse and challenging benchmark across five CV
datasets, five NLP datasets, and five Audio datasets (Table 1b), enabling consistent evaluation over
multiple tasks from different domains. Moreover, USB provides comprehensive evaluations of SSL
algorithms with even fewer labeled data compared with TorchSSL, as the performance gap between
SSL algorithms diminishes when the amount of labeled samples becomes large. Benefiting from the
rapidly developed neural architectures, we introduce pre-trained Transformers [4] into SSL instead of
training ResNets [1] from scratch to reduce the training cost for CV tasks. Specifically, we find that
using pre-trained Vision Transformers (ViT) [34] can largely reduce the number of training iterations
(e.g., by 80% from 1,000k to 200k on CV tasks) without hurting the performance, and most SSL
algorithms achieve even better performance with less training iterations.

As illustrated in Table 1b, using USB, we spend only 39 GPU days to evaluate the performance of
an SSL algorithm (i.e., FixMatch) on a single NVIDIA V100 over these 15 datasets, in contrast
to TorchSSL, which costs about 335 GPU days on only 5 CV datasets (279 GPU days on 4 CV
datasets except for ImageNet). To further facilitate SSL research, we open-source the codebase and
pre-trained models 4 for unified and consistent evaluation of SSL methods. In addition, we also
provide config files that contain all the hyper-parameters to easily reproduce our results reported in

3The word ‘unified’ means the unification of different algorithms on various application domains.
4https://github.com/microsoft/Semi-supervised-learning. We also provide the training logs

of the experiments in this paper. Note that the results and training logs will be continuously updated/provided if
we reorganize the codes for better use or add more algorithms and datasets. Microsoft Research Asia (MSRA)
will provide both the support and resources for future updates.

2

https://github.com/microsoft/Semi-supervised-learning

Table 2: The comparison between USB and other related benchmarks.
Benchmark # SSL algorithms Domian # Tasks Pre-trained Training hours using FixMatch

Realistic SSL evaluation [22] 4 CV 3 % -
TorchSSL [21] 9 CV 5 % 6687

USB 14 CV, NLP, Audio 15 ! 924

this work. We obtain some interesting findings by evaluating 14 SSL algorithms (Section 5.4): (1)
introducing diverse tasks from diverse domains can be beneficial to comprehensive evaluation of an
SSL algorithm; (2) pre-training is more efficient and can improve the generalization; (3) unlabeled
data do not consistently improve the performance especially when labeled data is scarce.

To conclude, our contributions are three-fold:

• We propose USB: a unified and challenging semi-supervised learning benchmark for classi-
fication with 15 tasks on CV, NLP, and Audio for fair and consistent evaluations. To our
humble knowledge, we are the first to discuss whether current SSL methods that work well
on CV tasks generalize to NLP and Audio tasks.

• We provide an environmentally friendly and low-cost evaluation protocol with pre-training
& fine-tuning paradigm, reducing the cost of SSL experiments. The advantages of USB as
compared to other related benchmarks are shown in Table 2.

• We implement 14 SSL algorithms and open-source a modular codebase and config files
for easy reproduction of the reported results in this work. we also provide documents
and tutorials for easy modification. Our codebase is extensible and open for continued
development through community effort, where we expect new algorithms, models, config
files and results are constantly added.

2 Related Work

Deep semi-supervised learning originates from Π model [35], where it solves the task of image
classification by using consistency regularization that forces the model to output similar predictions
when fed two augmented versions of the same unlabeled data. Subsequent methods can be classified
as the variants of Π model, where the difference lies in enforcing the consistency between model
perturbation [36], data perturbation [37, 29], and exploiting unlabeled data [20, 21]. Since the best
results in both CV and NLP are given by such algorithms, we choose them as typical representative
methods in USB. While most SSL methods have seen their use in CV tasks, NLP has witnessed
recent growth in SSL solutions [29, 25]. However, only some of the popular methods [29] in CV have
been used in the NLP literature, probably because other methods give lower results or have not been
investigated. This gives us motivation for evaluation of SSL methods on various domains in USB.

As shown in Table 2, related benchmarks include Realistic SSL evaluation [22] and TorchSSL [21].
Realistic SSL evaluation [22] has 4 SSL algorithms and 3 CV classification tasks and TorchSSL has
9 SSL algorithms and 5 CV classification tasks. Both of them are no longer maintained/updated.
Thus it is of significance to build an SSL community that can continuously update SSL algorithms
and neural models to boost the development of SSL. Besides, previous benchmarks mainly train the
models from scratch, which is computation expensive and time consuming, since SSL algorithms are
known to be difficult to converge [38]. In USB, we consider using pre-trained models to boost the
performance while being more efficient and friendly to researchers.

In the following, we will first introduce the tasks, datasets, algorithms, and benchmark results of USB.
Then, the codebase structure of USB will be presented in Section 6.

3 Tasks and Datasets

USB consists of 15 datasets from CV, NLP, and Audio domains. Every dataset in USB is under a
permissive license that allows usage for research purposes. The datasets are chosen based on the
following considerations: (1) the tasks should be diverse and cover multiple domains; (2) the tasks
should be challenging, leaving room for improvement; (3) the training is reasonably environmentally
friendly and affordable to research labs (in both the industry and academia).

3

Table 3: Details of the datasets in USB. Two #Label per class settings are chosen for each dataset
except Semi-Aves and FSDnoisy18k, which have long-tailed distributed data. Labeled data are
sampled from the training data for each dataset except STL-10, Semi-Aves, and FSDNoisy18k, where
the split of labeled and unlabeled data is pre-defined (e.g. 5,959 labeled images and 26,640 unlabeled
images in Semi-Aves). Following [20, 21], validation data are not provided for CV datasets. The
NLP validation data are sampled from the original training datasets. All test sets are kept unchanged.

Domain Dataset #Label per class #Training data #Validation data #Test data #Class

CV

CIFAR-100 2 / 4 50,000 - 10,000 100
STL-10 4 / 10 5,000 / 100,000 - 8,000 10
EuroSat 2 / 4 16,200 - 5,400 10

TissueMNIST 10 / 50 165,466 - 47,280 8
Semi-Aves 15-53 5,959 / 26,640 - 4,000 200

NLP

IMDB 10 / 50 23,000 2,000 25,000 2
Amazon Review 50 / 200 250,000 25,000 65,000 5

Yelp Review 50 / 200 250,000 25,000 50,000 5
AG News 10 / 50 100,000 10,000 7,600 4

Yahoo! Answer 50 / 200 500,000 50,000 60,000 10

Audio

Keyword Spotting 5 / 20 18,538 2,577 2,567 10
ESC-50 5 / 10 1,200 400 400 50

UrbanSound8k 10 / 40 7,079 816 837 10
FSDnoisy18k 52-171 1,772 / 15,813 - 947 20

GTZAN 10 / 40 7,000 1,500 1,500 10

3.1 CV Tasks

The details of the CV datasets are shown in Table 3. We include CIFAR-100 [39] and STL-10 [40]
from TorchSSL since they are still challenging. The TissueMNIST [41, 42], EuroSAT [43, 44], and
Semi-Aves [45] are datasets in the domains of medical images, satellite images, and fine-grained
natural images. CIFAR-10 [39] and SVHN [46] in TorchSSL are not included in USB because the
state-of-the-art SSL algorithms [29, 20, 24] have achieved similar performance on these datasets to
fully-supervised training with abundant fully labeled training data 5. SSL algorithms have a relatively
large room for improvement on all chosen CV datasets in USB. More details of these CV datasets in
USB can be found in Appendix E.1.

3.2 NLP Tasks

The detailed dataset statistics of NLP tasks in USB are described in Table 3. We mostly followed
previous work in the NLP literature, and thus the existing datasets in USB cover most test sets used
in the existing work [25, 48, 29]. We include widely used IMDB [49], AG News [50], and Yahoo!
Answer [51] from the previous protocol [25, 48, 29], which are still challenging for SSL. Since IMDB
is a binary sentiment classification task, we further add Amazon Review [52] and Yelp Review [53]
to evaluate SSL algorithms on more fine-grained sentiment classification tasks. DBpedia is removed
from the previous protocol [25, 48, 29] because we find that the state-of-the-art SSL algorithms
have achieved similar performance on it when compared with fully-supervised training. For all
tasks in NLP, we obtain the labeled datasets, unlabeled datasets, and validation sets by randomly
sampling from their original training datasets while keeping the original test datasets unchanged,
mainly following previous work [25, 48]. More details are in Appendix E.2.

3.3 Audio Tasks

USB includes five audio classification datasets as shown in Table 3. We choose the tasks to cover
different domains such as urban sound (UrbanSound8k [54], ESC-50 [55], and FSDNoisy18k [56]),
human sound (Keyword Spotting [57]), and music (GTZAN) [58]. All chosen datasets are challenging
even for state-of-the-art SSL algorithms. For example, FSDNoisy18k is a realistic dataset containing
a small labeled set and a large unlabeled set. To the best of our knowledge, we are the first to
systematically evaluate SSL algorithms on Audio tasks. Although there is a concurrent work [27],
our study includes more algorithms and more datasets than [27]. More details are in Appendix E.3.

5We highly recommend reporting ImageNet [8] results since it is a reasonable dataset for hill-climbing [20,
47, 21]. We also report and discuss ImageNet results in Appendix C.

4

Table 4: Essential components used in 14 SSL algorithms supported in USB. PL, CR, Dist. Align.,
and W-S Aug., MSE, CE are the abbreviations for Pseudo Labeling, Consistency Regularization,
Distribution Alignment, Weak-Strong Augmentation, Mean Squared Error, and Cross-Entropy,
respectively. PL denotes hard ‘one-hot’ labels adopted in CR Loss.

Algorithm PL CR Loss Thresholding Dist. Align. Self-supervised Mixup W-S Aug.

Π-Model MSE
Pseudo Labeling ✓ CE

Mean Teacher MSE
VAT CE

MixMatch MSE ✓
ReMixMatch CE ✓ Rotation ✓ ✓

UDA CE ✓ ✓
FixMatch ✓ CE ✓ ✓

Dash ✓ CE ✓ ✓
CoMatch ✓ CE ✓ ✓ Contrastive ✓
CRMatch ✓ CE ✓ Rotation ✓
FlexMatch ✓ CE ✓ ✓
AdaMatch ✓ CE ✓ ✓ ✓
SimMatch ✓ CE ✓ ✓ Contrastive ✓

4 SSL Algorithms

We implement 14 SSL algorithms in the codebase for USB, including Π model [35], Pseudo Label-
ing [59], Mean Teacher [36], VAT [37], MixMatch [28], ReMixMatch [23], UDA [29], FixMatch [20],
Dash [24], CoMatch [60], CRMatch [61], FlexMatch [21], AdaMatch [62], and SimMatch [47],
all of which exploit unlabeled data by encouraging invariant predictions to input perturbations
[13, 14, 63, 64, 65, 66, 67]. Such consistency regularization methods give the strongest performance
in SSL since the model is robust to different perturbed versions of unlabeled data, satisfying the
smoothness and low-density assumptions in SSL [68].

The above SSL algorithms use Cross-Entropy (CE) loss on labeled data but differ in the way on
unlabeled data. As shown in Table 4, Pseudo Labeling [59] turns the predictions of the unlabeled
data into hard ‘one-hot’ labels and treats the ‘one-hot’ pseudo-labels as the supervision signals.
Thresholding reduces the noisy pseudo labels by masking out the unlabeled samples whose maximum
probabilities are smaller than the pre-defined threshold. Distribution Alignment aims to correct the
output distribution to make it more in line with the target distribution (e.g., uniform distribution).
Self-supervised learning, Mixup, and Stronger augmentations techniques also can help learn better
representation. More details of these algorithms can be found in Appendix F. We summarize the key
components exploited in the implemented consistency regularization based algorithms in Table 4.

5 Benchmark Results

6 For CV tasks, we follow [21] to report the best number of all checkpoints to avoid unfair comparisons
caused by different convergence speeds. For NLP and Audio tasks, we choose the best model using
the validation datasets and then evaluate it on the test datasets. In addition to mean error rate over the
tasks, we use Friedman rank [69, 70] to fairly compare the performance of different algorithms in
various settings:

rankF =
1

m

m∑
i=1

ranki,

where m is the number of evaluation settings (i.e., how many experimental settings we use, e.g.,
m = 9 in Table 5), and ranki is the rank of an SSL algorithm in the i-th setting. We re-rank all
algorithms to give final ranks based on their Friedman rankings. Note that all ranks are in ascending
order because the lower error rate corresponds to a better performance. The experimental setup is
detailed in Appendix G. Note that ‘supervised’ denotes training with the partially chosen labeled data
while ‘fully-supervised’ refers to training using all data with full annotations in our reported results.

6Note that all experimental results and training logs will be continuously updated in https://github.
com/microsoft/Semi-supervised-learning. Please refer to the latest results for comparison.

5

https://github.com/microsoft/Semi-supervised-learning
https://github.com/microsoft/Semi-supervised-learning

Table 5: Error rate (%) and Rank with CV tasks in USB. For Semi-Aves and STL10, as they have
unlabeled sets, we do not report the fully-supervised results. We follow [20, 21, 29] to show error
rates as default.

Dataset CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves Friedman Final Mean

Label 200 400 20 40 20 40 80 400 5,959 rank rank error rate

Fully-Supervised 8.44±0.07 8.44±0.07 - - 0.94±0.07 0.89±0.05 29.15±0.13 29.10±0.02 - - - -
Supervised 35.63±0.36 26.08±0.50 47.02±1.48 26.02±0.72 27.12±1.26 16.90±1.48 59.91±2.93 54.10±1.52 41.55±0.29 - - -

Π-model 36.24±0.27 26.49±0.64 44.38±1.59 25.76±2.37 24.51±1.02 11.58±1.32 56.79±5.91 47.50±1.71 39.23±0.36 10.11 11 34.72
Pseudo-Labeling 33.16±1.20 25.29±0.67 45.13±4.08 26.20±1.53 23.64±0.90 15.61±2.51 56.22±4.01 50.36±1.62 40.13±0.09 9.89 10 35.08
Mean Teacher 35.61±0.38 25.97±0.37 39.94±1.99 20.16±1.25 26.51±1.15 17.05±2.07 61.40±2.48 55.22±2.06 38.52±0.27 10.89 14 35.60
VAT 31.61±1.37 21.29±0.32 52.03±0.48 23.10±0.72 24.77±1.94 9.30±1.23 58.50±6.41 51.31±1.66 39.00±0.30 10.11 12 34.55
MixMatch 37.43±0.58 26.17±0.24 48.98±1.41 25.56±3.00 29.86±2.89 16.39±3.17 55.73±2.29 49.08±1.06 37.22±0.15 10.11 12 36.27
ReMixMatch 20.85±1.42 16.80±0.59 30.61±3.47 18.33±1.98 4.53±1.60 4.10±0.37 59.29±5.16 52.92±3.93 30.40±0.33 4.00 1 26.43
UDA 30.75±1.03 19.94±0.32 39.22±2.87 23.59±2.97 11.15±1.20 5.99±0.75 55.88±3.26 51.42±2.05 32.55±0.26 6.89 7 30.05
FixMatch 30.45±0.65 19.48±0.93 42.06±3.94 24.05±1.79 12.48±2.57 6.41±1.64 55.95±4.06 50.93±1.23 31.74±0.33 6.56 6 30.39
Dash 30.19±1.34 18.90±0.42 43.34±1.46 25.90±0.35 9.44±0.75 7.00±1.39 57.00±2.81 50.93±1.54 32.56±0.39 7.44 9 30.58
CoMatch 35.68±0.54 26.10±0.09 29.70±1.17 21.46±1.34 5.25±0.49 4.89±0.86 57.15±3.46 51.83±0.71 41.39±0.16 7.22 8 30.38
CRMatch 29.43±1.11 18.50±0.26 30.55±2.01 17.43±1.96 14.52±1.34 7.00±0.69 54.84±3.05 51.10±1.59 31.97±0.10 4.67 2 28.37
FlexMatch 27.08±0.90 17.67±0.66 37.58±2.97 23.40±1.50 7.07±2.32 5.58±0.57 57.23±2.50 52.06±1.78 33.09±0.16 6.44 5 28.97
AdaMatch 21.27±1.04 17.01±0.55 36.25±1.89 23.30±0.73 5.70±0.37 4.92±0.87 57.87±4.47 52.28±0.79 31.54±0.10 5.22 3 27.79
SimMatch 23.26±1.25 16.82±0.40 34.12±1.63 22.97±2.04 6.88±1.77 5.86±1.07 57.91±4.60 51.14±1.83 34.14±0.30 5.44 4 28.12

Table 6: Error rate (%) and Rank with NLP tasks in USB.
Dataset IMDB AG News Amazon Review Yahoo! Answer Yelp Review Friedman Final Mean

Label 20 100 40 200 250 1000 500 2000 250 1000 rank rank error rate

Fully-Supervised 5.87±0.01 5.84±0.12 5.74±0.30 5.64±0.05 36.81±0.05 36.88±0.19 26.25±1.07 25.55±0.43 31.74±0.23 32.70±0.58 - - -
Supervised 20.63±3.13 13.47±0.55 15.01±1.21 13.00±1.00 51.74±0.63 47.34±0.66 37.10±1.22 33.56±0.08 50.27±0.51 46.96±0.42 - - -

Π-Model 49.02±1.37 27.57±15.85 46.84±6.20 13.44±0.76 73.53±6.92 48.27±0.48 41.37±2.15 32.96±0.16 73.35±2.31 52.02±1.48 11.80 12 45.84
Pseudo-Labeling 26.38±4.04 21.38±1.34 23.86±7.63 12.29±0.40 53.00±1.48 46.49±0.45 38.60±1.09 33.44±0.24 55.70±0.95 47.72±0.37 10.60 11 35.89
Mean Teacher 21.27±3.72 14.11±1.77 14.98±1.10 13.23±1.12 51.67±0.45 47.51±0.24 36.97±1.02 33.43±0.22 51.07±1.44 46.61±0.34 9.30 10 33.09
VAT 32.59±4.69 14.42±2.53 15.00±1.12 11.59±0.94 50.38±0.83 46.04±0.28 35.16±0.74 31.53±0.41 52.76±0.87 45.53±0.13 8.40 8 33.50
UDA 9.36±1.26 8.33±0.61 18.73±2.68 12.34±1.90 52.48±1.20 45.51±0.61 35.31±0.43 32.01±0.68 58.22±0.40 42.18±0.68 8.70 9 31.45
FixMatch 8.20±0.29 7.36±0.07 22.80±5.18 11.43±0.65 47.85±1.22 43.73±0.45 34.15±0.94 30.76±0.53 50.34±0.40 41.99±0.58 5.60 7 29.86
Dash 8.93±1.27 7.97±0.53 19.30±6.73 11.20±1.12 47.79±1.03 43.52±0.07 35.10±1.36 30.51±0.47 47.99±1.05 41.59±0.61 5.10 6 29.39
CoMatch 7.36±0.26 7.41±0.20 13.25±1.31 11.61±0.42 48.98±1.20 44.37±0.25 33.48±0.67 30.19±0.22 46.49±1.42 41.11±0.53 3.80 3 28.43
CRMatch 7.88±0.24 7.68±0.35 13.35±1.06 11.36±1.04 46.23±0.85 43.69±0.48 33.07±0.68 30.62±0.47 46.61±1.02 41.80±0.77 3.70 2 28.23
FlexMatch 7.35±0.10 7.80±0.24 16.90±6.76 11.43±0.91 45.75±1.21 43.14±0.82 35.81±1.09 31.42±0.41 46.37±0.74 40.86±0.74 4.10 5 28.68
AdaMatch 9.62±1.26 7.81±0.46 12.92±1.53 11.03±0.62 46.75±1.23 43.50±0.67 32.97±0.43 30.82±0.29 48.16±0.80 41.71±1.08 4.00 4 28.53
SimMatch 7.24±0.02 7.44±0.20 14.80±0.57 11.12±0.15 47.27±1.73 43.09±0.50 34.15±0.91 30.64±0.42 46.40±1.71 41.24±0.17 2.90 1 28.34

The results for the 14 SSL algorithms on the datasets from CV, NLP, and Audio are shown in Table 5,
Table 6, and Table 7, respectively. We adopt the pre-trained Vision Transformers (ViT) [4, 34, 30, 71]
instead of training ResNets [1] from scratch for CV tasks. For NLP, we adopt Bert [30]. Wav2Vec
2.0 [71] and HuBert [32] are used for Audio.

5.1 CV Results

The results are illustrated in Table 5. Thanks to the good initialization of representation on unlabeled
data given by the pre-trained ViT, SSL algorithms, even without using thresholding techniques, often
achieve much better performance than the previous performance shown in TorchSSL [21]. Among
all the SSL algorithms, ReMixMatch [23] ranks at the first and outperforms other SSL algorithms,
due to the usage of Mixup, Distribution Alignment, and rotation self-supervised loss. Its superiority
is especially demonstrated in the evaluation of Semi-Aves, a long-tailed and fine-grained CV dataset
that is more realistic. Notice that SSL algorithms with self-supervised feature loss generally perform
well than other SSL algorithms, e.g., CRMatch [61] and SimMatch [47] rank second and fourth
respectively. Adaptive thresholding algorithms also demonstrate their effectiveness, e.g., AdaMatch
[62] and FlexMatch [21] rank at third and fifth respectively. While better results of the evaluated
SSL algorithms are obtained on CIFAR-100, Euro-SAT, and Semi-Aves, we also observe that the
performance is relatively lower on STL-10 and TissueMNIST. The reason for lower performance
on STL-10 might result from the usage of the self-supervised pre-trained model [33], rather than
the supervised pre-trained model is used in other settings. Since TissueMNIST is a medial-related
dataset, the biased pseudo-labels might produce a destructive effect that impedes training and leads
to bad performance. The de-biasing of pseudo-labels and safe semi-supervised learning would be
interesting topics in future work, especially for medical applications of SSL algorithms.

5.2 NLP Results

The results of NLP tasks are demonstrated in Table 6. The overall ranking of SSL algorithms in
NLP is similar to that in CV. However, the SSL algorithm that works well in NLP does not always

6

Table 7: Error rate (%) and Rank with Audio tasks in USB. Fully-supervised result is not reported for
FSDNoisy18k due to the unknown labels of its unlabeled set.

Dataset GTZAN UrbanSound8k Keyword Spotting ESC-50 FSDnoisy Friedman Final Mean

Label 100 400 100 400 50 100 250 500 1,772 rank rank error rate

Fully-Supervised 5.98±0.32 5.98±0.32 16.65±1.71 16.61±1.71 2.12±0.11 2.25±0.02 26.00±2.13 26.00±2.13 - - - -
Supervised 52.16±1.83 31.53±0.52 40.42±1.00 28.55±1.90 6.80±1.16 5.25±0.56 51.58±1.12 35.67±0.42 35.20±1.50 - - -

Π-Model 74.07±0.62 33.18±3.64 54.24±6.01 25.89±1.51 64.39±4.10 25.48±4.94 47.25±1.14 36.00±1.62 35.73±0.87 10.67 12 44.03
Pseudo-Labeling 57.29±2.80 33.93±0.69 42.09±2.41 27.00±1.34 7.82±1.64 5.16±0.14 49.33±2.52 35.58±1.05 35.34±1.60 10.00 10 32.62
Mean Teacher 51.40±3.48 31.60±1.46 41.70±3.39 28.91±0.93 5.95±0.44 5.39±0.42 50.25±1.95 37.33±1.20 35.83±1.22 10.33 11 32.04
VAT 79.51±1.99 35.38±7.80 49.62±2.42 27.68±1.39 2.18±0.08 2.23±0.08 46.42±1.90 36.92±2.25 32.07±1.05 8.33 9 34.67
UDA 46.56±8.69 23.62±0.63 37.28±3.17 20.27±1.58 2.52±0.15 2.62±0.10 42.75±0.89 33.50±1.95 30.80±0.47 6.33 7 26.66
FixMatch 36.04±4.57 22.09±0.65 36.12±4.26 21.43±2.88 4.84±3.57 2.38±0.03 37.75±3.19 30.67±1.05 30.31±1.08 4.00 3 24.63
Dash 47.00±3.65 23.42±0.83 42.02±5.02 22.26±0.89 5.70±4.40 2.52±0.16 48.17±1.16 32.75±2.27 33.19±0.95 7.56 8 28.56
CoMatch 36.93±1.23 22.20±1.39 30.59±2.45 21.35±1.49 11.39±0.85 9.44±1.52 40.17±2.08 29.83±1.31 27.63±1.35 5.11 6 25.50
CRMatch 40.58±3.97 22.64±1.22 39.47±4.66 20.11±2.63 2.40±0.13 2.49±0.08 42.67±0.51 33.58±1.93 30.45±1.52 5.00 5 26.04
FlexMatch 34.60±4.07 21.82±1.17 40.18±2.73 22.82±3.10 2.42±0.08 2.57±0.25 39.58±0.59 29.92±1.85 26.36±0.55 4.11 4 24.47
AdaMatch 31.38±0.41 20.73±0.67 35.76±6.39 21.15±1.22 2.49±0.08 2.49±0.10 39.17±1.74 31.33±1.23 27.95±0.74 2.89 1 23.61
SimMatch 32.42±2.18 20.80±0.77 31.70±6.05 19.55±1.89 2.57±0.08 2.53±0.22 39.92±2.35 32.83±1.43 28.16±0.87 3.67 2 23.39

guarantee good performance in CV, which shows that the performance of SSL algorithms will be
affected largely by data domains. For example, SimMatch which ranks first in NLP does not have
the best performance in CV tasks (ranks fourth). The ranking of CoMatch is also increased in NLP,
compared to that in CV. A possible reason is the different pre-training in backbones. For BERT, a
masked language modeling objective is used during pre-training [30], thus the self-supervised feature
loss might further improve the representation during fine-tuning with SSL algorithms. We observe
that adaptive thresholding methods, such as FlexMatch and AdaMatch, consistently achieve good
performance on both CV and NLP, even without self-supervised loss. Note that we do not evaluate
MixMatch and ReMixMatch on NLP and Audio tasks because we find that mixing sentences with
different lengths harms the model’s performance.

5.3 Audio Results

The results of Audio tasks are shown in Table 7. AdaMatch outperforms other algorithms in Audio
tasks, while SimMatch demonstrates a similar performance to AdaMatch. An interesting finding is
that CRMatch performs well on CV and NLP tasks, but badly in Audio tasks. We hypothesize that
this is partially due to the noisy nature of the raw data in audio tasks. Except for Keyword Spotting,
the gap between the performance of fully-supervised learning and that of SSL algorithms in Audio
tasks is larger than in CV and NLP tasks. The reason behind this is probably that we exploit models
that take waveform as input, rather than Mel spectrogram. Raw waveform might contain more noisy
information that would be harmful to semi-supervised training. We identify exploring audio models
based on Mel spectrogram as one of the future directions of USB.

5.4 Discussion

The evaluation results of SSL algorithms using USB are generally consistent with the results reported
by previous work [22, 28, 23, 29, 20, 21]. However, using USB, we still provide some distinct
quantitative and qualitative analysis to inspire the community. This section aims to answer the
following questions: (1) Why should we evaluate an SSL algorithm on diverse tasks across domains?
(2) Which option is better in the SSL scenario, training from scratch or using pre-training? (3) Does
SSL consistently guarantee the performance improvement when using the state-of-the-art neural
models as the backbones?

Performance Comparisons Table 8 shows the performance comparison of SSL algorithms in
CV, NLP and Audio tasks. Although the ranking of each SSL algorithm in each domain is roughly
close, the differences between ranks of SSL algorithms in different domains cannot be ignored. For
example, FixMatch, CoMatch and CrMatch show large difference (Rankmax −Rankmin ≥ 4) on
the ranks across domains, which indicates that NLP and Audio tasks may have different characteristics
compared with CV tasks that are more amenable to certain types of SSL algorithms compared with
others. From the task perspective, it is important to consider such characteristics for guiding the
choice of SSL methods. From the benchmarking perspective, it is useful to introduce diverse tasks
from multiple domains when evaluating an SSL algorithm.

7

25k 50k 75k 100k
Iter.

0.0

0.2

0.4

0.6

0.8

Ac
c.

Pseudo Labeling
Mean Teacher
Pi Model
VAT
MixMatch
ReMixMatch
UDA
FixMatch
Dash
CoMatch
CRMatch
FlexMatch
SimMatch

(a) WRN-28-8 from scratch.

25k 50k 75k 100k
Iter.

0.0

0.2

0.4

0.6

0.8

Ac
c.

Pseudo Labeling
Mean Teacher
Pi Model
VAT
MixMatch
ReMixMatch
UDA
FixMatch
Dash
CoMatch
CRMatch
FlexMatch
SimMatch

(b) Pre-trained ViT-S-P2-32.

Figure 1: Comparison of test accuracy of SSL algorithms on CIFAR-100 with 400 labels. (a) Existing
protocol which trains WRN-28-8 from scratch; (b) USB CV protocol which trains ImageNet-1K
pre-trained ViT-S-P2-32, where S denotes small, P denotes patch size, and 32 is input image size.

0k 25k 50k 75k 100k
Iter.

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

WRN-28-8
w/o Pretrain
WRN-28-8
ViT-S-P16-224
ViT-S-P2-32
w/o Pretrain
ViT-S-P2-32

(a) Test accuracy.

0k 25k 50k 75k 100k
Iter.

0.0

0.2

0.4

0.6

0.8

Ps
eu

do
 L

ab
el

 A
cc

.

WRN-28-8
w/o Pretrain
WRN-28-8
ViT-S-P16-224
ViT-S-P2-32
w/o Pretrain
ViT-S-P2-32

(b) Pseudo-label accuracy.

Figure 2: Pre-training ablation on CIFAR-400 with 400 labels. Test and pseudo-label accuracy are
compared with WRN-28-8 without pre-training, pre-trained WRN-28-8, pre-trained ViT-S-P16-224,
ViT-S-P2-32 without pre-training, and pre-trained ViT-S-P2-32.

Table 8: Final ranks of SSL algorithms. Note that the rank for CV tasks here is different from the
ones in Table 5 because we ignore MixMatch and ReMixMatch here to remove the effects of their
missing ranks in NLP and Audio.

Π-Model Pseudo-Labeling Mean Teacher VAT UDA FixMatch Dash CoMatch CRMatch FlexMatch AdaMatch SimMatch

CV 10 9 12 11 6 5 8 7 1 4 2 3
NLP 12 11 10 8 9 7 6 3 2 5 4 1
Audio 12 10 11 9 7 3 8 6 5 4 1 2
Rankmax −Rankmin 2 2 2 3 3 4 2 4 4 1 3 2

Table 9: This table shows how many times an SSL algorithm is worse than supervised training, where
the numbers of total settings are 9, 10, and 9 for CV, NLP, and Audio respectively.

Π-Model Pseudo-Labeling Mean Teacher VAT MixMatch ReMixMatch UDA FixMatch Dash CoMatch CRMatch FlexMatch AdaMatch SimMatch

CV 2 1 3 1 4 0 0 0 0 2 0 0 0 0
NLP 9 7 5 3 - - 2 1 1 0 0 1 0 0
Audio 7 5 6 4 - - 0 0 1 2 0 0 0 0

Effectiveness of Pre-training As shown in Figure 1a and Figure 1b, benefiting from the pre-
trained ViT, the training becomes more efficient, and most SSL algorithms achieve higher optimal
performance. Note that Pseudo Labeling, Mean Teacher, Π model, VAT, and MixMatch barely
converge if training WRN-28-8 from scratch. A possible reason is that the scarce labeled data cannot
provide enough supervision for unlabeled data to form correct clusters. However, these methods
can achieve sufficiently reasonable results when using pre-trained ViT. As illustrated in Figure 2,
using ViT without pre-training performs the worst among different backbones. The reason can be
that ViT is data hungry if trained from scratch [34, 72, 73]. However, after appropriate pre-training,
ViT performs the best among all the backbones. In addition, we provide the T-SNE visualization of
the features in Figure 3, where the pretrained ViT model demonstrates the most separable feature
space after training. In a word, pre-trained ViT makes the training more efficient and improves the
generalization performance of SSL algorithms. For NLP tasks, we observe similar results, yet the
improvement can be relatively less significant since pre-training is the de-facto fashion in the field.

8

(a) WRN-28-8 from scratch. (b) Pre-trained WRN-28-8. (c) Pre-trained ViT-S-P2-32.

(d) WRN-28-8 from scratch. (e) Pre-trained WRN-28-8. (f) Pre-trained ViT-S-P2-32.

Figure 3: T-SNE visualization of FixMatch features on training data (first row) and testing data
(second row) of CIFAR-100 (400 labels). Different colors refer to labeled data with different classes
while unlabeled data is indicated by gray color.

Robustness SSL sometimes hurts the generalization performance due to the large differences
between the number of labeled data and the number of unlabeled data as shown in Table 9. We refer
to an SSL algorithm as a robust SSL algorithm if it is consistently better than the supervised training
setting. SSL algorithms cannot always outperform supervised training especially when labeled data
is scarce. We find that CRMatch, AdaMatch and SimMatch are relatively robust SSL algorithms in
USB. Although previous work has done some research towards robust SSL when using support vector
machine [74, 75], we hope that our finding can serve as the motivation to delve into deep learning
based robust SSL methods.

6 Codebase Structure of USB

In this section, we provide an overview of the codebase structure of USB, where four abstract layers
are adopted. The layers include the core layer, algorithm layer, extension layer, and API layer in the
bottom up direction as shown in Fig. 4.

Core Layer. In the core layer, we implement the commonly used core functions for training SSL
algorithms. Besides, the code regarding datasets, data loaders, and models used in USB is also
provided in the core layer. For flexible training, we implement common training hooks similar to
MMCV [76], which can be modified and extended in the upper layers.

Algorithm Layer. In the algorithm layer, we first implement the base class for SSL algorithms, where
we initialize the datasets, data loaders, and models from the core layer. Instead of implementing
SSL algorithms independently as in TorchSSL [21], we further abstract the SSL algorithms, enabling
better code reuse and making it easier to implement new algorithms. Except for the standalone
implementation of loss functions used in SSL algorithms and algorithm-specific configurations, we
further provide algorithm hooks according to the algorithm components summarized in Table 4. The
algorithm hooks not only highlight the common part of different algorithms but also allows for a very
easy and flexible combination of different components to resemble a new algorithm or conduct an
ablation study. Based on this, we support 14 core SSL algorithms in USB, with two extra supervised
learning variants. More algorithms are expected to be added through continued extension of USB.

Extension Layer. The extension layer is where we further extend the core SSL algorithms to different
applications. Continuted effort are made on the extension of core SSL algorithms to imbalanced
SSL algorithms [77, 78, 79, 80, 81, 82, 83, 84] and open-set SSL algorithms [85, 86, 87, 88, 89].

9

Core Dataset Data Loader
• 15 datasets

• Label Split

• Imb. Ratio

• Custom Sampler

• NLP/Audio Collator

Model
• WRN, WRN-VAR
• ResNet
• ViT
• BERT
• Wave2vec-v2

Training Util. Training Hook
• EMA Module
• TensorBoard
• BN Controller
• Distributed Setup
• LR Layer Decay

• EMA Update
• Param. Update
• Checkpoint
• Evaluation

• Timer
• Logging

Algorithm
Alg. Base Utility Alg. Hook SSL Algorithms

Extension

API

• Pi-Model
• Mean-Teacher
• Pseudo-Label
• VAT
• MixMatch
• ReMixMatch

• UDA
• FixMatch
• FlexMatch
• Dash
• AdaMatch
• CRMatch

• CoMatch
• SimMatch
• Supervised
• Fully-Supervised

• Config
• Dataset
• Data Loader
• Model
• Optimizer

• CE Loss
• SSL Loss
• Mixup
• Distributed Utils
• SSL Configs

• Distribution Align.

• Pseudo Labeling

• Thresholding

Imbalance Algorithms Open-set Algorithms Ablation Experiments
and more…

Train Evaluation ScriptsConfigsSemilearn

USB: Unified SSL Benchmark

Figure 4: Structure of USB Codebase, consisting of 4 layers. The core layer provides the common
functions, datasets, and models for SSL algorithms. The algorithm layer mainly implements the
related SSL algorithms, with a high abstract level of algorithm components. Upon the algorithm
layer, we use an extension layer for easy and flexible extension of core SSL algorithms. The top API
layer supports a public python package SEMILEARN: pip install semilearn.

Systematic ablation study can also be conducted in the extension layer by inheriting either the core
components and algorithms from the core layer or the algorithm layer.

API Layer. We wrap the core functions and algorithms in USB in the API layer as a public python
package SEMILEARN. SEMILEARN is friendly for users from different backgrounds who want to
employ SSL algorithms in new applications. Training and inference can be done in only a few lines
of code with SEMILEARN. In addition, we provide the configuration files of all algorithms supported
in USB with detailed parameter settings, which allows for reproduction of the results present in USB.

7 Limitation

Our primary focus is on semi-supervised classification in this paper. However, there are other SSL
tasks that the SSL community should not ignore. USB currently does not include SSL tasks such as
imbalanced semi-supervised learning [77, 79, 80, 81, 82, 83, 84], open-set semi-supervised learn-
ing [85, 86, 87, 88, 89], semi-supervised sequence modeling [90, 91, 92, 93, 26, 94], semi-supervised
text generation [95, 96, 97], semi-supervised regression [98, 99, 100, 101, 102], semi-supervised
object detection [103, 104, 105, 106, 107, 108], semi-supervised clustering [109, 110, 111, 112],
etc. In addition, we do not implement generative adversarial networks based SSL algo-
rithms [113, 64, 114, 65] and graph neural network based SSL algorithms [7, 115, 116, 117, 118]
in USB, which are also important to the SSL community. Moreover, it is of great importance to
extend current SSL to distributional shift settings, such as domain adaptation [119, 120] and out-
of-distribution generalization [121], as well as time series anaysis [122]. We plan to evolve the
benchmark in the future iterations over time by extending with more tasks.

8 Conclusion

We constructed USB, a unified SSL benchmark for classification that aims to enable consistent
evaluation over multiple datasets from multiple domains and reduce the training cost to make the
evaluation of SSL more affordable. With USB, we evaluate 14 SSL algorithms on 15 tasks across
domains. We find that (1) although the performance of SSL algorithms is roughly close across
domains, introducing diverse tasks from multiple domains is still necessary in the SSL scenario
because the performance of SSL algorithms are not exactly steady across domains; (2) pre-training
techniques can be helpful in the SSL scenario because it can not only accelerate the training but
also improve the generalization performance; (3) unlabeled data sometimes hurts the performance
especially when labeled data is extremely scarce. USB is a project for open extension and we plan to
extend USB with more challenging tasks other than classification and introduce new algorithms.

10

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments and suggestions to
help improve the paper. The computing resources of this study were mainly supported by Microsoft
Asia and partially supported by High-Flyer AI.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[5] Dong Yu and Li Deng. Automatic speech recognition, volume 1. Springer, 2016.
[6] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,

Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented
transformer for speech recognition. InterSpeech, 2020.

[7] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and
Jian Tang. Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 10024–10032, 2021.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[9] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, 2019.

[10] YCAP Reddy, P Viswanath, and B Eswara Reddy. Semi-supervised learning: A brief review.
Int. J. Eng. Technol, 7(1.8):81, 2018.

[11] Xiaojin Zhu. Semi-supervised learning literature survey. world, 10:10, 2005.
[12] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis

lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.
[13] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine

Learning, 109(2):373–440, 2020.
[14] Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised

learning. arXiv preprint arXiv:2006.05278, 2020.
[15] Guo-Jun Qi and Jiebo Luo. Small data challenges in big data era: A survey of recent progress

on unsupervised and semi-supervised methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

[16] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised
semi-supervised learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1476–1485, 2019.

[17] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as
semi-supervised learning. arXiv preprint arXiv:2002.07394, 2020.

[18] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

11

[19] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11557–11568,
2021.

[20] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. Advances in Neural Information Pro-
cessing Systems, 33:596–608, 2020.

[21] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo
labeling. Advances in Neural Information Processing Systems, 34, 2021.

[22] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Real-
istic evaluation of deep semi-supervised learning algorithms. Advances in neural information
processing systems, 31, 2018.

[23] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,
and Colin Raffel. Remixmatch: Semi-supervised learning with distribution alignment and
augmentation anchoring. arXiv preprint arXiv:1911.09785, 2019.

[24] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash:
Semi-supervised learning with dynamic thresholding. In International Conference on Machine
Learning, pages 11525–11536. PMLR, 2021.

[25] Jiaao Chen, Zichao Yang, and Diyi Yang. Mixtext: Linguistically-informed interpolation of
hidden space for semi-supervised text classification. In ACL, 2020.

[26] Murali Karthick Baskar, Shinji Watanabe, Ramon Astudillo, Takaaki Hori, Lukáš Burget, and
Jan Černockỳ. Semi-supervised sequence-to-sequence asr using unpaired speech and text.
arXiv preprint arXiv:1905.01152, 2019.

[27] Léo Cances, Etienne Labbé, and Thomas Pellegrini. Comparison of semi-supervised deep
learning algorithms for audio classification. EURASIP Journal on Audio, Speech, and Music
Processing, 2022(1):1–16, 2022.

[28] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and
Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019.

[29] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data
augmentation for consistency training. Advances in Neural Information Processing Systems,
33:6256–6268, 2020.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. 2018.

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[32] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdi-
nov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by
masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29:3451–3460, 2021.

[33] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[34] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2020.

[35] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. Advances in Neural Information Processing Systems,
28:3546–3554, 2015.

[36] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

12

[37] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 41(8):1979–1993, 2018.

[38] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. There are
many consistent explanations of unlabeled data: Why you should average. In International
Conference on Learning Representations, 2019.

[39] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[40] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 215–223. JMLR Workshop and Conference
Proceedings, 2011.

[41] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis. In IEEE 18th International Symposium on
Biomedical Imaging (ISBI), pages 191–195, 2021.

[42] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical
image classification. arXiv preprint arXiv:2110.14795, 2021.

[43] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2019.

[44] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing eurosat:
A novel dataset and deep learning benchmark for land use and land cover classification. In
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pages
204–207. IEEE, 2018.

[45] Jong-Chyi Su and Subhransu Maji. The semi-supervised inaturalist-aves challenge at fgvc7
workshop. arXiv preprint arXiv:2103.06937, 2021.

[46] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[47] Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu. Simmatch:
Semi-supervised learning with similarity matching. arXiv preprint arXiv:2203.06915, 2022.

[48] Changchun Li, Ximing Li, and Jihong Ouyang. Semi-supervised text classification with
balanced deep representation distributions. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 5044–5053, 2021.

[49] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual
meeting of the association for computational linguistics: Human language technologies, pages
142–150, 2011.

[50] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

[51] Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and Vivek Srikumar. Importance of semantic
representation: Dataless classification. In Aaai, volume 2, pages 830–835, 2008.

[52] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. In Proceedings of the 7th ACM conference on Recommender
systems, pages 165–172, 2013.

[53] Yelp dataset: http://www.yelp.com/dataset_challenge.

[54] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for urban
sound research. In Proceedings of the 22nd ACM international conference on Multimedia,
pages 1041–1044, 2014.

[55] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of the
23rd Annual ACM Conference on Multimedia, pages 1015–1018. ACM Press.

13

[56] Eduardo Fonseca, Manoj Plakal, Daniel PW Ellis, Frederic Font, Xavier Favory, and Xavier
Serra. Learning sound event classifiers from web audio with noisy labels. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 21–25. IEEE, 2019.

[57] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y
Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb: Speech processing
universal performance benchmark. arXiv preprint arXiv:2105.01051, 2021.

[58] Gtzan dataset - music genre classification.

[59] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, page 896, 2013.

[60] Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised learning with
contrastive graph regularization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9475–9484, 2021.

[61] Yue Fan, Anna Kukleva, and Bernt Schiele. Revisiting consistency regularization for semi-
supervised learning. In DAGM German Conference on Pattern Recognition, pages 63–78.
Springer, 2021.

[62] David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas Carlini, and Alex Kurakin.
Adamatch: A unified approach to semi-supervised learning and domain adaptation. arXiv
preprint arXiv:2106.04732, 2021.

[63] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised
learning. arXiv preprint arXiv:2103.00550, 2021.

[64] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical genera-
tive adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[65] Emily Denton, Sam Gross, and Rob Fergus. Semi-supervised learning with context-conditional
generative adversarial networks. arXiv preprint arXiv:1611.06430, 2016.

[66] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Russ R Salakhutdinov. Good
semi-supervised learning that requires a bad gan. Advances in neural information processing
systems, 30, 2017.

[67] Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher. Semi-supervised learning with gans:
Manifold invariance with improved inference. Advances in neural information processing
systems, 30, 2017.

[68] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[69] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the american statistical association, 32(200):675–701, 1937.

[70] Milton Friedman. A comparison of alternative tests of significance for the problem of m
rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[71] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in Neural
Information Processing Systems, 33:12449–12460, 2020.

[72] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions
on pattern analysis and machine intelligence, 2022.

[73] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[74] Yu-Feng Li and Zhi-Hua Zhou. Towards making unlabeled data never hurt. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(1):175–188, 2015.

[75] William S Noble. What is a support vector machine? Nature biotechnology, 24(12):1565–1567,
2006.

14

[76] MMCV Contributors. MMCV: OpenMMLab computer vision foundation. https://github.
com/open-mmlab/mmcv, 2018.

[77] Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang, and Jinwoo
Shin. Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning.
Advances in Neural Information Processing Systems, 33:14567–14579, 2020.

[78] Yidong Wang, Bowen Zhang, Wenxin Hou, Zhen Wu, Jindong Wang, and Takahiro Shinozaki.
Margin calibration for long-tailed visual recognition. In The 14th Asian Conference on Machine
Learning.

[79] Shoushan Li, Zhongqing Wang, Guodong Zhou, and Sophia Yat Mei Lee. Semi-supervised
learning for imbalanced sentiment classification. In Twenty-Second International Joint Confer-
ence on Artificial Intelligence, 2011.

[80] Minsung Hyun, Jisoo Jeong, and Nojun Kwak. Class-imbalanced semi-supervised learning.
arXiv preprint arXiv:2002.06815, 2020.

[81] Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. Crest: A class-
rebalancing self-training framework for imbalanced semi-supervised learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10857–
10866, 2021.

[82] Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced
learning. Advances in Neural Information Processing Systems, 33:19290–19301, 2020.

[83] Yue Fan, Dengxin Dai, and Bernt Schiele. Cossl: Co-learning of representation and classifier
for imbalanced semi-supervised learning. arXiv preprint arXiv:2112.04564, 2021.

[84] Youngtaek Oh, Dong-Jin Kim, and In So Kweon. Distribution-aware semantics-oriented
pseudo-label for imbalanced semi-supervised learning. arXiv preprint arXiv:2106.05682,
2021.

[85] Kuniaki Saito, Donghyun Kim, and Kate Saenko. Openmatch: Open-set consistency reg-
ularization for semi-supervised learning with outliers. arXiv preprint arXiv:2105.14148,
2021.

[86] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-
supervised learning for unseen-class unlabeled data. In International Conference on Machine
Learning, pages 3897–3906. PMLR, 2020.

[87] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-task curriculum framework
for open-set semi-supervised learning. In European Conference on Computer Vision, pages
438–454. Springer, 2020.

[88] Huixiang Luo, Hao Cheng, Yuting Gao, Ke Li, Mengdan Zhang, Fanxu Meng, Xiaowei Guo,
Feiyue Huang, and Xing Sun. On the consistency training for open-set semi-supervised
learning. arXiv preprint arXiv:2101.08237, 3(6), 2021.

[89] Zhuo Huang, Chao Xue, Bo Han, Jian Yang, and Chen Gong. Universal semi-supervised
learning. Advances in Neural Information Processing Systems, 34, 2021.

[90] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc Le. Semi-supervised
sequence modeling with cross-view training. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 1914–1925, 2018.

[91] Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua Lu. Seqvat: Virtual adversarial training
for semi-supervised sequence labeling. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8801–8811, 2020.

[92] Wei Li and Andrew McCallum. Semi-supervised sequence modeling with syntactic topic
models. In AAAI, volume 5, pages 813–818, 2005.

[93] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural
information processing systems, 28, 2015.

[94] Yidong Wang, Hao Wu, Ao Liu, Wenxin Hou, Zhen Wu, Jindong Wang, Takahiro Shinozaki,
Manabu Okumura, and Yue Zhang. Exploiting unlabeled data for target-oriented opinion
words extraction. In Proceedings of the 29th International Conference on Computational
Linguistics, 2022.

15

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv

[95] Ao Liu, An Wang, and Naoaki Okazaki. Semi-supervised formality style transfer with
consistency training. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 4689–4701, 2022.

[96] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for
neural sequence generation. In International Conference on Learning Representations, 2019.

[97] Jiaao Chen and Diyi Yang. Simple conversational data augmentation for semi-supervised
abstractive dialogue summarization. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 6605–6616, 2021.

[98] Larry Wasserman and John Lafferty. Statistical analysis of semi-supervised regression. Ad-
vances in Neural Information Processing Systems, 20, 2007.

[99] Neal Jean, Sang Michael Xie, and Stefano Ermon. Semi-supervised deep kernel learning:
Regression with unlabeled data by minimizing predictive variance. Advances in Neural
Information Processing Systems, 31, 2018.

[100] Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, and Omiros Ragos. Semi-
supervised regression: A recent review. Journal of Intelligent & Fuzzy Systems, 35(2):1483–
1500, 2018.

[101] Zhi-Hua Zhou, Ming Li, et al. Semi-supervised regression with co-training. In IJCAI, volume 5,
pages 908–913, 2005.

[102] Yu-Feng Li, Han-Wen Zha, and Zhi-Hua Zhou. Learning safe prediction for semi-supervised
regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[103] Yuxing Tang, Josiah Wang, Boyang Gao, Emmanuel Dellandréa, Robert Gaizauskas, and Lim-
ing Chen. Large scale semi-supervised object detection using visual and semantic knowledge
transfer. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2119–2128, 2016.

[104] Peng Tang, Chetan Ramaiah, Yan Wang, Ran Xu, and Caiming Xiong. Proposal learning for
semi-supervised object detection. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2291–2301, 2021.

[105] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang
Bai, and Zicheng Liu. End-to-end semi-supervised object detection with soft teacher. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3060–3069,
2021.

[106] Yihe Tang, Weifeng Chen, Yijun Luo, and Yuting Zhang. Humble teachers teach better
students for semi-supervised object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3132–3141, 2021.

[107] Jiyang Gao, Jiang Wang, Shengyang Dai, Li-Jia Li, and Ram Nevatia. Note-rcnn: Noise
tolerant ensemble rcnn for semi-supervised object detection. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9508–9517, 2019.

[108] Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen
Wu, Zsolt Kira, and Peter Vajda. Unbiased teacher for semi-supervised object detection. In
International Conference on Learning Representations, 2020.

[109] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering by
seeding. In In Proceedings of 19th International Conference on Machine Learning (ICML-
2002. Citeseer, 2002.

[110] Eric Bair. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 5(5):349–361, 2013.

[111] Nizar Grira, Michel Crucianu, and Nozha Boujemaa. Unsupervised and semi-supervised
clustering: a brief survey. A review of machine learning techniques for processing multimedia
content, 1:9–16, 2004.

[112] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 59–68, 2004.

[113] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. Advances in neural information processing
systems, 27, 2014.

16

[114] Augustus Odena. Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583, 2016.

[115] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. Advances in neural information processing systems, 33:22092–22103, 2020.

[116] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. Meta-gnn: Metagraph neural
network for semi-supervised learning in attributed heterogeneous information networks. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pages 137–144, 2019.

[117] Maoguo Gong, Hui Zhou, AK Qin, Wenfeng Liu, and Zhongying Zhao. Self-paced co-training
of graph neural networks for semi-supervised node classification. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[118] Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. Uncertainty aware semi-supervised
learning on graph data. Advances in Neural Information Processing Systems, 33:12827–12836,
2020.

[119] Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, and Philip S Yu. Visual
domain adaptation with manifold embedded distribution alignment. In Proceedings of the 26th
ACM international conference on Multimedia, pages 402–410, 2018.

[120] Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng, and Zhiqi Shen. Balanced distribution
adaptation for transfer learning. In 2017 IEEE international conference on data mining
(ICDM), pages 1129–1134. IEEE, 2017.

[121] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain general-
ization. IEEE Transactions on Knowledge and Data Engineering, 2022.

[122] Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 402–411, 2021.

[123] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[124] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme,
Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy,
et al. A large-scale study of representation learning with the visual task adaptation benchmark.
arXiv preprint arXiv:1910.04867, 2019.

[125] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

[126] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.

[127] Yizhou Wang, Shixiang Tang, Feng Zhu, Lei Bai, Rui Zhao, Donglian Qi, and Wanli Ouyang.
Revisiting the transferability of supervised pretraining: an mlp perspective. arXiv preprint
arXiv:2112.00496, 2021.

[128] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
2019.

17

A Details of Datasets and in TorchSSL

We provide the details of datasets of TorchSSL in Table 10.

Table 10: Details of CV datasets and #labels used in TorchSSL. #Label per class represents the
number of chosen labeled data per class from the training data. The test data is kept unchanged except
for ImageNet where we use the validation dataset as the test dataset.

Dataset #Label per class #Training data #Test data #Class

CIFAR-10 4 / 25 / 100 50,000 10,000 10
CIFAR-100 4 / 25 / 100 50,000 10,000 100

SVHN 4 / 25 /100 604,388 26,032 10
STL-10 4 / 25 /100 100,000 10,000 10

ImageNet 100 1,281,167 50,000 1,000

B Correlation between TorchSSL and USB

Here we show the correlation between the mean error rates on TorchSSL and USB CV tasks. We
take the 14 algorithms considered in the main paper and show their mean performance on TorchSSL
versus that on USB CV tasks in Figure 5. Despite the fact that the Pearson correlation coefficient is
0.85, the final rank SSL algorithms is not consistent, which shows different adaptability of different
methods when using pre-trained ViTs. For example, ReMixMatch shows the best mean performance
on USB while AdaMatch and SimMatch have the best mean performance on TorchSSL. Please refer
to Table 8 for more detailed rankings on CV, NLP, and Audio.

26 28 30 32 34 36
mean error rates on USB

10

20

30

40

50

m
ea

n
er

ro
r r

at
es

 o
n

To
rc

hS
SL

Pi Pseudo

MT
VAT

Mix

ReMix UDAFixDash
Co

CR FlexAda Sim

Pearson-Correlation between USB and TorchSSL

Figure 5: Correlation between TorchSSL and USB.

C Performance Results on ImageNet

Although we have excluded ImageNet from USB, we provide an evaluation on ImageNet of MAE
pre-trained ViT-B, using UDA [29], FixMatch [20], FlexMatch [21], CoMatch [60], and SimMatch
[47]. We train these algorithms using 10 labels per class and 100 labels per-class, i.e., a total of
10,000 labels and 100,000 labels respectively, corresponding to roughly 1% and 10% of the total
labeled data in ImageNet. For learning rate and weight decay, we follow the fine-tuning protocol in
MAE [33], where we use AdamW with a learning rate of 1e-3 and weight decay of 0.05. We use 16
A100 to train each algorithm and set the batch size to 256 for both labeled and unlabeled data. Other
algorithmic hyper-parameters stay the same as their original implementations.

We present the results on ImageNet in Table 11. UDA and Fixmatch are near the bottom, similar to
USB. SimMatch is still marked as one of the tops. Surprisingly, CoMatch does so well on ImageNet
when it ranked only 9th on the USB benchmark. Also, while FlexMatch is the best on USB, it’s pretty
firmly behind CoMatch and SimMatch on ImageNet.

18

Table 11: ImageNet accuracy results. We use MAE pre-trained ViT-B.
Method 1w Labels 10w Labels Rank

UDA 38.62 62.37 5
FixMatch 37.93 62.88 4
FlexMatch 39.13 63.09 3
CoMatch 44.32 65.80 2
SimMatch 46.48 67.61 1

Table 12: Swin-Transformer results on EuroSAT and Semi-AVES.
Dataset EuroSAT Semi-Aves

Label 20 40 5,959

Supervised 44.32±1.10 34.40±1.44 38.76±0.21

Fully-Supervised 1.86±0.10 -

Π-Model 42.49±3.21 30.54±1.37 38.74±0.60

Pseudo-Labeling 42.49±3.21 30.54±1.37 38.74±0.60

Mean Teacher 35.85±1.95 19.62±3.28 33.37±0.06

VAT 40.63±2.68 29.94±1.87 35.84±0.36

UDA 18.15±5.70 12.09±1.26 29.28±0.20

FixMatch 17.19±3.46 12.57±1.28 28.88±0.22

Dash 18.04±1.21 12.98±1.27 28.69±0.39

CoMatch 13.65±1.42 10.17±0.68 37.71±0.31

CRMatch 30.28±1.64 22.39±1.41 29.22±0.21

FlexMatch 10.46±1.20 9.06±1.80 30.19±0.51

SimMatch 11.19±1.01 10.65±1.64 28.55±0.13

D Results with Different Pre-trained Backbones

In this section, we verify USB with different pre-trained backbones. Different pre-trained backbones
do affect the performance of SSL algorithms, which makes it important to report results with multiple
backbones. We will continuously update results with different backbones at https://github.com/
microsoft/Semi-supervised-learning. Here we report several results in Table 12, Table 13,
and Table 14. Across the tasks, there is a pretty clear distinction between the performance of
algorithms in the first half of the ranking list and the second half of the ranking list. While switching
out backbones does not change the membership of these two halves, it does seem like the relative
orderings within the top half can indeed vary a bit.

To compare different backbones on CV tasks, we fine-tune pre-trained public Swin-Transformer
[123] with USB. We keep all hyper-parameters the same as in Table 15, and mainly evaluate on
EuroSAT (32) and Semi-Aves (224). For EuroSAT, we change the input image size of the pre-trained
Swin-S from 224 to 32, and the window size from 7 to 4 to accommodate the adapted input image
size. For Semi-Aves, we adopt the original Swin-S. From the results in Table 12, one can observe,
that on EuroSAT (32), as we adopt 224 pre-trained Swin-S and change its input and window size,
the results are inferior to ViT-32 reported in the paper, whereas on Semi-Aves (224), the results are
better than ViT-S. An interesting finding is that CoMatch performs relatively better with Swin-S
while CrMatch performs worse. This also shows the importance of constantly updating the backbone
in the future development of USB.

For NLP tasks, we additionally experiment with RoBERTa [31]. We train RoBERTa using the same
hyper-parameters reported in Table 16. RoBerta generally performs better than Bert as expected. The
performance difference is both very close when using RoBerta or Bert.

Due to the fact that the audio tasks setting in the current version of USB being built upon raw
waveforms, there are not many pre-trained models available to use. We report the results of HuBert
[32] and Wave2Vecv2.0 [71] for audio tasks to compare different backbones. The difference between
these two backbones selected mainly lies in pre-training data. Wave2Vecv2.0 is pre-trained using
raw human voice data and HuBert is an improved model with a discrete clustering target. Thus
we can observe from the results, that on human voice tasks Superb-KS, Wave2Vecv2.0 has better
performance, whereas, on other tasks, HuBert is more robust and outperforms Wave2Vecv2.0.

19

https://github.com/microsoft/Semi-supervised-learning
https://github.com/microsoft/Semi-supervised-learning

Table 13: RoBERTa results on Yelp.
Dataset Yelp

Labels 250 1000

Supervised 42.56±1.15 39.00±0.16

Fully-Supervised 29.15±0.12

Pseudo-Label 48.26±0.02 40.56±0.16

MeanTeacher 49.41±0.03 44.36±1.04

Π-Model 49.16±2.04 42.93±0.88

VAT 43.04±0.02 39.24±0.06

AdaMatch 38.24±0.02 35.64±0.06

UDA 40.13±0.15 38.98±0.03

FixMatch 39.82±0.95 37.42±0.30

FlexMatch 39.11±0.02 36.84±0.01

Dash 39.86±1.01 36.23±0.21

CRMatch 40.08±1.28 35.85±0.38

CoMatch 39.95±0.86 36.89±0.22

SimMatch 38.76±0.68 36.39±0.34

Table 14: HuBert results on keyword Spotting and Wave2Vec2.0 results on FSDnoisy.
Dataset keyword Spotting FSDnoisy

Label 50 400 1,772

Supervised 8.95±1.62 6.31±0.46 33.54±1.65

Fully-Supervised 2.41±0.15 -

Π-Model 87.86±2.88 72.89±3.23 35.97±0.84

Pseudo-Labeling 25.59±2.88 13.02±2.47 35.23±0.78

Mean Teacher 89.79±0.30 90.01±0.02 40.13±1.70

VAT 2.27±0.07 2.43±0.02 34.21±0.31

UDA 11.76±0.06 2.23±0.16 33.09±1.03

FixMatch 11.63±0.24 8.93±2.04 33.09±0.64

Dash 11.88±0.15 8.25±4.22 33.02±1.39

CoMatch 15.96±1.02 10.34±1.52 30.24±0.55

CRMatch 5.85±1.19 3.66±0.33 30.48±0.65

FlexMatch 10.22±1.10 5.10±3.70 32.66±4.09

SimMatch 9.43±0.63 5.47±2.72 29.57±0.52

E Details of Datasets in USB

E.1 CV Tasks

CIFAR-100 The CIFAR-100 [39] dataset is a natural image (32×32 pixels) recognition dataset
consisting 100 classes. There are 500 training samples and 100 test samples per class.

STL-10 The STL-10 [40] dataset is a natural color image (96×96 pixels) recognition dataset
consisting 10 classes. Particularly, each class has 500 training samples and 800 test samples. Apart
from the labeled samples, STL-10 also provides 100,000 unlabeled samples. Note that the unlabeled
samples contain other classes in addition to the ones in the labeled data.

EuroSat EuroSAT [43, 44] dataset is based on Sentinel-2 satellite images covering 13 spectral
bands and consisting of 10 classes with 27,000 labeled and geo-referenced samples. Following [124],
we use the dataset with the optical R, G, B frequency bands, thus each image is of size 64× 64× 3.
We take the first 60% images from each class as training set; the next 20% as val set, and the last 20%
as test set.

TissueMNIST TissueMNIST [41, 42] is a medical dataset of human kidney cortex cells, segmented
from 3 reference tissue specimens and organized into 8 categories. The total 236,386 training samples
are split with a ratio of 7 : 1 : 2 into training (165,466 images), validation (23,640 images) and test
set (47,280 images). Each gray-scale image is 28× 28 pixels.

20

Semi-Aves Semi-Aves [45] is a dataset of Aves (birds) classification, where 5,959 images of 200
bird species are labeled and 26,640 images are unlabeled. As class distribution mismatch hurts the
performance [85], we do not use out-of-class unlabeled data. This dataset is challenging as it is
naturally imbalanced. The validation and test set contain 10 and 20 images respectively for each of
the 200 categories in the labeled set.

E.2 NLP Tasks

IMDB The IMDB [49] dataset is a binary sentiment classification dataset. There are 25,000 reviews
for training and 25,000 for test. IMDB is class balanced which means the positive and negative
reviews have the same number both for training and test. For USB, we draw 12,500 samples and
1,000 samples per class from training samples to form the training dataset and validation dataset
respectively. The test dataset is unchanged.

Amazon Review The Amazon Review [52] dataset is a sentiment classification dataset. There are
5 classes (scores). Each class (score) contains 600,000 training samples and 130,000 test samples.
For USB, we draw 50,000 samples and 5,000 samples per class from training samples to form the
training dataset and validation dataset respectively. The test dataset is unchanged.

Yelp Review The Yelp Review [53] sentiment classification dataset has 5 classes (scores). Each
class (score) contains 130,000 training samples and 10,000 test samples. For USB, we draw 50,000
samples and 5,000 samples per class from training samples to form the training dataset and validation
dataset respectively. The test dataset is unchanged.

AG News The AG News [50] dataset is a news topic classification dataset containing 4 classes.
Each class contains 30,000 training samples and 1,900 test samples. For USB, we draw 25,000
samples and 2,500 samples per class from training samples to form the training dataset and validation
dataset respectively. The test dataset is unchanged.

Yahoo! Answer The Yahoo! Answer [51] topic classification dataset has 10 categories. Each class
contains 140,000 training samples and 6,000 test samples. For USB, we draw 50,000 samples and
5,000 samples per class from training samples to form the training dataset and validation dataset
respectively. The test dataset is unchanged.

E.3 Audio Tasks

GTZAN The GTZAN dataset is collected for music genre classification of 10 classes and 100
audio recordings for each class. The maximum length of the recordings is 30 seconds and the original
sampling rate is 22,100 Hz. We split 7,000 samples for training, 1,500 for validation, and 1,500 for
testing. All recordings are re-sampled at 16,000 Hz.

UrbanSound8k The UrbanSound8k dataset [54] contains 8,732 labeled sound events of urban
sounds of 10 classes, with the maximum length of 4 seconds. The original sampling rate of the audio
recordings is 44,100 and we re-sample it to 16,000. It is originally divided into 10 folds, where we
use the first 8 folds of 7,079 samples as training set, and the last two folds as validation set of size
816 and testing set of size 837 respectively.

FSDNoisy18k The FSDNoisy18 dataset [56] is a sound event classification dataset across 20
classes. It consists of a small amount of manually labeled data - 1,772 and a large amount of noisy
data - 15,813 which is treated as unlabeled data in our paper. The original sample rate is 44,100
Hz, and the length of the recordings lies between 3 seconds and 30 seconds. We use the testing set
provided for evaluation, which contains 947 samples.

Keyword Spotting (Superb-KS) The Keyword spotting dataset is one of the tasks in Superb [57]
for classifying the keywords. It contains speech utterances of a maximum length of 1 second and
the sampling rate of 16,000. The training, validation, and testing set contain 18,538; 2,577; 2,567
recordings, respectively. For pre-processing, we remove the silence and unknown labels from the
dataset.

21

ESC-50 The ESC-50 [55] is a dataset containing 2,000 environmental audio recordings for 50
sound classes. The maximum length of the recordings is 5 seconds and the original sampling rate is
44,100. We split 1,200 samples as training data, 400 as validation data, and 400 as testing data. We
also re-sample the audio recordings to 16,000 Hz during pre-processing.

F Details of Implemented SSL algorithms in USB

Π model [35] is a simple SSL algorithm that forces the output probability of perturbed versions of
unlabeled data be the same. Π model uses Mean Squared Error (MSE) for optimization.

Pseudo Labeling [59] turns the output probability of unlabeled data into the ’one-hot’ hard one and
makes the same unlabeled data to learn the pseudo ’one-hot’ label. Unlike Π model, Pseudo Labeling
uses CE for optimization.

Mean Teacher [36] takes the exponential moving average (EMA) of the neural model as the teacher
model. With Mean Teacher, the neural model forces itself to output a similar probability to the EMA
teacher. Though the later SSL algorithms will not always choose the EMA model as the teacher, they
often use the EMA model for validation/test cause it decreases the risk of neural models falling into
the local optima.

VAT [37] enhances the robustness of the conditional predicted label distribution around each unlabeled
data against an adversarial perturbation. In other words, VAT forces the neural model to give similar
predictions on unlabeled data even facing a strong adversarial perturbation.

MixMatch [28] first introduces Mixup [125] into SSL by taking the input as the mixture of labeled
and unlabeled data and the output as the mixture of labels and model predictions on unlabeled data.
Note that MixMatch also utilizes MSE as the unsupervised loss.

ReMixMatch [23] can be seen as the upgraded version of MixMatch. ReMixMatch improves
MixMatch by (1) proposing stronger augmentation (i.e., Control Theory Augmentation (CTAug-
ment) [23]) for unlabeled data; (2) using Augmentation Anchoring to force the model to output
similar predictions to weakly augmented unlabeled data when fed strongly augmented data; (3)
utilizing Distribution Alignment to encourage the marginal distribution of predictions on unlabeled
data to be similar to the marginal distribution of labeled data.

UDA [29] also introduces strong augmentation (i.e., RandAugment [126]) for unlabeled data. The
core idea of UDA is similar to Augmentation Anchoring [23], which forces the predictions of neural
models on the strongly-augmented unlabeled data to be close to those of weakly-augmented unlabeled
data. Instead of turning predictions into hard ’one-hot’ pseudo-labels, UDA sharpens the prediction
on unlabeled data. Thresholding technique is used to mask out unconfident unlabeled samples that
are considered noise here.

FixMatch [20] is the upgraded version of Pseudo Labeling. FixMatch turns the predictions on
weakly-augmented unlabeled data into hard ’one-hot’ pseudo-labels and then further uses them as the
learning signal of strongly-augmented unlabeled data. FixMatch finds that using a high threshold
(e.g., 0.95) to filter noisy unlabeled predictions and take the rest as the pseudo-label can achieve very
good performance.

Dash [24] improves the FixMatch by using a gradually increased threshold instead of a fixed threshold,
which allows more unlabeled data to participate in the training at the early stage. Moreover, Dash
theoretically establishes the convergence rate from the view of non-convex optimization.

CoMatch [60] firstly introduces contrastive learning into SSL. Except for consistency regularizing
on the class probabilities, it is also exploited on graph-based feature representations, which impose
smooth constraints on pseudo-labels generated.

CRMatch [61] proposed an improved consistency regularization framework which impose consis-
tency and equivariance on the classification probability and the feature level.

FlexMatch [21] firstly introduces the class-specific thresholds into SSL by considering the different
learning difficulties of different classes. Specifically, the hard-to-learn classes should have a low
threshold to speed up convergence while the easy-to-learn classes should have a high threshold to
avoid confirmation bias.

22

AdaMatch [62] is proposed mainly for domain adaption, but can also adapted to SSL. It is character-
ized by Relative Threshold and Distribution Alignment, where the relative threshold is adaptively
estimated from EMA of the confidence on labeled data.

SimMatch [47] extends CoMatch [60] by considering semantic-level and instance-level consistency
regularization. Similar similarity relationship of different augmented versions on the same data with
respect to other instances is encouraged during training. In addition, a memory buffer consisting of
predictions on labeled data is adopted to connect the two-level regularization.

G Experiment Details in USB

G.1 Setup for CV Tasks in USB

Table 15: Hyper-parameters of CV tasks in USB.
Dataset CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Image Size 32 96 32 32 224

Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 ViT-T-P4-32 ViT-S-P16-224

Weight Decay 5e-4

Labeled Batch size 16

Unlabeled Batch size 16

Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-3

Layer Decay Rate 0.5 0.95 1.0 0.95 0.65

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Crop, Random Horizontal Flip

Strong Augmentation RandAugment [126]

For CV tasks in USB, we use ViT models [34]. We find that directly using released ViT models leads
to overfitting and one needs to fix the image resolution as the pre-trained resolution, as demonstrated
in Paragraph 5.4. Instead, we pre-train our own ViT models on ImageNet-1K [8]. To match the
number of parameters as the CNN models used in the classic setting, we use ViT-Tiny and ViT-
Small with a patch size of 2 and image size of 32 for TissueMNIST, CIFAR-100 and EuraSAT,
respectively; ViT-Small with a patch size of 16 and image size of 224 for Semi-Aves. For better
transfer performance, we adopt an MLP before the final classifier during pre-training, as in [127].
For supervised pre-training on ImageNet-1K, we use Lamb optimizer with a learning rate of 0.05,
and a weight decay of 0.03 for ViT-Tiny and a weight decay of 0.05 for ViT-Small. We adopt a
large batch size of 4096 and train the networks for 300 epochs, with a linear learning rate warmup
for the first 20 epochs. After the warmup, cosine scheduler is utilized. For augmentation, we use
RandAugment [126], along with Mixup [125] and CutMix [128]. We also use label smoothing of 0.1
during pre-training. Since STL10 is a subset of ImageNet, we adopt unsupervised pre-training MAE
[33] of ViT-Small with image size of 96 to avoid cheating.

For USB CV tasks, we adopt layer-wise learning rate decay as in [123]. We tune the learning rate
and layer decay rate on different datasets using FixMatch, and use the best configuration to train all
SSL algorithms 7. The cosine annealing scheduler is similar to the classic setting but with total steps
of 204, 800 and a warm-up of 5, 120 steps. The labeled and unlabeled batch size is both set to 16.
Other algorithm-related hyper-parameters stay the same as in the original papers.

G.2 Setup for NLP Tasks in USB

We use pre-trained BERT-Base [30] for all NLP tasks in USB. We set the batch size of labeled data
and unlabeled data to 4 for reducing the training time and GPU memory requirement. To fine-tune
the BERT-Base under USB, we adopt AdamW optimizer with weight decay of 1e−4. Similarly, we
conduct a grid search of the learning rate and layer decay on different datasets using FixMatch and
pick the best configuration to fine-tune other SSL algorithms. We utilize the same cosine learning rate

7We present the full tuning results in: https://github.com/microsoft/Semi-supervised-learning.

23

https://github.com/microsoft/Semi-supervised-learning

scheduler as in the classic setting with the total training steps of 102, 400 and a warm-up of 5, 120
steps. We use the fine-tuned model without parameter momentum to conduct evaluations. For all
datasets, we cut the long sentence to satisfy the input length requirement of BERT-Base. For data
augmentation, we adopt back-translation as the strong augmentation [29, 25]. Specifically, we use
De-En and Ru-En translation with WMT19.

Table 16: Hyper-parameters of NLP tasks in USB.
Dataset AG News Yahoo! Answer IMDb Amazom-5 Yelp-5

Max Length 512

Model Bert-Base

Weight Decay 1e-4

Labeled Batch size 4

Unlabeled Batch size 4

Learning Rate 5e-5 1e-4 5e-5 1e-5 5e-5

Layer Decay Rate 0.65 0.65 0.75 0.75 0.75

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation None

Strong Augmentation Back-Translation [29]

G.3 Setup for Audio Tasks in USB

For Audio tasks, we adopt Wav2Vec 2.0 [71] and HuBert [32] as the pre-trained model. The batch
size of labeled data and unlabeled data is set to 8. We keep the sampling rate of audios as 16, 000. We
adopt AdamW optimizer with a weight decay of 5e−4, and search the learning rate and layer decay
as before. Other hyper-parameter settings are the same as NLP tasks. Mimicking RandAugment, for
strong augmentation in audio tasks, we random sample 2 augmentations from the augmentation pool
and random set the augmentation magnitude during training.

Table 17: Hyper-parameters of Audio tasks in USB.
Dataset GTZAN Keyword Spotting UrbanSound8k FSDNoisy ESC-50

Sampling Rate 16,000

Max Length 3.0 1.0 4.0 5.0 5.0

Model Wav2Vecv2-Base HuBERT-Base

Weight Decay 5e-4

Labeled Batch size 8

Unlabeled Batch size 8

Learning Rate 2e-5 5e-5 5e-5 5e-4 1e-4

Layer Decay Rate 1.0 0.75 0.75 0.75 0.85

Scheduler η = η0 cos(
7πk
16K)

Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Sub-sample

Strong Augmentation Random Sub-sample, Random Gain, Random Pitch, Random Speed

24

	Introduction
	Related Work
	Tasks and Datasets
	CV Tasks
	NLP Tasks
	Audio Tasks

	SSL Algorithms
	Benchmark Results
	CV Results
	NLP Results
	Audio Results
	Discussion

	Codebase Structure of USB
	Limitation
	Conclusion
	Details of Datasets and in TorchSSL
	Correlation between TorchSSL and USB
	Performance Results on ImageNet
	Results with Different Pre-trained Backbones
	Details of Datasets in USB
	CV Tasks
	NLP Tasks
	Audio Tasks

	Details of Implemented SSL algorithms in USB
	Experiment Details in USB
	Setup for CV Tasks in USB
	Setup for NLP Tasks in USB
	Setup for Audio Tasks in USB

