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Abstract

Diffusion processes that evolve according to linear stochastic differential equations1

are an important family of continuous-time dynamic decision-making models.2

Optimal policies are well-studied for them, under full certainty about the drift3

matrices. However, little is known about data-driven control of diffusion processes4

with uncertain drift matrices as conventional discrete-time analysis techniques are5

not applicable. In addition, while the task can be viewed as a reinforcement learning6

problem involving exploration and exploitation trade-off, ensuring system stability7

is a fundamental component of designing optimal policies. We establish that8

the popular Thompson sampling algorithm learns optimal actions fast, incurring9

only a square-root of time regret, and also stabilizes the system in a short time10

period. To the best of our knowledge, this is the first such result for Thompson11

sampling in a diffusion process control problem. We validate our theoretical results12

through empirical simulations with real parameter matrices from two settings13

of airplane and blood glucose control. Moreover, we observe that Thompson14

sampling significantly improves (worst-case) regret, compared to the state-of-the-15

art algorithms, suggesting Thompson sampling explores in a more guarded fashion.16

Our theoretical analysis involves characterization of a certain optimality manifold17

that ties the local geometry of the drift parameters to the optimal control of the18

diffusion process. We expect this technique to be of broader interest.19

1 Introduction20

One of the most natural reinforcement learning (RL) algorithms for controlling a diffusion process21

with unknown parameters is based on Thompson sampling (TS) [1]: a Bayesian posterior for the22

model is calculated based on its time evolution, and a control policy is then designed by treating23

a sampled model from the posterior as the truth. Despite its simplicity, guaranteeing efficiency24

and whether sampling the actions from the posterior could lead to unbounded future trajectories is25

unknown. In fact, the only known such theoretical result for control of a diffusion process is for an26

epsilon-greedy type policy that requires selecting purely random actions at a certain rate [2].27

In this work, we consider a p dimensional state signal {xt}t≥0 that obeys the (Ito) stochastic28

differential equation (SDE)29

dxt = (A0xt +B0ut)dt+ dWt , (1)

where the drift matrices A0 and B0 are unknown, ut ∈ Rq is the control action at any time t ≥ 0,30

and it is designed based on values of xs for s ∈ [0, t]. The matrix B0 ∈ Rp×q models the influence31

of the control action on the state evolution over time, while A0 ∈ Rp×p is the (open-loop) transition32

matrix reflecting interactions between the coordinates of the state vector xt. The diffusion term in (1)33

consists of a non-standard Wiener process Wt that will be defined in the next section. The goal is to34
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study efficient RL policies that can design ut to minimize a quadratic cost function, defined in the35

next section, subject to uncertainties around A0 and B0.36

At a first glance, this problem is similar to most RL problems since the optimal policy must balance37

between the two objectives of learning the unknown matrices A0 and B0 (exploration) and optimally38

selecting the control signals ut to minimize the cost (exploitation). However, unlike most RL39

problems that have finite or bounded-support state space, ensuring stability, that xt stays bounded, is40

a crucial part of designing optimal policies. For example, in the discrete-time version of the problem,41

robust exploration is used to protect against unpredictably unstable trajectories [3–6].42

Related literature. The existing literature studies efficiency of TS for learning optimal decisions43

in finite action spaces [7–12]. In this stream of research, it is shown that, over time, the posterior44

distribution concentrates around low-cost actions [13–15]. TS is also studied in further discrete-time45

settings with the environment represented by parameters that belong to a continuum, and Bayesian and46

frequentist regret bounds are shown for linear-quadratic regulators [16–19]. However, effectiveness47

of TS in highly noisy environments that are modeled by diffusion processes remains unexplored to48

date, due to technical challenges that will be described below.49

For continuous-time linear time invariant dynamical systems, infinite-time consistency results are50

shown under a variety of technical assumptions, followed by alternating policies that cause (small)51

linear regrets [20–24]. From a computational viewpoint, pure exploration algorithms for computing52

optimal policies based on multiple trajectories of the state and action data are studied as well [25–27],53

for which a useful survey is available [28]. However, papers that study exploration versus exploitation,54

and provide non-asymptotic estimation rates or regret bounds are limited to a few recent work about55

offline RL or stabilized processes [29, 2, 30].56

Contributions. This work, first establishes that TS learns to stabilize the diffusion process (1).57

Specifically, in Theorem 1 of Section 3, we provide the first theoretical stabilization guarantee58

for diffusion processes, showing that the probability of preventing the state process from growing59

unbounded grows to 1, at an exponential rate that depends on square-root of the time length devoted60

to stabilization. As mentioned above, for RL problems with finite state spaces, the process is by61

definition stabilized, regardless of the policy. However, for the Euclidean state space of xt in (1),62

stabilization is necessary to ensure that the state and the cost do not grow unbounded.63

Then, efficiency of TS in balancing exploration versus exploitation for minimizing a cost function64

that has a quadratic form of both the state and the control action is shown. Indeed, we establish65

in Theorem 2 of Section 4 that the regret TS incurs, grows as the square-root of time, while the66

squared estimation error decays with the same rate. It is also shown that both the above quantities67

grow quadratically with the dimension. To the authors’ knowledge, the presented results are the first68

theoretical analyses of TS for learning to control diffusion processes.69

Additionally, through extensive simulations we illustrate that TS enjoys smaller average regret and70

substantially lower worst-case regret than the existing RL policies, thanks to its informed exploration.71

It is important to highlight that theoretical analysis of RL policies for diffusion processes is highly72

non-trivial. Specifically, the conventional discrete-time RL technical tools are not applicable, due73

to uncountable cardinality of the random variables involved in a diffusion process, the unavoidable74

dependence between them, and the high level of processing and estimation noise. To address these, we75

make four main contributions. First, non-asymptotic and uniform upper bounds for continuous-time76

martingales and for Ito integrals are required to quantify the estimation accuracy. For that purpose,77

we establish concentration inequalities and show sub-exponential tail bounds for double stochastic78

integrals. Second, one needs sharp bounds for the impact of estimation errors on eigenvalues of79

certain non-linear matrices of the drift parameters that determine actions taken by TS policy. To tackle80

that, we perform a novel and tight eigenvalue perturbation-analysis based on the approximation error,81

dimension, and spectrum of the matrices. We also establish Lipschitz continuity of the control policy82

with respect to the drift matrices, by developing new techniques based on matrix-valued curves. Third,83

to capture evaluation of both immediate and long-term effects of sub-optimal actions, we employ84

Ito calculus to bound the stochastic regret and specify effects of all problem parameters. Finally, to85

study learning from data trajectories that the condition number of their information matrix grows86

unbounded, we develop stochastic inequalities for self-normalized continuous-time martingales, and87

spectral analysis of non-linear functions of random matrices.88
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Organization. The organization of the subsequent sections is as follows. We formulate the problem89

in Section 2, while Algorithm 1 that utilizes TS for learning to stabilize the process and its high-90

probability performance guarantee are presented in Section 3. Then, in Section 4, TS is considered for91

learning to minimize a quadratic cost function, and the rates of estimation and regret are established.92

Next, theoretical analysis are provided in Section 5, followed by real-world numerical results of93

Section 6. Detailed proofs and auxiliary lemmas are delegated to the appendices.94

Notation. The smallest (the largest) eigenvalue of matrix M , in magnitude, is denoted by λ (M)95

(λ (M)). For a vector a, ||a|| is the `2 norm, and for a matrix M , ||M || is the operator norm that is96

the supremum of ||Ma|| for a on the unit sphere. N (µ,Σ) is Gaussian distribution with mean µ and97

covariance Σ. If µ is a matrix (instead of vector), thenN (µ,Σ) denotes a distribution on matrices of98

the same dimension as µ, such that all columns are independent and share the covariance matrix Σ. In99

this paper, transition matrices A ∈ Rp×p together with input matrices B ∈ Rp×q are jointly denoted100

by the (p + q) × p parameter matrix θ = [A,B]
>. We employ ∨ (∧) for maximum (minimum).101

Finally, a . b expresses that a ≤ α0b, for some fixed constant α0.102

2 Problem Statement103

We study the problem of designing provably efficient reinforcement learning policies for minimizing104

a quadratic cost function in an uncertain linear diffusion process. To proceed, fix the complete105

probability space (Ω, {Ft}t≥0 ,P), where Ω is the sample space, {Ft}t≥0 is a continuous-time106

filtration (i.e., increasing sigma-fields), and P is the probability measure defined on F∞.107

The state comprises the diffusion process xt in (1), where θ0 = [A0, B0]
> ∈ R(p+q)×p is the un-108

known drift parameter. The diffusion term in (1) follows infinitesimal variations of the p dimensional109

Wiener process {Wt}t≥0. That is, {Wt}t≥0 is a multivariate Gaussian process with independent110

increments and with the stationary covariance matrix ΣW, such that for all 0 ≤ s1 ≤ s2 ≤ t1 ≤ t2,111 [
Wt2 −Wt1
Ws2 −Ws1

]
∼N

([
0p
0p

]
,

[
(t2 − t1)ΣW 0p×p

0p×p (s2 − s1)ΣW

])
. (2)

Existence, construction, continuity, and non-differentiability of Wiener processes are well-known [31].112

It is standard to assume that ΣW is positive definite, which is a common condition in learning-based113

control [28, 29, 2, 30] to ensure accurate estimation over time.114

The RL policy designs the action {ut}t≥0, based on the observed system state by the time, as well as115

the previously applied actions, to minimize the long-run average cost116

lim sup
T→∞

1

T

T∫
0

[
x>t ,u

>
t

]
Q

[
xt
ut

]
dt, for Q =

[
Qx Qxu
Q>xu Qu

]
. (3)

Above, the cost is determined by the positive definite matrix Q, where Qx ∈ Rp×p, Qu ∈ Rq×q,117

Qxu ∈ Rp×q . In fact, Q determines the weights of different coordinates of xt,ut in the cost function,118

so that the policy aims to make the states small, by deploying small actions. The cost matrix Q is119

assumed known to the policy. Formally, the problem is to minimize (3) by the policy120

ut = π̂
(
Q, {xs}0≤s≤t , {us}0≤s<t

)
. (4)

Without loss of generality, and for the ease of presentation, we follow the canonical formulation121

that sets Qxu = 0; one can simply convert the case Qxu 6= 0 to the canonical form, by employing a122

rotation to xt,ut [32–35]. It is well-known that if, hypothetically, the truth θ0 was known, an optimal123

policy πopt could be explicitly found by solving the continuous-time algebraic Riccati equation. That124

is, for a generic drift matrix θ = [A,B]
>, finding the symmetric p× p matrix P (θ) that satisfies125

A>P (θ) + P (θ)A − P (θ)BQ−1u B>P (θ) +Qx = 0. (5)

This means, for the true parameter θ0 = [A0, B0]
>, we can let P (θ0) solve the above equation, and126

define the policy127

πopt : ut = −Q−1u B>0 P (θ0)xt, ∀t ≥ 0. (6)
It is known that the linear time-invariant policy πopt minimizes the average cost in (3) [32–35].128
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Definition 1 The process in (1) is stabilizable, if all eigenvalues of A = A0 +B0K have negative129

real-parts, for a matrix K. Such K,A are called a stabilizer and the stable closed-loop matrix.130

We assume that the process (1) with the drift parameter θ0 is stabilizable. Therefore, P (θ0) exists,131

is unique, and can be computed using continuous-time Riccati differential equations similar to (5),132

except that the zero matrix on the right-hand side will be replaced by the derivative of P (θ) [32–35].133

Furthermore, it is known that real-parts of all eigenvalues of A0 = A0 − B0Q
−1
u B>0 P (θ0) are134

negative, i.e.,
∣∣λ (exp

(
A0t
))∣∣ < 1, which means the matrix exp

(
A0t
)

decays exponentially fast as135

t grows [32–35]. In the sequel, we use (5) and refer to the solution P (θ) for different stabilizable θ.136

More details about the above optimal feedback policy can be found in the aforementioned references.137

In absence of exact knowledge of θ0, a policy π̂ collects data and leverages it to approximate πopt138

in (6). Therefore, at all (finite) times, there is a gap between the cost of π̂, compared to that of πopt.139

The cumulative performance degradation due to this gap is the regret of the policy π̂, that we aim to140

minimize. Technically, whenever the control action ut is designed by the policy π̂ according to (4),141

concatenate the resulting state and input signals to get the observation zt(π̂) =
[
x>t ,u

>
t

]>
. If it is142

clear from the context, we drop π̂. Similarly, zt(πopt) denotes the observation signal of πopt. Now,143

the regret at time T is defined by:144

Regπ̂ (T ) =

T∫
0

(∣∣∣∣∣∣Q1/2zt(π̂)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣Q1/2zt(πopt)

∣∣∣∣∣∣2)dt.
A secondary objective is the learning accuracy of θ0 from the single trajectory of the data generated145

by π̂. Letting θ̂t be the parameter estimate at time t, we are interested in scaling of
∣∣∣∣∣∣θ̂t − θ0∣∣∣∣∣∣ with146

respect to t, p, and q.147

3 Stabilizing the Diffusion Process148

This section focuses on establishing that Thompson sampling (TS) learns to stabilize the diffusion149

process (1). First, let us intuitively discuss the problem of stabilizing unknown diffusion processes.150

Given that the optimal policy in (6) stabilizes the process in (1), a natural candidate to obtain151

a stable process under uncertainty of the drift matrices A0, B0, is a linear feedback of the form152

ut = Kxt. So, letting A = A0 + B0K, the solution of (1) is the Ornstein–Uhlenbeck process153

xt = eAtx0 +
t∫
0

eA(t−s)dWs [31]. Thus, if real-part of an eigenvalue of A is non-negative, then154

the magnitude of xt grows unbounded with t [31]. Therefore, addressing instabilities of this form is155

important, prior to minimizing the cost. Otherwise, the regret grows (super) linearly with time. In156

particular, if A0 has some eigenvalue(s) with non-negative real-part(s), then it is necessary to employ157

feedback to preclude instabilities.158

In addition to minimizing the cost, the algebraic Riccati equation in (5) provides a reliable and159

widely-used framework for stabilization, as discussed after (6). Accordingly, due to uncertainty160

about θ0, one can solve (5) and find P
(
θ̂
)

, only for an approximation θ̂ of θ0. Then, we expect to161

stabilize the system in (1) by applying a linear feedback that is designed for the approximate drift162

matrix θ̂. Technically, we need to ensure that all eigenvalues of A0 − B0Q
−1
u B̂>P

(
θ̂
)

lie in the163

open left half-plane. To ensure that these requirements are met in a sustainable manner, the main164

challenges are165

(i) fast and accurate learning of θ0 so that after a short time period, a small error θ̂−θ0 is guaranteed,166

(ii) specifying the effect of the error θ̂ − θ0, on stability of A0 −B0Q
−1
u B̂>P

(
θ̂
)

, and167

(iii) devising a remedy for the case that the stabilization procedure fails.168

Note that the last challenge is unavoidable, since learning from finite data can never be perfectly accu-169

rate, and so any finite-time stabilization procedure has a (possibly small) positive failure probability.170

Algorithm 1 addresses the above challenges by applying additionally randomized control actions, and171

using them to provide a posterior belief D about θ0. Note that the posterior is not concentrated at172

θ0, and a sample θ̂ from D approximates θ0, crudely. Still, the theoretical analysis of Theorem 1173

4



indicates that the failure probability of Algorithm 1 decays exponentially fast with the length of the174

time interval it is executed. Importantly, this small failure probability can shrink further by repeating175

the procedure of sampling from D. So, stabilization under uncertainty is guaranteed, after a limited176

time of interacting with the environment.177

To proceed, let {wn}κn=0 be a sequence of independent Gaussian vectors with the distribution178

wn ∼ N
(
0, σ2

wIq
)
, for some fixed constant σw. Suppose that we aim to devote the time length τ179

to collect observations for learning to stabilize. Note that since stabilization is performed before180

moving forward to the main objective of minimizing the cost functions, the stabilization time length181

τ is desired to be as short as possible. We divide this time interval of length τ to κ sub-intervals182

of equal length, and randomize an initial linear feedback policy by adding {wn}κn=0. That is, for183

n = 0, 1, · · · ,κ − 1, Algorithm 1 employs the control action184

ut = Kxt + wn, for
nτ

κ
≤ t < (n+ 1)τ

κ
, (7)

where K is an initial stabilizing feedback so that all eigenvalues of A0 + B0K lie in the open185

left half-plane. In practice, such K is easily found using physical knowledge of the model, e.g.,186

via conservative control sequence for an airplane [36, 37]. However, note that such actions are187

sub-optimal involving large regrets. Therefore, they are only temporarily applied, for the sake of188

data collection. Then, the data collected during the time interval 0 ≤ t ≤ τ will be utilized by the189

algorithm to determine the posterior belief Dτ , as follows. Recalling the notation z>t =
[
x>t ,u

>
t

]
,190

let µ̂0, Σ̂0 be the mean and the precision matrix of a prior normal distribution on θ0 (using the191

notation defined in Section 1 for random matrices). Nonetheless, if there is no such prior, we simply192

let µ̂0 = 0(p+q)×p and Σ̂0 = Ip+q . Then, define193

Σ̂τ = Σ̂0 +

τ∫
0

zsz
>
s ds, µ̂τ = Σ̂−1τ

Σ̂0µ̂0 +

τ∫
0

zsdx
>
s

 . (8)

Using Σ̂τ ∈ R(p+q)×(p+q) together with the mean matrix µ̂τ , Algorithm 1 forms the posterior belief194

Dτ = N
(
µ̂τ , Σ̂

−1
τ

)
, (9)

about the drift parameter θ0. So, as defined in the notation, the posterior distribution of every column195

i = 1, · · · , p of θ0, is an independent multivariate normal with the covariance matrix Σ̂−1τ , while the196

mean is the column i of µ̂τ . The final step of Algorithm 1 is to output a sample θ̂ from Dτ .

Algorithm 1 : Stabilization under Uncertainty
Inputs: initial feedback K, stabilization time length τ
for n = 0, 1, · · · ,κ − 1 do

while nτ κ−1 ≤ t < (n+ 1)τ κ−1 do
Apply control action ut in (7)

end while
end for
Calculate Σ̂τ , µ̂τ according to (8)
Return sample θ̂ from the distribution Dτ in (9)

197

Next, to establish performance guarantees for Algorithm 1, let us quantify the ideal stability by198

ζ0 = − log λ
(
exp

[
A0 −B0Q

−1
u B>0 P (θ0)

])
. (10)

By definition, ζ0 is positive. In fact, it is the smallest distance between the imaginary axis in the199

complex-plane, and the eigenvalues of the transition matrix A0 = A0 − B0Q
−1
u B>0 P (θ0), under200

the optimal policy in (6). Since θ0 is unavailable, it is not realistic to expect that after applying201

a policy based on θ̂ given by Algorithm 1, real-parts of all eigenvalues of the resulting matrix202

A0 − B0Q
−1
u B̂>P

(
θ̂
)

are at most −ζ0. However, ζ0 is crucial in studying stabilization, such203

that stabilizing controllers for systems with larger ζ0 can be learned faster. The exact effect of this204

quantity, as well as those of other properties of the diffusion process, are formally established in the205

following result. Informally, the failure probability of Algorithm 1 decays exponentially with τ 1/2.206
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Theorem 1 (Stabilization Guarantee) For the sample θ̂ given by Algorithm 1, let Eτ be the failure207

event that A0 −B0Q
−1
u B̂>P

(
θ̂
)

has an eigenvalue in the closed right half-plane. Then, if κ & τ 2,208

we have209

logP(Eτ ) . − λ (ΣW) ∧ σ2
w

λ (ΣW) ∨ σ2
w

1 ∧ ζ0p

1 ∨ ||K||3

√
τ

p3q
. (11)

The above result indicates that more heterogeneity in coordinates of the Wiener noise renders210

stabilization harder. Moreover, using (10), the term 1∧ζ0p reflects that less stable diffusion processes211

with smaller ζ0, are significantly harder to stabilize under uncertainty. Also as one can expect, larger212

dimensions make learning to stabilize harder. This is contributed by higher number of parameters213

to learn, as well as higher sensitivity of eigenvalues for processes of larger dimensions. Finally, the214

failure probability decays as τ 1/2, mainly because continuous-time martingales have sub-exponential215

distributions, unlike sub-Gaussianity of discrete-time counterparts [38–40].216

4 Thompson Sampling for Efficient Control: Algorithm and Theory217

In this section, we proceed towards analysis of Thompson sampling (TS) for minimizing the quadratic218

cost in (3), and show that it efficiently learns the optimal control actions. That is, TS balances the219

exploration versus exploitation, such that its regret grows with (nearly) the square-root rate, as time220

grows. In the sequel, we introduce Algorithm 2 and discuss the conceptual and technical frameworks221

it relies on. Then, we establish efficiency by showing regret bounds in terms of different problem222

parameters and provide the rates of estimating the unknown drift matrices.223

In Algorithm 2, first the learning-based stabilization Algorithm 1 is run during the time period224

0 ≤ t < τ 0. So, according to Theorem 1, the optimal feedback of θ̂0 stabilizes the system with a225

high probability, as long as τ 0 is sufficiently large. Note that if growth of the state indicates that226

Algorithm 1 failed to stabilize, one can repeat sampling from Dτ0 . So, we can assume that the227

evolution of the controlled diffusion process remains stable when Algorithm 2 is being executed. On228

the other hand, the other benefit of running Algorithm 1 at the beginning is that it performs an initial229

exploration phase that will be utilized by Algorithm 2 to minimize the regret.230

Then, in order to learn the optimal policy πopt with minimal sub-optimality, RL algorithms need231

to cope with a fundamental challenge, commonly known as the exploration-exploitation dilemma.232

To see that, first note that an acceptable policy that aims to have sub-linear regret, needs to take233

near-optimal control actions in a long run; ut ≈ −Q−1u B>0 P (θ0)xt. Although such policies exploit234

well and their control actions are close to that of πopt, their regret grows large since they fail to235

explore. Technically, the trajectory of observations {zt}t≥0 is not rich enough to provide accurate236

estimations, since in z>t =
[
x>t ,u

>
t

]
, the signal ut is (almost) a linear function of the state signal237

xt, and so does not contribute towards gathering information about the unknown parameter θ0.238

Conversely, for sufficient explorations, RL policies need to take actions that deviate from those of239

πopt, which imposes large regret (as quantified in Lemma 7). Accordingly, the above trade-off needs240

to be delicately balanced; what we show that TS does.241

Algorithm 2 is episodic; the parameter estimates θ̂n are updated only at the end of the episodes at242

times {τn}∞n=0, while during every episode, actions are taken as if θ̂n =
[
Ân, B̂n

]>
is the unknown243

truth θ0. That is, for τn−1 ≤ t < τn, using P
(
θ̂n

)
in (5), we let ut = −Q−1u B̂>n P

(
θ̂n

)
xt.244

Then, for each n = 1, 2, · · · , at time τn, we use all the observations collected so far, to find Σ̂τn
, µ̂τn

245

according to (8). Next, we use them to sample θ̂n from the posterior Dτn
in (9).246

The episodes in Algorithm 2 are chosen such that their end points satisfy247

0 < α ≤ inf
n≥0

τn+1 − τn
τn

≤ sup
n≥0

τn+1 − τn
τn

≤ α <∞, (12)

for some fixed constants α, α. Broadly speaking, (12) lets the episode lengths of Algorithm 2 scale248

properly to avoid unnecessary updates of parameter estimates, while at the same time performing249

sufficient exploration. To see that, first note that since Σ̂τ grows with τ , the estimation error θ̂n−θ0250

decays (at best polynomially fast) with τn. So, until ensuring that updating the posterior yields to251
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significantly better approximations, it will not be beneficial to update it, sample from it, and solve252

(5). So, the period τn+1 − τn that the data up to time τn is utilized, is set to be as long as ατn.253

On the other hand, the above period cannot be too long, since we aim to improve the parameter254

estimates after collecting enough new observations; τn+1 ≤ (1 + α) τn. A simple setting is to let255

α = α, which yields to exponential episodes τn = τ 0 (1 + α)
n. Note that for TS in continuous time,256

posterior updates should be limited to sufficiently-apart time points. Otherwise, repetitive updates are257

computationally impractical, and also can degrade the performance by preventing control actions258

from having enough time to effectively influence.259

Algorithm 2 : Thompson Sampling for Efficient Control of Diffusion Processes
Inputs: stabilization time τ 0

Calculate sample θ̂0 by running Algorithm 1 for time τ 0

for n = 1, 2, · · · do
while τn−1 ≤ t < τn do

Apply control action ut = −Q−1u B̂>n−1P
(
θ̂n−1

)
xt

end while
Letting Σ̂τn

, µ̂τn
be as (8), sample θ̂n from Dτn

given in (9)
end for

We show next that Algorithm 2 addresses the exploration-exploitation trade-off efficiently. To see260

the intuition, consider the sequence of posteriors Dτn . The explorations Algorithm 2 performs by261

sampling θ̂n from Dτn , depends on Σ̂τn . Now, if hypothetically λ
(

Σ̂τn

)
is not large enough, then262

Dτn
does not sufficiently concentrate around µ̂τn

and so θ̂n will probably deviate from the previous263

samples
{
θ̂i

}n−1
i=1

. So, the algorithm explores more and obtains richer data zt by diversifying the264

control signal ut. This renders the next mean µ̂τn+1
a more accurate approximation of θ0, and also265

makes λ
(

Σ̂τn+1

)
grow faster than before. Thus, the next posterior Dτn+1

provides a better sample266

with smaller estimation error θ̂n+1−θ0. Similarly, if a posterior is excessively concentrated, in a few267

episodes the posteriors adjust accordingly to the proper level of exploration. Hence, TS eventually268

balances the exploration versus the exploitation. This is formalized below.269

Theorem 2 (Regret and Estimation Rates) Parameter estimates and regret of Algorithm 2, satisfy270 ∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 .
λ (ΣW)

λ (ΣW)
log (1 + α) (p+ q) p τ−1/2n log τn ,

Reg (T ) .
(
λ (ΣW) + σ2

w

)
τ 0 +

λ (ΣW)
2

λ (ΣW)

α||P (θ0)||6

log(α+ 1)λ (Q)
6 (p+ q) p T 1/2 log T .

In the above regret and estimation rates, and similar to Theorem 1, λ (ΣW) /λ (ΣW) reflects the271

impact of heterogeneity in coordinates of Wt on the quality of learning. Also, larger log(1 + α)272

corresponds to longer episodes which compromises the estimation. Further, p(p+q) shows that larger273

number of parameters linearly worsens the learning accuracy. In the regret bound, ||P (θ0)||/λ (Q)274

indicates effect of the true problem parameters θ0, Q. Finally,
(
λ (ΣW) + σ2

w

)
τ 0 captures the initial275

phase that Algorithm 1 is run for stabilization, which takes sub-optimal control actions as in (7).276

5 Intuition and Summary of the Analysis277

The goal of this section is to provide a high-level roadmap of the proofs of Theorems 1 and 2, and278

convey the main intuition behind the analysis. Complete proofs and the technical lemmas are provided279

in Appendices A and B, respectively.280

Summary of the Proof of Theorem 1. The main steps involve analyzing the estimation (Lemma 4),281

studying its effect on the solutions of (5) (Lemma 12), and characterizing impact of errors in entries282

of parameter matrices on their eigenvalues (Lemma 5). Next, we elaborate on these steps.283

7



We show that the error satisfies
∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . p(p+ q)1/2τ−1/2 (Lemma 4). More precisely, the error284

depends mainly on total strength of the observation signals zt, which are captured in the precision285

matrix Σ̂τ , as well as total interactions between the signal zt and the noise Wt in the form of the286

stochastic integral matrix
τ∫
0

ztdW>t . However, we establish an upper bound λ
(

Σ̂−1τ

)
. τ−1, that287

indicates the concentration rate of the posteriorDτ (Lemma 3). Similarly, thanks to the randomization288

signal wn, the signals zt are diverse enough to effectively explore the set of matrices θ = [A,B]
>,289

leading to accurate approximation of θ0 by the posterior mean matrix µ̂τ . Then, to bound the error290

terms caused by the Wiener noise Wt, we establish the rate p(p + q)1/2τ 1/2 (Lemma 2). Indeed,291

we show that the entries of this error matrix are continuous-time martingales, and use exponential292

inequalities for quadratic forms and double stochastic integrals [39, 38] to establish that they have a293

sub-exponential distribution.294

Moreover, the error rate of the feedback satisfies a similar property;
∣∣∣∣∣∣B̂>P (θ̂)−B>0 P (θ0)

∣∣∣∣∣∣ .295

p(p + q)1/2τ−1/2 (Lemma 12). So, letting A = A0 − B0Q
−1
u B̂>P

(
θ̂
)

and A0 = A0 −296

B0Q
−1
u B>0 P (θ0), it holds that

∣∣∣∣A −A0

∣∣∣∣ . p(p + q)1/2τ−1/2. Next, to consider the effect297

of the errors on the eigenvalues of A, we compare them to the eigenvalues of A0, which are bounded298

by −ζ0 in (10). To that end, we establish a novel and tight perturbation analysis for eigenvalues of299

matrices, with respect to their entries and spectral properties (Lemma 5). Using that, we show that300

the difference between the eigenvalues of A and A0 scales as
(
1 ∨ r1/2

∣∣∣∣A −A0

∣∣∣∣)1/r , where r is301

the size of the largest block in the Jordan block-diagonalization of A0. Therefore, for stability of302

A, we need
∣∣∣∣A −A0

∣∣∣∣ . p−1/2 (1 ∧ ζ0p), since r ≤ p. Note that if A0 is diagonalizable, r = 1303

implies that we can replace the above upper bound by 1 ∧ ζ0. Putting this stability result together304

with the estimation error in the previous paragraph, we obtain (11).305

Summary of the Proof of Theorem 2. To establish the estimation rates, we develop multiple306

intermediate lemmas quantifying the exact amount of exploration Algorithm 2 performs. First, we307

utilize the fact that the bias of the posterior distribution Dτn
depends on its covariance matrix Σ̂τn

,308

as well as a self-normalized continuous-time matrix-valued martingale. For the effect of the former,309

i.e., λ
(

Σ̂
−1/2
τn

)
, we show an upper-bound of the order τ−1/4n (Lemma 9). To that end, the local310

geometry of the optimality manifolds that contain drift parameters θ that has the same optimal311

feedback as that of the unknown truth θ0 in (6) are fully specified (Lemma 6), and spectral properties312

of non-linear functions of random matrices are studied. Then, we establish a stochastic inequality for313

the self-normalized martingale, indicating that its scaling is of the order p(p+ q) log τn (Lemma 8).314

Therefore, utilizing the fact that θ̂n − µ̂τn has the same scaling as the bias matrix µ̂τn − θ0, we315

obtain the estimation rates of Theorem 2.316

Next, to prove the presented regret bound, we establish a delicate and tight analysis for the dominant317

effect of the control signal ut on the regret Algorithm 2 incurs. Technically, by carefully examining318

the infinitesimal influences of the control actions at every time on the cost, we show that it suffices319

to integrate the squared deviations
∣∣∣∣∣∣ut +Q−1u B̂>n P

(
θ̂n

)
xt

∣∣∣∣∣∣2 to obtain Reg (T ) (Lemma 7). We320

proceed toward specifying the effect of the exploration Algorithm 2 performs on its exploitation321

performance by proving the Lipschitz continuity of the solutions of the Riccati equation (5) with322

respect to the drift parameters:
∣∣∣∣∣∣P (θ̂n)− P (θ0)

∣∣∣∣∣∣ . ∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣ (Lemma 12). This result is a very323

important property of (5) that lets the rates of deviations from the optimal action scale the same as the324

estimation error, and is proven by careful analysis of integration along matrix-valued curves in the325

space of drift matrices, as well as spectral analysis for approximate solutions of a Lyapunov equation326

(Lemma 10). Thus, the regret bound is achieved, using the estimation error result in Theorem 2.327

6 Numerical Analysis328

We empirically evaluate the theoretical results of Theorems 1 and 2 under three control problems. The329

first two are for the flight control of X-29A airplane at 2000 ft [36] and for Boeing 747 [37]. The third330
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simulation is for blood glucose control [41]. We present the results for X-29A airplane in this section,331

and defer the other two examples to the appendix. The true drift matrices of the X-29A airplane332

are A0 =

 −0.16 0.07 −1.00 0.04
−15.20 −2.60 1.11 0.00
6.84 −0.10 −0.06 0.00
0.00 1.00 0.07 0.00

 , B0 =

−0.0006 0.0007
1.3430 0.2345
0.0897 −0.0710
0.0000 0.0000

. Further, we let ΣW = 0.5 Ip,333

Qx = Ip, and Qu = 0.1 Iq where In is the n by n identity matrix. To update the diffusion process xt334

in (1), time-steps of length 10−3 are employed. Then, in Algorithm 1, we let σw = 5,κ = bτ 3/2c,335

while τ varies from 4 to 20 seconds. The initial feedback K is generated randomly. The results336

for 1000 repetitions are depicted on the left plot of Figure 1, confirming Theorem 1 that the failure337

probability of stabilization, decreases exponentially in τ .338

On the right hand side of Figure 1, Algorithm 2 is executed for 600 second, for τn = 20× 1.1n. We339

compare TS with the Randomized Estimate algorithm [2] for 100 different repetitions. Average- and340

worst-case values of the estimation error and the regret are reported, both normalized by their scaling341

with time and dimension, as in Theorem 2. The graphs show that (especially the worst-case) regret of342

TS substantially outperforms, suggesting that TS explores in a more robust fashion. Simulations for343

Boeing 747 and for the blood glucose control, in the appendix, corroborate the above findings.

Figure 1: For the X-29A flight control problem, percentage of stabilization for 1000 runs of Algo-
rithm 1 is plotted on the left. The graphs on the right depict the performance of Algorithm 2 (blue)
compared to Randomized Estimate policy (red) [2]. The top graph plots the normalized squared

estimation error,
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, versus time, while the lower one

showcases the regret Reg (T ), normalized by p(p+ q)T 1/2 log T . Curves for the worst-case among
100 replications are provided for both quantities, as well as for the averages over all replicates.

344

7 Concluding Remarks and Future Work345

We studied Thompson sampling (TS) RL policies to control a diffusion process with unknown drift346

matrices. First, we proposed a stabilization algorithm for linear diffusion processes, and established347

that its failure probability decays exponentially with time. Further, efficiency of TS in balancing348

exploration versus exploitation for minimizing a quadratic cost function is shown. More precisely,349

regret bounds growing as square-root of time and square of dimensions are established for Algorithm 2.350

Empirical studies showcasing superiority of TS over state-of-the-art are provided as well.351

As the first theoretical analysis of TS for control of a continuous-time model, this work implies352

multiple important future directions. Establishing minimax regret lower-bounds for diffusion process353

control problem is yet unanswered. Moreover, studying the performance of TS for robust control354

of the diffusion processes aiming to simultaneously minimize the cost function for a family of drift355

matrices, is also an interesting direction for further investigation. Another problem of interest is356

efficiency of TS for learning to control under partial observation where the state is not observed and357

instead a noisy linear function of the state is available as the output signal.358
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Organization of Appendices509

This paper has four appendices. First, we prove Theorem 1 in Appendix A, together with multiple510

lemmas that the proof of the theorem relies on, and their statements and proofs are provided in511

Appendix A as well. Similarly, the proof for Theorem 2 together with intermediate steps, all are512

presented in Appendix B. Then, Appendix C consists of statements and proofs of other results that513

are used for establishing both theorems. Finally, empirical simulations beyond those presented in514

Section 6 are presented in Appendix D.515

A Proof of Theorem 1516

For analyzing the estimation error, we establish Lemma 4, which under the condition κ & τ 2517

provides that with probability at least 1− δ,518 ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . p (p+ q)
1/2

τ 1/2

λ (ΣW) ∨ σ2
w

λ (ΣW) ∧ σ2
w

(1 + ||K||)3 log
(pqκ

δ

)
.

Note that in the proof of Lemma 4, results of Lemmas 1, 2, and 3 are used.519

Therefore, Lemma 12 implies that for solutions of (5), with probability at least 1− δ, it holds that520 ∣∣∣∣∣∣P (θ̂)− P (θ0)
∣∣∣∣∣∣ . p (p+ q)

1/2

τ 1/2

λ (ΣW) ∨ σ2
w

λ (ΣW) ∧ σ2
w

(1 + ||K||)3 log
(pqκ

δ

)
.

Note that we get the same expression as the right-hand-side above, as an upper bound for∣∣∣∣∣∣B̂>P (θ̂)−B>0 P (θ0)
∣∣∣∣∣∣. So, letting

A = A0 −B0Q
−1
u B̂>P

(
θ̂
)
, A0 = A0 −B0Q

−1
u B>0 P (θ0) ,

we obtain521 ∣∣∣∣A −A0

∣∣∣∣ .√p2q

τ

λ (ΣW) ∨ σ2
w

λ (ΣW) ∧ σ2
w

(1 + ||K||)3 log
(pqκ

δ

)
, (13)

with probability at least 1− δ.522

Next, to consider the effect of the above errors on the eigenvalues of A, we compare them to that523

of A0. Note that real-parts of all eigenvalues of A0 are at most −ζ0, as defined in (10). So, using524

the result and the notation of Lemma 5, for all eigenvalues of A being on the open left half-plane it525

suffices to have ∆A0

(
A −A0

)
≤ ζ0. Also, in lights of Lemma 5, suppose that r is the size of the526

largest block in the Jordan block-diagonalization of A0. So, (36) implies that if527 ∣∣∣∣A −A0

∣∣∣∣ . r−1/2 (1 ∧ ζ0r ) ,

then Algorithm 1 successfully stabilizes the diffusion process in (1). Thus, (13) shows that the failure528

probability of Algorithm 1; P(Eτ ), satisfies529 √
p2q

τ

λ (ΣW) ∨ σ2
w

λ (ΣW) ∧ σ2
w

(1 + ||K||)3 log

(
pqκ

P(Eτ )

)
& r−1/2 (1 ∧ ζ0r ) .

Finally, r ≤ p together with log (pqκ) . τ 1/2, lead to the desired result.530

In the remainder of this section, technical lemmas above are stated and their proofs will be provided.531

A.1 Bounding cross products of state and randomization532

Definition 2 For a set S, let 1{S} be the indicator function that is 1 on S, and vanishes outside of S.533

Lemma 1 In Algorithm 1, for t ≥ 0, define the piecewise-constant signal v(t) below according to534

the randomization sequence wn:535

v(t) =

κ−1∑
n=0

1

{
nτ

κ
≤ t < (n+ 1)τ

κ

}
wn. (14)
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Then, with probability at least 1− δ, we have536

∣∣∣∣∣∣
∣∣∣∣∣∣
τ∫

0

xsv(s)>ds− τ 2

2κ2
B0

κ−1∑
n=0

wnw
>
n

∣∣∣∣∣∣
∣∣∣∣∣∣

.
(
σ2
w + λ (ΣW)

)1 +

τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
(pq1/2τ 1/2 log

pq

δ
+ q

[
1 +

τ 2

κ2

]
τ

κ1/2
log3/2 κq

δ

)
.

Proof. First, after plugging the control signal ut in (1) and solving the resulting stochastic differential537

equation, we obtain538

xt = eAtx0 +

t∫
0

eA(t−s)dWs +

t∫
0

eA(t−s)B0v(s)ds. (15)

This implies that539

τ∫
0

xtv(t)>dt = Φ1 + Φ2 + Φ3,

where540

Φ1 =

τ∫
0

eAtx0v(t)>dt =

κ−1∑
n=0

 (n+1)τ κ−1∫
nτ κ−1

eAtdt

x0w
>
n ,

Φ2 =

τ∫
0

t∫
0

eA(t−s)dWsv(t)>dt =

κ−1∑
n=0

 (n+1)τ κ−1∫
nτ κ−1

t∫
0

eA(t−s)dWsdt

w>n ,

Φ3 =

τ∫
0

t∫
0

eA(t−s)B0v(s)dsv(t)>dt.

To analyze Φ1, we use the fact that every entry of Φ1 is a normal random variable with mean zero541

and variance at most542

σ2
w

κ−1∑
n=0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(n+1)τ κ−1∫
nτ κ−1

eAtdt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

||x0||2 ≤ σ2
w

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
2

||x0||2.

Therefore, with probability at least 1− δ, it holds that543

||Φ1|| . σw

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
 ||x0||

√
pq log

(pq
δ

)
. (16)
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Furthermore, to study Φ2, Fubini Theorem [31] gives544

(n+1)τ κ−1∫
nτ κ−1

t∫
0

eA(t−s)dWsdt =

nτ κ−1∫
0

 (n+1)τ κ−1∫
nτ κ−1

eA(t−nτ κ−1)dt

 eA(nτ κ−1−s)dWs

+

(n+1)τ κ−1∫
nτ κ−1

 (n+1)τ κ−1∫
s

eA(t−s)dt

dWs

= F

n∑
m=1

eA(n−m)τ κ−1

mτ κ−1∫
(m−1)τ κ−1

eA(mτ κ−1−s)dWs

+

(n+1)τ κ−1∫
nτ κ−1

GsdWs

where the matrix F =
(n+1)τ κ−1∫
nτ κ−1

eA(t−nτ κ−1)dt, does not depend on s or n, and the matrix545

Gs =
(n+1)τ κ−1∫

s

eA(t−s)dt, does not depend on n, since nτ κ−1 ≤ s ≤ (n+ 1)τ κ−1.546

So, letting ei, i = 1, · · · , p, be the standard basis of the Euclidean space, conditioned on the Wiener547

process {Ws}s≥0, for every j = 1, · · · , q, the coordinate j of e>i Φ2 is a mean zero normal random548

variable. Thus, given {Ws}s≥0, with probability at least 1− δ, it holds that549 (
e>i Φ2ej

)2
. var

(
e>i Φ2ej

∣∣∣F (W0:τ )
)

log
1

δ
.

Now, to calculate the conditional variance, we can write550

var
(

e>i Φ2ej

∣∣∣F (W0:τ )
)

σ2
w

=

κ−1∑
n=0

e>i

(n+1)τ κ−1∫
nτ κ−1

t∫
0

eA(t−s)dWsdt


2

.
κ−1∑
n=1

( n∑
m=1

βm,n

)2

+ α2
n

 ,
where551

βm,n = e>i Fe
A(n−m)τ κ−1

mτ κ−1∫
(m−1)τ κ−1

eA(mτ κ−1−s)dWs,

αn = e>i

(n+1)τ κ−1∫
nτ κ−1

GsdWs.

To proceed, define the matrix H = [Hn,m], where for 1 ≤ m,n ≤ κ− 1, every block Hn,m ∈ R1×p552

is553

Hn,m = e>i Fe
A(n−m)τ κ−1

,

for m ≤ n, and is 0 for m > n. Then, denote554

Γ =



τ κ−1∫
0

eA(τ κ−1−s)dWs

2τ κ−1∫
τ κ−1

eA(2τ κ−1−s)dWs

...
τ∫

(κ−1)τ κ−1

eA(τ−s)dWs


∈ Rp(κ−1)×1,
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to get555
κ−1∑
n=0

(
n∑

m=1

β2
m,n

)
= ||HΓ||2 ≤ λ

(
H>H

)
||Γ||2.

Now, for the matrix H , we have [42, 43]:556

λ
(
H>H

)
.

(
κ−1∑
n=1

||Hn,1||

)2

.

(
τ κ−1

κ∑
n=1

eAnτ κ
−1

)2

.

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
2

.

Note that thanks to the independent increments of the Wiener process, the blocks of Γ are statistically557

independent. Further, by Ito Isometry [31], every block of Γ is a mean-zero normally distributed558

vector with the covariance matrix559

τ κ−1∫
0

eA(τ κ−1−s)ΣWe
A
>
(τ κ−1−s)ds.

So, according to the exponential inequalities for quadratic forms of normally distributed random560

variables [39], it holds with probability at least 1− δ, that561

||Γ||2 . pκλ (ΣW)
(
τ κ−1

)
log

1

δ
.

Thus, with probability at least 1− δ, we have562

κ−1∑
n=0

(
n∑

m=1

β2
m,n

)
.

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
2

pλ (ΣW) τ log
1

δ
.

Similarly, the bound above can be shown for
κ−1∑
n=1

α2
n. Hence, we obtain the corresponding high563

probability bound for a single entry e>i Φ2ej of Φ2, which together with a union bound, implies that564

||Φ2|| . σwpq1/2
 τ∫

0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
λ (ΣW)

1/2
τ 1/2 log

(pq
δ

)
, (17)

with probability at least 1− δ.565

Next, according to Fubini Theorem, Φ3 can also be written as566

Φ3 =

τ∫
0

s∫
0

eA(s−t)B0v(t)v(s)>dtds =

τ∫
0

τ∫
t

eA(s−t)B0v(t)v(s)>dsdt.

Thus, we have567

2Φ3 =

τ∫
0

τ∫
0

eA|t−s|B0v(t ∧ s)v(s ∨ t)>dtds.

Recall that the signal v(t) in (14) is piecewise-constant, with values determined by the randomization568

sequence wn. So, the above double integral can be written as a double sum569

2Φ3 =

κ−1∑
n=0

κ−1∑
m=0

 (n+1)τ κ−1∫
nτ κ−1

(m+1)τ κ−1∫
mτ κ−1

eA|t−s|dsdt

B0wm∧nw
>
m∨n

=

κ−1∑
n=0

κ−1∑
m=0

eA|m−n|τ κ−1

τ κ−1∫
0

τ κ−1∫
0

eA|t−s|dsdt

B0wm∧nw
>
m∨n.
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Thus, we have570

2Φ3 −
τ 2

κ2
B0

κ−1∑
n=0

wnw
>
n = Φ4 + Φ5, (18)

for571

Φ4 =

 τ κ−1∫
0

τ κ−1∫
0

eA|t−s|dsdt− τ 2κ−2Iq

B0

κ−1∑
n=0

wnw
>
n ,

Φ5 = 2

 τ κ−1∫
0

τ κ−1∫
0

eA|t−s|dsdt

 κ−1∑
n=0

κ−1∑
m=n+1

(
eA(m−n)τ κ−1

B0wnw
>
m

)
.

To proceed, we use the following concentration inequality for random matrices with martingale572

difference structures, titled as Matrix Azuma inequality [40].573

Theorem 3 Let {Ψn}kn=1 be a d1 × d2 martingale difference sequence. That is, for some filtration574

{Fn}kn=0, the matrix Ψn is Fn-measurable, and E
[
Ψn

∣∣∣Fn−1] = 0. Suppose that ||Ψn|| ≤ σn, for575

some fixed sequence {σn}kn=1. Then, with probability at least 1− δ, we have576 ∣∣∣∣∣
∣∣∣∣∣
k∑

n=1

Ψn

∣∣∣∣∣
∣∣∣∣∣
2

.

(
k∑

n=1

σ2
n

)
log

d1 + d2
δ

.

So, to study Φ4, we apply Theorem 3 to the random matrices Ψn = wnw
>
n − σ2

wIq , using the trivial577

filtration and the high probability upper-bounds for ||Ψn|| ≤ ||wn||2 + σ2
w;578

||Ψn|| ≤ σn = σ2
w

(
1 + q log

qκ

δ

)
,

as well as the fact579 ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
τ κ−1∫
0

τ κ−1∫
0

(
eA|t−s| − Iq

)
dsdt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ . τ 3κ−3,

to obtain the following bound, which holds with probability at least 1− δ:580

||Φ4|| . ||B0||σ2
wτ

3κ−2
(

1 +
q

κ1/2
log3/2 κq

δ

)
. (19)

On the other hand, to establish an upper-bound for Φ5, consider the random matrices581

Ψn =

κ−1∑
m=n+1

(
eA(m−n)τ κ−1

B0wnw
>
m

)
,

subject to the natural filtration they generate, and apply Theorem 3, using the bounds582

||Ψn|| ≤ σn . τ−1κ

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
 ||B0||σ2

wq log
κq

δ
,

together with583 ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
τ κ−1∫
0

τ κ−1∫
0

eA|t−s|dsdt

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ . τ 2κ−2.

Therefore, Theorem 3 indicates that with probability at least 1− δ, it holds that584

Φ5 .
τ

κ1/2

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
 ||B0||σ2

wq log3/2 κq

δ
. (20)

Finally, put (16), (17), (18), (19), and (20) together, to get the desired result.585

�586
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A.2 Bounding cross products of state and Wiener process587

Lemma 2 In Algorithm 1, with probability at least 1− δ, we have588 ∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

xsdW>s

∣∣∣∣∣∣
∣∣∣∣∣∣ .

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
(λ (ΣW) + σ2

w

)
p (p+ q)

1/2
τ 1/2 log

(pq
δ

)
.

Proof. First, according to (15), we can write589

τ∫
0

xtdW>t = Φ1 + Φ2 + Φ3,

where590

Φ1 =

τ∫
0

eAtx0dW>t , (21)

Φ2 =

τ∫
0

t∫
0

eA(t−s)B0v(s)dsdW>t , (22)

Φ3 =

τ∫
0

t∫
0

eA(t−s)dWsdW>t . (23)

Now, according to Ito Isometry [31], similar to (16), we have591

||Φ1|| . λ (ΣW)
1/2

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
 ||x0||

√
pq log

(pq
δ

)
, (24)

with probability at least 1− δ. Moreover, in a procedure similar to the one that lead to (17), one can592

show that with probability at least 1− δ, it holds that593

||Φ2|| .

 τ∫
0

∣∣∣∣∣∣eAt∣∣∣∣∣∣dt
λ (ΣW)

1/2
σwpq

1/2τ 1/2 log
(pq
δ

)
. (25)

Therefore, we need to find a similar upper-bound for Φ3. To that end, Ito formula provides594

d
(
e−AsWs

)
= −Ae−AsWsds+ e−AsdWs.

Therefore, integration gives595

t∫
0

e−AsdWs = e−AtWt +A

t∫
0

e−AsWsds,

which after rearranging and letting Ψt =
t∫
0

eA(t−s)dWs, leads to596

ΨtW>t =

 t∫
0

eA(t−s)dWs

W>t = WtW>t +A

 t∫
0

eA(t−s)Wsds

W>t .
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Now, since dΨt = dWt, Ito Isometry [31] implies that dΨtdW>t = ΣWdt. So, apply integration by597

part and use the above equation to get598

Φ3 =

τ∫
0

ΨtdW>t =

τ∫
0

d
(
ΨtW>t

)
−

 τ∫
0

WtdΨ>t

> − τ∫
0

dΨtdW>t

= ΨτW>τ −

 τ∫
0

WtdW>t

> − ΣWτ

= WτW>τ +A

 τ∫
0

eA(τ−s)Wsds

W>τ −

 τ∫
0

WtdW>t

> − ΣWτ .

Therefore, every entry of Φ3 is a quadratic function of the normally distributed random vectors599

Wτ ,
τ∫
0

eA(τ−s)Wsds. Note that we used the fact that600

WτW>τ =

τ∫
0

d
(
WtW>t

)
=

 τ∫
0

WtdW>t

> +

 τ∫
0

WtdW>t

+ ΣWτ .

Thus, exponential inequalities for quadratic forms of normal random vectors [39] imply that for all601

i, j = 1, · · · , p, it holds that602

(
e>i Φ3ej

)2
. pE

[(
e>i Φ3ej

)2]
log2 1

δ
, (26)

since E
[
e>i Φ3ej

]
= 0. So, it suffices to find the expectation in (26). For that purpose, we use Ito603

Isometry [31] to obtain:604

E
[(

e>i Φ3ej
)2]

= E


 τ∫

0

e>i Ψte
>
j Σ

1/2
W d

(
Σ
−1/2
W Wt

)2
 = E

 τ∫
0

∣∣∣∣∣∣e>i ΨtΣ
1/2
W ej

∣∣∣∣∣∣2dt


≤ e>j ΣWejE

 τ∫
0

(
e>i Ψt

)2
dt

 = e>j ΣWejE

 τ∫
0

e>i

t∫
0

eA(t−s)dWs

2

dt

 .
To proceed with the above expression, apply Fubini Theorem [31] to interchange the expected value605

with the integral, and then use Ito Isometry again:606

E

 τ∫
0

e>i

t∫
0

eA(t−s)dWs

2

dt

 =

τ∫
0

E


e>i

t∫
0

eA(t−s)Σ
1/2
W d

(
Σ
−1/2
W Ws

)2
dt

=

τ∫
0

e>i

 t∫
0

eA(t−s)ΣWe
A
>
(t−s)ds

 eidt

≤ e>i

 τ∫
0

eAsΣWe
A
>
sds

 eiτ .
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Therefore, (26) yields to607

||Φ3||2 ≤
p∑

i,j=1

(
e>i Φ3ej

)2
.

p∑
i,j=1

e>j ΣWeje
>
i

 τ∫
0

eAsΣWe
A
>
sds

 ei

 τ p log2 p

δ

= tr (ΣW) tr

 τ∫
0

eAsΣWe
A
>
sds

 pτ log2 p

δ

. tr (ΣW)
2

 τ∫
0

∣∣∣∣∣∣eAs∣∣∣∣∣∣ds
2

pτ log2 p

δ
. (27)

Finally, putting (24), (25), and (27) together, we obtain the desired result.608

�609

A.3 Concentration of normal posterior distribution in Algorithm 1610

Lemma 3 In Algorithm 1, letting A = A0 +B0K, suppose that611

τ &

 τ∫
0

∣∣∣∣exp(As)
∣∣∣∣2ds

(λ (ΣW) + σ2
w||B0||2

)
(p+ q) log

1

δ
, (28)

κ

τ
&

σ2
w

σ2
w ∧ λ (ΣW)

||B0|| (1 ∨ ||K||) q log
κq

δ
. (29)

Then, for the matrix Σ̂τ in (8), with probability at least 1− δ we have612

λ
(

Σ̂τ

)
& τ

(
λ (ΣW) ∧ σ2

w

) (
1 + ||K||2

)−1
.

Proof. First, we can write the control action in (7) as ut = Kxt + v(t), for the piecewise-constant613

signal v(t) in (14). Then, the dynamics in (1) provides614

dxt =
(
Axt +B0v(t)

)
dt+ dWt.

Therefore, similar to (15), one can solve the above stochastic differential equation to get615

xt = eAtx0 +

t∫
0

eA(t−s)dWs +

t∫
0

eA(t−s)B0v(s)ds.

So, using the exponential inequalities for quadratic forms [39], with probability at least 1− δ, it holds616

that617 ∣∣∣∣∣∣xτ − eAτx0

∣∣∣∣∣∣2 . λ
 τ∫

0

eAsΣWe
A
>
sds+ σ2

w

κ−1∑
n=0

JnB0B
>
0 J
>
n

(p+ p1/2 log
1

δ

)
, (30)

where618

Jn =

(n+1)τ κ−1∫
nτ κ−1

eAsds.

Furthermore, an application of Ito calculus [31] leads to dxtdx>t = dWtdW>t = ΣWdt. Now, by619

defining the matrix valued processes620

Φt =

t∫
0

xsx
>
s ds, Mt =

t∫
0

xsdW>s +

t∫
0

xsv(s)>B>0 ds,
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we obtain621

d
(
xtx

>
t

)
= xtdx

>
t + dxtx

>
t + dxtdx

>
t

= xt
((
Axt +B0v(t)

)
dt+ dWt

)>
+

((
Axt +B0v(t)

)
dt+ dWt

)
x>t + ΣWdt

= dΦtA
>

+AdΦt + dMt + dM>t + ΣWdt.

Thus, after integrating both sides of the above equality, we obtain622

ΦtA
>

+AΦt +Mt +M>t + tΣW + x0x
>
0 − xtx>t = 0.

Because all eigenvalues of A are in the open left half-plane, we can solve the above equation for Φt,623

to get624

Φt =

∞∫
0

exp
(
As
) [
Mt +M>t + tΣW + x0x

>
0 − xtx>t

]
exp

(
A
>
s
)
ds. (31)

Next, putting Lemma 1, Lemma 2, and (30) together, as long as (28) holds, with probability at least625

1− δ we have626

λ
(
Mτ +M>τ + τΣW + x0x

>
0 − xτx>τ

)
& τ λ (ΣW) .

Thus, (31) implies that λ (Φτ ) & τ λ (ΣW). To proceed, consider the matrix Σ̂τ in (8), which627

comprises two signals xt, v(t). The empirical covariance matrix of the state signal is studied above,628

while for the piecewise-constant randomization signal v(t) in (14), we have629

t∫
0

v(s)v(s)>ds =

κ−1∑
n=0

(n+1)τ κ−1∫
nτ κ−1

wnw
>
n ds = τ κ−1

κ−1∑
n=0

wnw
>
n .

Thus, according to Theorem 3, similar to (19) we have630 ∣∣∣∣∣
∣∣∣∣∣
κ−1∑
n=0

wnw
>
n − κσ2

wIq

∣∣∣∣∣
∣∣∣∣∣ . κ1/2σ2

wq log3/2 κq

δ
,

with probability at least 1− δ, which for631

Hτ =

τ∫
0

[
0p
v(s)

] [
0p
v(s)

]>
ds− τ σ2

w

[
0p×p 0p×q
0q×p Iq

]
,

leads to632

||Hτ || . σ2
wq log3/2 κq

δ
, (32)

because κ & τ 2.633

Next, using zs =
[
x>s ,x

>
s K

> + v(s)>
]>

, the matrix Σ̂τ can be written as634

Σ̂τ =

[
Ip
K

]
Φτ

[
Ip
K

]>
+ τ σ2

w

[
0p×p 0p×q
0q×p Iq

]
+ Fτ +Hτ , (33)

where635

Fτ =

τ∫
0

([
Ip
K

]
xs

[
0p
v(s)

]>
+

[
0p
v(s)

]
x>s

[
Ip
K

]>)
ds.

However, Lemma 1 and κ & τ 2 give a high probability upper-bound for the above matrix:636

||Fτ || . (1 ∨ ||K||)
(
λ (ΣW) + σ2

w

) (
pq1/2τ 1/2 log

pq

δ
+ q log3/2 κq

δ

)
. (34)

22



In the sequel, we show that with probability at least 1− δ, it holds that637

λ

([
Ip
K

]
Φτ

[
Ip
K

]>
+ τ σ2

w

[
0p×p 0p×q
0q×p Iq

])
& τ

(
λ (ΣW) ∧ σ2

w

) (
1 + ||K||2

)−1
,

which, according to (32), (33), and (34), implies the desired result. To show the above least eigenvalue638

inequality, we use λ (Φτ ) & τ λ (ΣW) to obtain639

λ

([
Ip
K

]
Φτ

[
Ip
K

]>
+ τ σ2

w

[
0p×p 0p×q
0q×p Iq

])
& τ

(
λ (ΣW) ∧ σ2

w

)
λ

([
Ip K>

K KK> + Iq

])
.

However, block matrix inversion gives640

λ

([
Ip K>

K KK> + Iq

])
= λ

([
Ip K>

K KK> + Iq

]−1)−1
= λ

([
K>K + Ip −K>
−K Iq

])−1
,

that is clearly at least
(

1 + ||K||2
)−1

, apart from a constant factor. Therefore, we get the desired641

result. �642

A.4 Approximation of true drift parameter by Algorithm 1643

Lemma 4 Suppose that θ̂ is given by Algorithm 1. Then, with probability at least 1− δ, we have644 ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . p (p+ q)
1/2

τ 1/2

λ (ΣW) ∨ σ2
w

λ (ΣW) ∧ σ2
w

(1 + ||K||)3 log
(pqκ

δ

)
. (35)

Proof. First, consider the mean matrix of the Gaussian posterior distribution. Using the data645

generation mechanism dxt = θ0
>ztdt+ dWt, we have646

µ̂τ = Σ̂−1τ

τ∫
0

zsdx
>
s = Σ̂−1τ

 τ∫
0

zsz
>
s dsθ0 +

τ∫
0

zsdW>s

 = θ0 − Σ̂−1τ

θ0 − τ∫
0

zsdW>s

 ,

where we used the definition of Σ̂τ in (8). Now, the sample θ̂ from Dτ can be written as θ̂τ =647

µ̂τ + Σ̂
−1/2
τ Φ, where Φ ∼N

(
0(p+q)×p, Ip+q

)
is a standard normal random matrix, as defined in648

the notation. So, for the error matrix, it holds that649 ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Σ̂−1τ ∣∣∣∣∣∣
||θ0||+

∣∣∣∣∣∣
∣∣∣∣∣∣
τ∫

0

zsdW>s

∣∣∣∣∣∣
∣∣∣∣∣∣
+

∣∣∣∣∣∣Σ̂−1τ ∣∣∣∣∣∣1/2||Φ||.
To proceed towards bounding the above error matrix, use650

τ∫
0

zsdW>s =

τ∫
0

([
Ip
K

]
xs +

[
0
v(s)

])
dW>s ,

to obtain651 ∣∣∣∣∣∣
∣∣∣∣∣∣
τ∫

0

zsdW>s

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ (1 ∨ ||K||)

∣∣∣∣∣∣
∣∣∣∣∣∣
τ∫

0

xsdW>s

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣
τ∫

0

v(s)dW>s

∣∣∣∣∣∣
∣∣∣∣∣∣,

To proceed, note that with probability at least 1− δ, we have652

||Φ||2 . p(p+ q) log
p(p+ q)

δ
.

Now, by putting this together with the results of Lemma 2, Lemma 3, and (25), we get the desired653

result.654

�655
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A.5 Eigenvalue ratio bound for sum of two matrices656

Lemma 5 Suppose thatM,E are p×pmatrices, and letM = Γ−1ΛΓ be the Jordan diagonalization657

of M . So, for some positive integer k, we have Λ ∈ Cp×p = diag (Λ1, · · · ,Λk), where the blocks658

Λ1, · · · ,Λk are Jordan matrices of the form659

Λi =


λi 1 0 · · · 0 0
0 λi 1 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 λi 1
0 0 0 · · · 0 λi

 ∈ Cri×ri .

Then, let r = max
1≤i≤k

ri ≤ p, and define ∆M (E) as the difference between the largest real-part of the660

eigenvalues of M + E and that of M . Then, it holds that661

∆M (E) ≤
(

1 ∨ r1/2||E||cond (Γ)
)1/r

, (36)

where cond (Γ) is the condition number of Γ: cond (Γ) = λ
(
Γ>Γ

)1/2
λ
(
Γ>Γ

)−1/2
.662

Proof. Since the expression on the right-hand-side of (36) is positive, it is enough to consider an663

eigenvalue λ of M + E which is not an eigenvalue of M , and show that < (λ) − log λ (exp (M))664

is less than the expression on the RHS of (36). So, for such λ, the matrix M − λIp is non-singular,665

while M + E − λIp is singular. Let the vector v 6= 0 be such that (M + E − λIp) v = 0, which by666

Jordan diagonalization above implies that667

v = −Γ−1 (Λ− λI)
−1

ΓEv. (37)

Then, Λ = diag (Λ1, · · · ,Λk) indicates that Λ − λI and (Λ− λI) are block diagonal, the latter668

consisting of the blocks diag
(

(Λ1 − λIr1)
−1
, · · · , (Λk − λIrk)

−1
)

.669

Now, multiplications show that670

(Λi − λIri)
−1

= −


(λ− λi)−1 (λ− λi)−2 · · · (λ− λi)−ri

0 (λ− λi)−1 · · · (λ− λi)−ri+1

...
...

...
...

0 · · · 0 (λ− λi)−1

 .
Therefore, according to the definition of matrix operator norms in Section 1, we obtain671 ∣∣∣∣∣∣(Λi − λIri)−1∣∣∣∣∣∣2 ≤ r (1 ∨ |λ− λi|−r

)2
.

Putting these bounds for the blocks of (Λ− λI)
−1 together, (37) leads to672

1 ≤
∣∣∣∣∣∣(Λ− λI)

−1
∣∣∣∣∣∣||Γ||∣∣∣∣Γ−1∣∣∣∣||E||

≤ r1/2cond (Γ) ||E|| max
1≤i≤k

(
1 ∧ |λ− λi|r

)−1
≤ r1/2cond (Γ) ||E||

(
1 ∧

(
<(λ)− log λ (exp (M))

)r)−1
.

To see the last inequality above, note that if <(λ)− log λ (exp (M)) is positive, then it is larger than673

all the terms |λ− λi|, for i = 1, · · · , k. Thus, for674

< (λ) = log λ (exp (M + E)) ,

we obtain (36). �675
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B Proof of Theorem 2676

To establish the rates of exploration Algorithm 2 performs, we utilize Lemma 8, which indicates that677

||µ̂τn
− θ0|| .

∣∣∣∣∣∣Σ̂−1/2τn

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣Σ̂−1/2τn

τn∫
0

xtdW>t

∣∣∣∣∣∣
∣∣∣∣∣∣ . λ

(
Σ̂τn

)−1/2 (
p(p+ q)λ (ΣW) log λ

(
Σ̂τn

))1/2
.

Now, (51) gives log λ
(

Σ̂τn

)
. log τn, while Lemma 9 provides λ

(
Σ̂τn

)
& τ 1/2

n λ (ΣW). More-678

over, since Σ̂
1/2
τn

(
θ̂n − µ̂τn

)
is a standard normal (p+ q)× p matrix, we have679 ∣∣∣∣∣∣θ̂n − µ̂τn

∣∣∣∣∣∣ . τ−1/4n λ (ΣW)
−1/2

(p(p+ q) log(pq))
1/2

.

Thus, we obtain the desired result for the estimation error.680

To proceed toward establishing the regret bound, Lemma 7 shows that we need to integrate681 ∣∣∣∣∣∣ut +Q−1u B̂>n P
(
θ̂n

)
xt

∣∣∣∣∣∣2 over the stabilized period of Algorithm 2: τ 0 ≤ t ≤ T :682

Reg (T ) .
(
λ (ΣW) + σ2

w

)
τ 0 +

T∫
τ0

∣∣∣∣ut +Q−1u B>0 P (θ0)xt
∣∣∣∣2dt.

Further, according to (51), for τn−1 < T ≤ τn, we have683

T∫
τ0

∣∣∣∣ut +Q−1u B>0 P (θ0)xt
∣∣∣∣2dt . λ (ΣW)

n−1∑
i=0

(τ i+1 − τ i)
∣∣∣∣∣∣K (θ̂i)−K (θ0)

∣∣∣∣∣∣2.
On the other hand, Lemma 12 implies that∣∣∣∣∣∣K (θ̂i)−K (θ0)

∣∣∣∣∣∣ . ||P (θ0)||3

λ (Qx)λ (Qu)
2

∣∣∣∣∣∣θ̂i − θ0∣∣∣∣∣∣.
Thus, we have684

Reg (T ) .
(
λ (ΣW) + σ2

w

)
τ 0 +

λ (ΣW)
2

λ (ΣW)

||P (θ0)||6

λ (Qx)
2
λ (Qu)

4 p(p+ q)

n−1∑
i=0

(τ i+1 − τ i)
log τ i

τ
1/2
i

.

Thus, according to (12), we obtain the desired regret bound result in Theorem 2.685

B.1 Geometry of drift parameters and optimal policies686

Lemma 6 For the drift parameter θ1, and for X ∈ Rp×p, Y ∈ Rp×q , define687

∆θ1(X,Y ) = P (θ1)Y +

∞∫
0

eA
>
1 t
[
M (X,Y )

>
P (θ1) + P (θ1)M (X,Y )

]
eA1tB1dt,

where A1 = A1 −B1Q
−1
u B>1 P (θ1) and M (X,Y ) = X − Y Q−1u B>1 P (θ1). Then, ∆θ1(X,Y ) is688

the directional derivative of B>P (θ) at θ1 in the direction [X,Y ]. Importantly, the tangent space689

of the manifold of matrices θ ∈ Rp×(p+q) that satisfy B>P (θ) = B>1 P (θ1) at θ1 contains all690

matrices X,Y that ∆θ1(X,Y ) = 0.691

Proof. First, note that according to the Lipschitz continuity of P (θ) in Lemma 12, the directional692

derivative exists and is well-defined, as long as ||P (θ1)|| <∞. However, Lemma 11 provides that693

P (θ1) is finite in a neighborhood of θ0, and so the required condition holds. Below, we start by694

establishing the second result to identify the tangent space, and then prove the general result on the695

directional derivative.696
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To proceed, let θ = θ1 + ε [X,Y ]
> be such that B>P (θ) = B>1 P (θ1), and denote K (θ1) =697

−Q−1u B>1 P (θ1). So, the directional derivative of P (θ1) along the matrix [X,Y ]
> can be found as698

follows. First, denoting the closed-loop transition matrix by A = A −BQ−1u B>P (θ), since699

A
>
P (θ) + P (θ)A +Qx +K (θ)

>
QuK (θ) = 0,

we have700 (
A1 + εX + εY K (θ1)

)>
P (θ) + P (θ)

(
A1 + εX + εY K (θ1)

)
= −Qx −K (θ1)

>
QuK (θ1) = A

>
1 P (θ1) + P (θ1)A1.

For the matrix E = lim
ε→0

ε−1 (P (θ)− P (θ1)), the latter result implies that701

A
>
1 E + EA1 + (X + Y K (θ1))

>
P (θ1) + P (θ1) (X + Y K (θ1)) = 0.

Then, since all eigenvalues of A1 are in the open left half-plane, the above Lyapunov equation for E702

leads to the integral form703

E =

∞∫
0

eA
>
1 t
(

(X + Y K (θ1))
>
P (θ1) + P (θ1) (X + Y K (θ1))

)
eA1tdt.

On the other hand, K (θ) = −Q−1u B>P (θ) gives704

0 = lim
ε→0

1

ε

(
B>P (θ)−B>1 P (θ1)

)
= lim
ε→0

1

ε

[(
B> −B>1

)
P (θ)−B>1 (P (θ1)− P (θ))

]
,

which, according to the definitions of E,M(X,Y ), implies the desired result about the tangent space705

of the manifold under consideration.706

Next, to establish the more general result on the directional derivative, we use the directional derivative707

of P (θ) in (65):708

∞∫
0

eA
>
1 t
(
P (θ1) [X + Y K (θ1)] + [X + Y K (θ1)]

>
P (θ1)

)
eA1tdt.

Finally, since the directional derivative forB> is Y , forB>P (θ), by the product rule it is ∆θ1(X,Y ),709

which finishes the proof. �710

B.2 Regret bounds in terms of deviations in control actions711

Lemma 7 Let ut be the action that Algorithm 2 takes at time t. Then, for the regret of Algorithm 2,712

it holds that713

Reg (T ) .
(
λ (ΣW) + σ2

w

)
τ 0

∣∣∣∣K +Q−1u B>0 P (θ0)
∣∣∣∣2

+

T∫
τ0

∣∣∣∣ut +Q−1u B>0 P (θ0)xt
∣∣∣∣2dt+ x∗T

>P (θ0)x∗T ,

where x∗T is the terminal state under the optimal trajectory πopt in (6).714

Proof. First, denote the optimal linear feedback of πopt in (6) by ut = K (θ0)xt, where715

K (θ0) = −Q−1u B0P (θ0). According to the episodic structure of Algorithm 2, for τn ≤ t < τn+1,716

denote717

Kt = −Q−1u B̂>n P
(
θ̂n

)
.

We first consider the regret of Algorithm 2 after finishing stabilization by running Algorithm 1; i.e.,718

for τ 0 ≤ t ≤ T . Fix some small ε > 0, that we will let decay later. We proceed by finding an719

approximation of the regret through sampling at times τ 0 + kε, for non-negative integers k. To do720

that, denote N = d(T − τ 0)/εe, and define the sequence of policies {π̂i}Ni=0 according to721

π̂i =

{
ut = Ktxt t < τ 0 + iε

ut = K (θ0)xt t ≥ τ 0 + iε
.
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That is, the policy π̂i switches to the optimal feedback at time τ 0 + iε. So, the zeroth policy π̂0722

corresponds to applying the optimal policy πopt after stabilization at time τ 0, while the last one π̂N723

is nothing but the one in Algorithm 2, that we denote by π̂, for the sake of brevity. As such, we have724

Regπ̂0
(T ) = 0, and the telescopic summation below holds true:725

Regπ̂ (T ) =

N−1∑
i=0

(
Regπ̂i+1

(T )− Regπ̂i
(T )
)
. (38)

Now, to consider the difference Regπ̂i+1
(T ) − Regπ̂i

(T ), for a fixed i in the range 0 ≤ i < N ,726

denote t1 = τ 0 + iε and let xπ̂i
t ,x

π̂i+1

t be the state trajectories under π̂i, π̂i+1, respectively. By727

definition, we have xπ̂i
t = x

π̂i+1

t , for all t ≤ t1. So, we drop the policy superscript and use xt1 to728

refer to the states of both of them at time t1. Therefore, as long as t1 ≤ t < t1 + ε, similar to (15),729

the solutions of the stochastic differential equation are730

xπ̂i
t = eA0(t−t1)xt1 +

t∫
t1

eA0(t−s)dWs,

x
π̂i+1

t = eA(t−t1)xt1 +

t∫
t1

eA(t−s)dWs,

where A0 = A0 +B0K (θ0) and A = A0 +B0Kt1 are the closed-loop transition matrices under π̂i731

and π̂i+1, respectively. To work with the above two state trajectories, we define some notations for732

convenience:733

M0 = Qx +K (θ0)
>
QuK (θ0) ,

M1 = Qx +Kt1QuKt1 ,

yt = x
π̂i+1

t − xπ̂i
t ,

Et = eA(t−t1) − eA0(t−t1).

Thus, letting

Zt =

t∫
t1

[
eA(t−s) − eA0(t−s)

]
dWs,

it holds that yt = Etxt1 + Zt +O
(
ε2
)
. Further, for the observation signal zt and the cost matrix Q734

defined in Section 2, we have735

t1+ε∫
t1

(∣∣∣∣∣∣Q1/2zt (π̂i+1)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣Q1/2zt (π̂i)

∣∣∣∣∣∣2)dt
=

t1+ε∫
t1

[(
xπ̂i
t + yt

)>
M1

(
xπ̂i
t + yt

)
− xπ̂i

t

>
M0x

π̂i
t

]
dt

=

t1+ε∫
t1

[
xπ̂i
t

>
Sxπ̂i

t + 2y>t M1x
π̂i
t + y>t M1yt

]
dt, (39)

where S = M1 −M0 = K>t1QuKt1 −K (θ0)
>
QuK (θ0).736

On the other hand, for t ≥ t1 + ε, the evolutions of the state vectors are the same for the two policies737

and we have738

xπ̂i
t = eA0(t−t1−ε)xπ̂i

t1+ε +

t∫
t1+ε

eA0(t−s)dWs.
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Therefore, the difference signal becomes739

yt = eA0(t−t1+ε)
[
x
π̂i+1

t1+ε − x
π̂i
t1+ε

]
= eA0(t−t1+ε)yt1+ε = eA0(t−t1+ε) [Et1+εxt1 + Zt1+ε] ,

and we obtain740

T∫
t1+ε

(∣∣∣∣∣∣Q1/2zt (π̂i+1)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣Q1/2zt (π̂i)

∣∣∣∣∣∣2)dt
=

T∫
t1+ε

[(
xπ̂i
t + yt

)>
M0

(
xπ̂i
t + yt

)
− xπ̂i

t

>
M0x

π̂i
t

]
dt

=

T∫
t1+ε

[
2y>t M0x

π̂i
t + y>t M0yt

]
dt. (40)

Now, after doing some algebra, the expressions in (39) and (40) lead ro the following for small ε:741

Regπ̂i+1
(T )− Regπ̂i

(T ) =
(
x>t1Ft1xt1 + 2x>t1gt1

)
ε+O

(
ε2
)
,

where742

Ft1 = St +

T∫
t1

(
2H>t1e

A
>
0 (s−t1)

(
Qx +K (θ0)

>
QuK (θ0)

)
eA0(s−t1)

)
ds+O (ε) ,

gt1 =

T∫
t1

H>t1eA>0 (s−t1)
(
Qx +K (θ0)

>
QuK (θ0)

) s∫
t1

eA0(s−u)dWu

ds+O (ε) ,

St1 = K>t1QuKt1 −K (θ0)
>
QuK (θ0) ,

Ht1 = B0 (Kt1 −K (θ0)) .

Thus, as ε tends to zero, by (38), we have743

Regπ̂ (T )− Regπ̂ (τ 0) =

T∫
τ0

(
x>t Ftxt + 2x>t gt

)
dt, (41)

where Ft, gt are the above expressions, without the O (ε) terms.744

Next, by (61), the quadratic expression in terms of the matrix Ft can be equivalently written with745

Ft = St +H>t P (θ0) + P (θ0)Ht −H>t Et − EtHt,

where746

Et =

∞∫
T

eA
>
0 (s−t)M0e

A0(s−t)ds = eA
>
0 (T−t)P (θ0) eA0(T−t).

Note that in the last equality above, we again used (61). Now, after doing some algebra similar to the747

expression in (59), we have748

St +H>t P (θ0) + P (θ0)Ht = (Kt −K (θ0))
>
Qu (Kt −K (θ0)) ,

which in turn implies that749

T∫
τ0

x>t Ftxtdt =

T∫
τ0

∣∣∣∣∣∣Q1/2
u (Kt −K (θ0))xt

∣∣∣∣∣∣2dt− 2

T∫
τ0

x>t EtHtxtdt. (42)

To study the latter integral, suppose that x∗t is the state trajectory under the optimal policy πopt750

in (6), and define ξt = xt − x∗t .Note that (1) gives dxt =
(
A0 +Ht

)
xtdt + dWt, as well as751
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dx∗t = A0x
∗
tdt+ dWt. Thus, we get dξt = Htxtdt+A0ξtdt, using which, we have the following752

for ϕt = e−A0tξt:753

dϕt = d
(
e−A0tξt

)
= e−A0tdξt −A0e

−A0tξtdt = e−A0tHtxtdt.

Above, we used the fact that the matrices e−A0t, A0 commute. So, it holds that754

x>t EtHtxtdt = x>t e
A
>
0 (T−t)P (θ0) eA0Tdϕt

= x∗t
>eA

>
0 (T−t)P (θ0) eA0Tdϕt + ϕ>t e

A
>
0 TP (θ0) eA0Tdϕt

= x∗t
>eA

>
0 (T−t)P (θ0) eA0Tdϕt +

1

2
d
[
ϕ>t e

A
>
0 TP (θ0) eA0Tϕt

]
.

In the above expression, writing the solution of the stochastic differential equation as in (15), we have755

eA0(T−t)x∗t = x∗T −
T∫
t

eA0(T−s)dWs,

which gives756

2x>t EtHtxtdt = 2x∗t
>eA

>
0 (T−t)P (θ0) eA0Tdϕt + d

[
ϕ>t e

A
>
0 TP (θ0) eA0Tϕt

]
= −2

 T∫
t

eA0(T−s)dWs

> P (θ0) eA0Tdϕt

+ 2x∗T
>P (θ0) eA0Tdϕt + d

[
ϕ>t e

A
>
0 TP (θ0) eA0Tϕt

]
= −2

 T∫
t

eA0(T−s)dWs

> P (θ0) eA0Tdϕt

+ d

[(
x∗T + eA0Tϕt

)>
P (θ0)

(
x∗T + eA0Tϕt

)]
,

where the latest equality holds since the differential of the constant term x∗TP (θ0)x∗T is zero. Next,757

integration by part yields to758

T∫
τ0

 T∫
t

eA0(T−s)dWs

> P (θ0) eA0Tdϕt = −

 T∫
τ0

eA0(T−s)dWs

> P (θ0) eA0Tϕτ0

+

T∫
τ0

ϕ>t e
A
>
0 TP (θ0) eA0(T−t)dWt

Now, note the following simplifying expressions: First, by definition, we have x∗T + eA0TϕT =759

x∗T + ξT = xT and760

x∗T + eA0Tϕτ0
= x∗T + eA0(T−t)(xτ0

− x∗τ0
) = eA0(T−t)xτ0

+

T∫
τ0

eA0(T−s)dWs,

is the terminal state vector under the policy π̂0 that switches to the optimal policy πopt after the time761

τ 0, because
T∫
τ0

eA0(T−s)dWs = x∗T − eA0(T−τ0)x∗τ0
. Finally, according to Lemma 8, we have762

∣∣∣∣∣∣
∣∣∣∣∣∣
T∫

τ0

ϕ>t e
A
>
0 TP (θ0) eA0(T−t)dWt

∣∣∣∣∣∣
∣∣∣∣∣∣ .

 T∫
τ0

∣∣∣∣∣∣eA0(T−t)ξt

∣∣∣∣∣∣2dt
1/2

log

T∫
τ0

∣∣∣∣∣∣eA0(T−t)ξt

∣∣∣∣∣∣2dt.
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Putting the above bounds together, we obtain763

−2

T∫
τ0

x>t EtHtxtdt− x∗T
>P (θ0)x∗T .

T∫
τ0

∣∣∣∣∣∣eA0(T−t) (xt)
∣∣∣∣∣∣2dt. (43)

To proceed toward working with the integration of x>t gt, employ Fubini Theorem [31] to obtain764

T∫
τ0

x>t g̃tdt =

T∫
τ0

T∫
t

s∫
t

(
x>t H

>
t e

A
>
0 (s−t)MeA0(s−u)

)
dWudsdt

=

T∫
τ0

u∫
τ0

T∫
u

(
x>t H

>
t e

A
>
0 (s−t)MeA0(s−u)

)
dsdtdWu.

Now, denote the inner double integral by y>u :765

y>u =

u∫
τ0

T∫
u

(
x>t H

>
t e

A
>
0 (s−t)M0e

A0(s−u)
)
dsdt =

u∫
0

(
x>t (Kt −K (θ0))

>
P>t,u

)
dt,

where766

P>t,u = B>0

T∫
u

eA
>
0 (s−t)M0e

A0(s−u)ds.

Now, let βT =
T∫
τ0

||yu||2du, and employ Lemma 8 to get767

T∫
τ0

x>t g̃tdt =

T∫
τ0

y>u dWu = O
(
β
1/2
T log1/2 βT

)
. (44)

Thus, we can work with βT to bound the portion of the regret the integral of x>t gt captures. For that768

purpose, the triangle inequality and Fubini Theorem [31] lead to769

βT ≤
T∫

0

u∫
0

||Pt,u (Kt −K (θ0))xt||2dtdu

=

T∫
0

x>t (Kt −K (θ0))
>

 T∫
t

P>t,uPt,udu

 (Kt −K (θ0))xt

dt
≤ λ

 T∫
t

P>t,uPt,udu

 T∫
0

||(Kt −K (θ0))xt||2dt.
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We can show that λ

(
T∫
t

P>t,uPt,udu

)
. 1:770

λ

 T∫
t

P>t,uPt,udu

 ≤
T∫
t

∣∣∣∣P>t,u∣∣∣∣2du
.

T∫
t

∣∣∣∣∣∣
∣∣∣∣∣∣
T∫
u

eA
>
0 (s−t)M0e

A0(s−u)ds

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

≤
T∫
t

∣∣∣∣∣∣eA>0 (u−t)
∣∣∣∣∣∣2
∣∣∣∣∣∣
∣∣∣∣∣∣
T∫
u

eA
>
0 (s−u)M0e

A0(s−u)ds

∣∣∣∣∣∣
∣∣∣∣∣∣
2

du

≤ ||P (θ0)||2
T∫
t

∣∣∣∣∣∣eA>0 (u−t)
∣∣∣∣∣∣2du . 1.

Above, in the last inequality we use (61). Note that the last expression is a bounded constant, since771

all eigenvalues of A0 are in the open left half-plane.772

Thus, according to (44), it is enough to consider773

βT .

T∫
0

||(Kt −K (θ0))xt||2dt, (45)

in order to bound the portion of the regret that the integration of x>t gt contributes.774

While the above discussions apply to the regret during the time interval τ 0 ≤ t ≤ T , we can similarly775

bound the regret during the stabilization period 0 ≤ t ≤ τ 0. The difference is in the randomization776

sequence wn, n = 0, 1, · · · , which is reflected through the piece-wise constant signal v(t) in (14).777

Therefore, it suffices to add the effect of v(t) to the one of the Wiener process Wt, and so ΣW will be778

replaced with
(
ΣW + σ2

w

)
:779

Regπ̂ (τ 0) ≤
(
ΣW + σ2

w

)
τ 0||K −K (θ0)||2. (46)

Finally, (41), (42), (43), (44), (45), and (46) together, we get the desired result. �780

B.3 Stochastic inequality for continuous-time self-normalized martingales781

Lemma 8 Let zt =
[
x>t ,u

>
t

]>
be the observation signal and Σ̂t be as in (8). Then, for the782

stochastic integral Φt =
t∫
0

zsdW>s , we have783

λ
(

Φ>t Σ̂−1t Φt

)
. pλ (ΣW)

[
log det Σ̂t − log det Σ̂0

]
. (47)

Proof. We approximate the integrals over the interval [0, t] through n equally distanced points in the784

interval, and then let n→∞. So, let ε = bt/nc, and for k = 0, 1, · · · , n− 1, consider the matrix785

Mk =
1

ε
Σ̂0 +

k∑
i=0

ziεz
>
iε.

Using the above matrices, for k = 1, · · · , n, define αk = z>kεM
−1
k−1zkε. Thus, we have786

detMk = det
[
Mk−1

(
I +M−1k−1zkεz

>
kε

)]
= det (Mk−1) det

(
I +M−1k−1zkεz

>
kε

)
.

Now, M−1k−1zkεz
>
kε is a rank-one matrix, and so p+ q − 1 eigenvalues of I +M−1k−1zkεz

>
kε except787

one are 1, and one eigenvalue is 1 + αk. So, it holds that788

detMk

detMk−1
= 1 + αk.
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Next, it is straightforward to show that789

M−1k =
(
Mk−1 + zkεz

>
kε

)−1
= M−1k−1 −

M−1k−1zkεz
>
kεM

−1
k−1

1 + z>kεM
−1
k−1zkε

.

Therefore, we have790

z>kεM
−1
k zkε = z>kε

(
Mk−1 + zkεz

>
kε

)−1
zkε = αk −

α2
k

1 + αk
=

detMk − detMk−1

detMk
.

However, since for all α ∈ R we have 1 + α ≤ eα, we obtain791

z>kεM
−1
k zkε ≤ log detMk − log detMk−1. (48)

To proceed, let Fk be the sigma-field generated by the Wiener process up to time kε:792

Fk = F (Ws, 0 ≤ s ≤ kε) .

Further, define Lk =
k∑
i=0

ziε
(
W(i+1)ε −Wiε

)>
.793

So, we have794

E
[
L>kM

−1
k Lk

]
= E

[
E
[
L>kM

−1
k Lk

∣∣∣Fk]] = E
[
E
[
Ψ>kM

−1
k Ψk

∣∣∣Fk]] ,
where Ψk = Lk−1 + zkε

(
W(k+1)ε −Wkε

)>
. Since Lk−1 is Fk–measurable, we get795

E
[
L>kM

−1
k Lk

]
= E

[
L>k−1M

−1
k Lk−1 + E

[(
W(k+1)ε −Wkε

)
z>kεM

−1
k zkε

(
W(k+1)ε −Wkε

)> ∣∣∣Fk]]
= E

[
L>k−1M

−1
k Lk−1 +

(
z>kεM

−1
k zkε

)
εΣW

]
,

where in the last line above we used Fk–measurability of zkε,Mk, as well as the independent796

increments property and the covariance matrix of the Wiener process. So, (48) implies that797

λ
(
E
[
L>kM

−1
k Lk

])
− λ

(
E
[
L>k−1M

−1
k−1Lk−1

])
≤ ελ (ΣW) (log det (εMk)− log det (εMk−1)) .

Thus, summing over k = 1, · · · , n, we get798

λ
(
E
[
L>n (εMn)

−1
Ln

])
≤ λ (ΣW) (log det (εMn)− log det (εM0)) .

Now, consider λ
(
L>n (εMn)

−1
Ln

)
. Since L>n (εMn)

−1
Ln is positive semidefinite, its largest799

eigenvalue can be upper-bounded by its trace, which implies that800

E
[
λ
(
L>n (εMn)

−1
Ln

)]
≤ E

[
tr
(
L>n (εMn)

−1
Ln

)]
= tr

(
E
[
L>n (εMn)

−1
Ln

])
≤ pλ

(
E
[
L>n (εMn)

−1
Ln

])
≤ pλ (ΣW) (log det (εMn)− log det (εM0)) ,

where we used the fact that the linear operators of trace and expected value interchange.801

Thus, Martingale Convergence Theorem [31] implies that802

λ
(
L>n (εMn)

−1
Ln

)
. pλ (ΣW) (log det (εMn)− log det (εM0))

Finally, as n tends to infinity, ε shrinks and we obtain the desired result. �803
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B.4 Anti-concentration of the posterior precision matrix in Algorithm 2804

Lemma 9 In Algorithm 2, we have the following for the matrix Σ̂τn
that is defined in (8):805

lim inf
n→∞

τ−1/2n λ
(

Σ̂τn

)
& λ (ΣW) .

Proof. First, we define some notation. Recall that during the time interval τ i ≤ t < τ i+1806

corresponding to episode i, Algorithm 2 uses a single parameter estimate θ̂i. So, for i = 0, 1, · · · ,807

we use Φi,Ki, Ai to denote the sample covariance matrix of the state vectors of episode i, and the808

feedback and closed-loop matrices during episode i:809

Φi =

τ i+1∫
τ i

xtx
>
t dt,

Ki = −Q−1u B̂>i P
(
θ̂i

)
,

Ai = A0 +B0Ki.

So, it holds that810

Σ̂τn
= Σ̂τ0

+

n−1∑
i=0

LiΦiL
>
i , (49)

where Li =

[
Ip
Ki

]
.811

Now, consider the matrix Φi. Note that according to the bounded grows rates of the episode (from812

both above and below) in (12), both τ i+1 − τ i and τ i tend to infinity as i grows. Thus, in the sequel,813

we suppose that the indices n, i, j, k that are used for denoting the episodes, are large enough. Similar814

to (31), we have815

Φi =

∞∫
0

eAis
[
(τ i+1 − τ i)ΣW +Mi +M>i + xτ ix

>
τ i
− xτ i+1x

>
τ i+1

]
eA
>
i sds,

where816

Mi =

τ i+1∫
τ i

xtdW>t .

So, using the fact that the real-parts of all eigenvalues of Ai are negative and so xτ i+1
can be bounded817

with exp
(
Ai(τ i+1 − τ i)

)
xτ i similar to (30), as well as Lemma 2, we obtain the following bounds818

for the largest and smallest eigenvalues of Φi819

λ (Φi) & (τ i+1 − τ i)λ (ΣW)λ

 ∞∫
0

eAiseA
>
i sds

 , (50)

λ (Φi) . (τ i+1 − τ i)λ (ΣW)

∞∫
0

∣∣∣∣∣∣eAis
∣∣∣∣∣∣2ds. (51)

On the other hand, for the parameter estimates at the end of episodes, similar to (35), we have820

Σ̂1/2
τ i

(
θ̂i − θ0

)
= Σ̂1/2

τ i

(
θ̂i − µ̂τ i

)
+ Σ̂−1/2τ i

−θ0 +

τ i∫
0

zsdW>s

 .

Note that by the construction of the posteriorDτ i in (9), for the first term we have Σ̂
1/2
τ i

(
θ̂i − µ̂τ i

)
∼821

N (0, Ip+q). Further, for the second term, Lemma 8 together with (51) lead to822 ∣∣∣∣∣∣
∣∣∣∣∣∣Σ̂−1/2τ i

−θ0 +

τ i∫
0

zsdW>s

∣∣∣∣∣∣
∣∣∣∣∣∣ . (p+ q) log1/2 τ i.
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Therefore, we have823 ∣∣∣∣∣∣Σ̂1/2
τ i

(
θ̂i − θ0

)∣∣∣∣∣∣ . (p+ q) log1/2 τ i.

However, using the relationship between Σ̂τ i
and Φ0, · · · ,Φi−1 in (49), we can write824

(p+ q)2 log τ i &
(
θ̂i − θ0

)>
Σ̂τ i

(
θ̂i − θ0

)
≥
(
θ̂i − θ0

)> i−1∑
j=0

LjΦjL
>
j

(θ̂i − θ0) ,
which according to the bound in (50) implies that825

λ (ΣW)

i−1∑
j=0

(τ j+1 − τ j)
∣∣∣∣∣∣L>j (θ̂i − θ0)∣∣∣∣∣∣2 . (p+ q)2 log τ i.

Clearly, the above result indicates that for j < i, it holds that826 ∣∣∣∣∣∣∣∣(θ̂i − θ0)> Lj∣∣∣∣∣∣∣∣2 . (p+ q)2 log τ i
λ (ΣW) (τ j+1 − τ j)

. (52)

Next, we employ Lemma 6 to study hoe Algorithm 2 utilizes Thompson sampling to diversify the827

matrices L1, L2, · · · . To do so, we consider the randomization the posterior Dτ i applies to the828

sub-matrix of the parameter estimate corresponding to the input matrix B̂i. That is, we aim to find829

the distribution of the random p× q matrix
(
θ̂i − µ̂τ i

)> [0p×q
Iq

]
. Since θ̂i − µ̂τ i

∼N
(

0, Σ̂−1τ i

)
,830

we have831

Ei =

[
0p×q
Iq

]> (
θ̂i − µ̂τ i

)
∼N

(
0,

[
0p×q
Iq

]>
Σ̂−1τ i

[
0p×q
Iq

])
= N

(
0,
[
Σ̂−1τ i

]
22

)
, (53)

where
[
Σ̂−1τ i

]
22

is the q × q lower-left block in Σ̂−1τ i
:832

Σ̂−1τ i
=

[Σ̂−1τ i

]
11

[
Σ̂−1τ i

]
12[

Σ̂−1τ i

]
21

[
Σ̂−1τ i

]
22

 .
Note that Σ̂τ0

is a positive semi-definite matrix. Therefore, it suffices to show the desired result for833

Σ̂τn − Σ̂τ0 , and so in the sequel we remove the effect of Σ̂τ0 by treating τ 0 as 0. So, to calculate834

the inverse Σ̂−1τ i
, we apply block matrix inversion to835

Σ̂τ i
=

[Σ̂τ i

]
11

[
Σ̂τ i

]
12[

Σ̂τ i

]
21

[
Σ̂τ i

]
22

 =


i−1∑
j=0

Φj
i−1∑
j=0

ΦjK
>
j

i−1∑
j=0

KjΦj
i−1∑
j=0

KjΦjK
>
j

 ,
to obtain836 [

Σ̂−1τ i

]
11

=
[
Σ̂τ i

]−1
11

+
[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

Ω−1i

[
Σ̂τ i

]
21

[
Σ̂τ i

]−1
11
,[

Σ̂−1τ i

]
12

= −
[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

Ω−1i ,[
Σ̂−1τ i

]
22

= Ω−1i ,

Ωi =
[
Σ̂τ i

]
22
−
[
Σ̂τ i

]
21

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
.

The smallest eigenvalue of Σ̂τ i
is related to that of Ωi. On one hand, since Ω−1i is a sub-matrix837

of Σ̂−1τ i
; i.e., λ

(
Ω−1i

)
≤ λ

(
Σ̂−1τ i

)
, which implies that λ (Ωi) ≥ λ

(
Σ̂τ i

)
. Now, we show that the838
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inequality holds in the opposite direction as well, modulo a constant factor. Suppose that ν ∈ Rp+q839

is a unit vector, ν = [ν>1 , ν
>
2 ]>, ν1 ∈ Rp, and ν2 ∈ Rq . So, after doing some algebra as follows, we840

have841

ν>Σ̂τ i
ν = ν>1

[
Σ̂τ i

]
11
ν1 + 2ν>1

[
Σ̂τ i

]
12
ν2 + ν>2

[
Σ̂τ i

]
22
ν2

= ν>1

[
Σ̂τ i

]
11
ν1 + 2ν>1

[
Σ̂τ i

]
11

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

+ ν>2

[
Σ̂τ i

]
21

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
11

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

+ ν>2

[
Σ̂τ i

]
22
ν2 − ν>2

[
Σ̂τ i

]
21

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

=

(
ν1 +

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

)> [
Σ̂τ i

]
11

(
ν1 +

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

)
+ ν2Ωiν2.

For the matrix
[
Σ̂τ i

]
11

=
i−1∑
j=0

Φj , the smallest eigenvalue lower bounds in (50) lead to842

λ
([

Σ̂τ i

]
11

)
& τ iλ (ΣW). Thus, in order to show the desired smallest eigenvalue result for Σ̂τn

, it843

suffices to consider unit vectors ν for which
∣∣∣∣∣∣∣∣ν1 +

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
ν2

∣∣∣∣∣∣∣∣ . τ−1/4i holds. For such844

unit vectors ν, the expressions
[
Σ̂τ i

]
11

=
i−1∑
j=0

Φj and
[
Σ̂τ i

]
12

=
i−1∑
j=0

ΦjK
>
j , as well as Lemma 11845

that indicates that the matrices Kj are bounded, ||ν2|| needs to be bounded away from zero since846

||ν1||2 + ||ν2||2 = ||ν||2 = 1. Thus, we have847

λ (Ωi) ≥ λ
(

Σ̂τ i

)
& λ (Ωi) . (54)

Otherwise, the desired result about the eigenvalue of Σ̂τn holds true.848

By simplifying the following expression, we get849

i−1∑
j=0

(
K>j −

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)>
Φj

(
K>j −

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)

=

i−1∑
j=0

KjΦjK
>
j −

i−1∑
j=0

KjΦj

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

−
i−1∑
j=0

([
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)>
ΦjK

>
j +

i−1∑
j=0

([
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)>
Φj

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

=
[
Σ̂τ i

]
22
−
[
Σ̂τ i

]
21

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12
−
([

Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)> [
Σ̂τ i

]
21

+

([
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

)> [
Σ̂τ i

]
11

[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

= Ωi.

However, we have850

K>j −
[
Σ̂τ i

]−1
11

[
Σ̂τ i

]
12

=
[
Σ̂τ i

]−1
11

([
Σ̂τ i

]
11
K>j −

i−1∑
k=0

ΦkK
>
k

)
=
[
Σ̂τ i

]−1
11

i−1∑
k=0

Φk (Kj −Kk)
>
,

i.e.,851

Ωi =

i−1∑
j=0

([
Σ̂τ i

]−1
11

i−1∑
k=0

Φk (Kj −Kk)
>

)>
Φj

([
Σ̂τ i

]−1
11

i−1∑
k=0

Φk (Kj −Kk)
>

)
. (55)
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We use the above expression to relate the matrices Ω0,Ω1, · · · to each others. First, let Ψ0,Ψ1, · · ·852

be a sequence of independent random q × p matrices with standard normal distribution853

Ψi ∼N (0q×p, Iq) . (56)

Then, since
[
Σ̂−1τ i

]
22

= Ω−1i and (53), we can let Ei = Ω
−1/2
i Ψi. Further, for j, k = 0, 1, · · · ,854

denote the B-part of the differences µ̂k − µ̂j by855

Hkj = [0q×p, Iq] (µ̂k − µ̂j) .

Note that the above result together with (53) give856

[0q×p, Iq]
(
θ̂k − θ̂j

)
= Hkj + Ω

−1/2
k Ψk − Ω

−1/2
j Ψj .

We will show in the sequel that the above normally distributed random matrices are the effective857

randomizations that Thompson sampling Algorithm 2 applies for exploration. For that purpose, using858

the directional derivatives and the optimality manifolds in Lemma 6, we calculate Kk−Kj according859

to Hkj + Ω
1/2
k Ψk − Ω

1/2
j Ψj . Plugging (52) in the expression for ∆θ1(X,Y ) in Lemma 6 for860

[X,Y ] = θ̂k
>
− θ̂j

>
,

we have861 ∣∣∣∣∣∣
∣∣∣∣∣∣
∞∫
0

eA
>
j t

[
L>j

(
θ̂k − θ̂j

)
P
(
θ̂j

)
+ P

(
θ̂j

)(
θ̂k − θ̂j

)>
Lj

]
eAjtdt

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.
(p+ q)2 log τ k

λ (ΣW) (τ j+1 − τ j)
,

and862

P
(
θ̂j

)
Y = P

(
θ̂j

)(
θ̂k − θ̂j

)> [0p×q
Iq

]
= P

(
θ̂j

)(
Hkj + Ω

−1/2
k Ψk − Ω

−1/2
j Ψj

)>
.

Putting the above two portions of ∆θ1(X,Y ) together, since Ψk,Ψj are independent and standard863

normal random matrices, (54) implies that the latter portion of ∆θ1(X,Y ) is the dominant one. Thus,864

according to Lemma 6 and the expression for the optimal feedbacks in (6), we can approximate865

Kk −Kj in (55) by866

−Q−1u
(
Hkj + Ω

−1/2
k Ψk − Ω

−1/2
j Ψj

)
P
(
θ̂j

)
.

We use the above approximation for the matrix
[
Σ̂τ i

]−1
11

i−1∑
k=0

Φk (Kj −Kk)
> in (55), letting the867

episode number i grow. So, the following expression captures the limit behavior of the least eigenvalue868

of Σ̂τn
in Algorithm 2:869

lim
n→∞

QuΩnQu

τ
1/2
n λ (ΣW)

= lim
n→∞

n−1∑
j=0

n−1∑
k=0

Φ̃kP
(
θ̂j

)(Hkj + Ω
−1/2
k Ψk − Ω

−1/2
j Ψj

τ
−1/4
n

)>>

τ j+1 − τ j
τnλ (ΣW)

Φj
τ j+1 − τ j

n−1∑
k=0

Φ̃kP
(
θ̂j

)(Hkj + Ω
−1/2
k Ψk − Ω

−1/2
j Ψj

τ
−1/4
n

)> , (57)

where870

Φ̃k =

[
n−1∑
i=0

Φi

]−1
Φk.

The equation in (57) provides the limit behavior of the randomized exploration Algorithm 2 performs871

for learning to control the diffusion process. More precisely, it shows the roles of the random samples872

from the posteriors through the random matrices Ω
−1/2
k Ψk, for k = 0, · · · , n− 1, which render the873

limit matrix in (57) a positive definite one, as describe below.874
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Note that since
n−1∑
i=0

Φ̃i = Ip, the expression

n−1∑
k=0

Φ̃kP
(
θ̂j

)(Hkj + Ω
−1/2
k Ψk − Ω

−1/2
j Ψj

τ
−1/4
n

)>

is a weighted average of the random matrices τ 1/4
n

(
Hkj + Ω

−1/2
k Ψk − Ω

−1/2
j Ψj

)>
. Moreover,875

according to the discussions leading to (50) and (51), the matrix (τ j+1 − τ j)−1Φj converge as876

j grows to a positive definite matrix, for which all eigenvalues are larger than λ (ΣW), modulo877

a constant factor. On the other hand, because the lengths of the episodes satisfies the bounded878

growth rates in (12), the ratios τ−1n (τ j+1 − τ j) are bounded from above and below by αn−j and879

α(α+ 1)n−j−1, and their sum over j = 0, · · · , n− 1 is 1. A similar property of boundedness from880

above and below applies to τ−1/4j τ
−1/4
n . So, the expression on the right-hand-side of (57) is in fact a881

weighted average of882

n−1∑
k=0

Φ̃kP
(
θ̂j

)(Hkj + Ω
−1/2
k Ψk − Ω

−1/2
j Ψj

τ
−1/4
n

)>
,

for j = 0, · · · , n− 1.883

Note that by the distribution of the random matrices in (56), all rows of884

τ
1/4
n

(
Hkj + Ω

−1/2
k Ψk − Ω

−1/2
j Ψj

)>
are independent normal random vectors, implying885

that these random matrices are almost surely full-rank. Therefore, τ−1/2n Ωn converges to a positive886

definite random matrix, which according to (54) implies the desired result.887

�888
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C Auxiliary Lemmas889

C.1 Behaviors of diffusion processes under non-optimal feedback890

Lemma 10 Let Â, B̂ be an arbitrary pair of stabilizable system matrices. Suppose that for the891

closed-loop matrix A = Â + B̂K, we have λ
(
exp

(
A
))
< 1, and P satisfies892

A
>
P + PA +Qx +K>QuK = 0.

Then, it holds that893

P = P
(
θ̂
)

+

∞∫
0

eA
>
t
(
K +Q−1u B̂>P

(
θ̂
))> (

QuK + B̂>P
(
θ̂
))

eAtdt.

Proof. Denote K
(
θ̂
)

= −Q−1u B̂>P
(
θ̂
)

and Â = Â + B̂K
(
θ̂
)

. So, after doing some algebra, it894

is easy to show that the algebraic Riccati equation in (5) gives895

Â
>
P
(
θ̂
)

+ P
(
θ̂
)
Â +Qx +K

(
θ̂
)>

QuK
(
θ̂
)
.

Now, let Φ = K>QuK −K
(
θ̂
)>

QuK
(
θ̂
)

, and subtract the above equation that P
(
θ̂
)

solves,896

from the similar one in the statement of the lemma that P satisfies, to get897 (
A − Â1

)>
P
(
θ̂
)

+P
(
θ̂
)(

A − Â1

)
+A

> (
P − P

(
θ̂
))

+
(
P − P

(
θ̂
))

A+ Φ = 0. (58)

Because λ
(
exp

(
A
))
< 1, by solving (58) for P − P

(
θ̂
)

, we have898

P − P
(
θ̂
)

=

∞∫
0

eA
>
t

(
Φ +

[
K −K

(
θ̂
)]>

B̂>P
(
θ̂
)

+ P
(
θ̂
)
B̂
[
K −K

(
θ̂
)])

eAtdt,

where the fact A − Â = B̂
[
K −K

(
θ̂
)]

is used above. Then, using B̂>P
(
θ̂
)

= −QuK
(
θ̂
)

, it899

is straightforward to see900 (
K −K

(
θ̂
))>

Qu

(
K −K

(
θ̂
))

= Φ +
[
K −K

(
θ̂
)]>

B̂>P
(
θ̂
)

+ P
(
θ̂
)
B̂
[
K −K

(
θ̂
)]
, (59)

which leads to the desired result. �901

C.2 Behaviors of diffusion processes in a neighborhood of the truth902

Lemma 11 Letting ζ0 be as defined in (10), assume that903 ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . λ (Qu)

||B0||||P (θ0)||

(
[ζ0 ∧ 1]

p

p1/2
∧ λ (Qx)

||P (θ0)||

)
. (60)

Then, for the Riccati equation in (5) which is denoted by P (θ), we have
∣∣∣∣∣∣P (θ̂)∣∣∣∣∣∣ . ||P (θ0)||. Fur-904

thermore, for any eigenvalue λ of Â − B̂Q−1u B̂>P
(
θ̂
)

, it holds that < (λ) . −λ (Qx) ||P (θ0)||−1.905

Proof. First, let us write A0 = A0 −B0Q
−1
u B>0 P (θ0) and906

A1 = Â − B̂Q−1u B>0 P (θ0) = A0 + E1,

where E1 = Â −A0 −
(
B̂ −B0

)
Q−1u B>0 P (θ0). Since r ≤ p, (60) implies that E1 satisfies907

||E1|| . r−1/2 [ζ0 ∧ 1]
r
.

38



So, letting M = A0 in (36), Lemma 5 leads to the fact that all eigenvalues of exp
(
A1

)
are inside908

the unit-circle. Therefore, all eigenvalues of A1 are on the open left half-plane of the complex plane.909

Now, in Lemma 10, let K = −Q−1u B>0 P (θ0) and A = A1, to obtain the matrix denoted by P in910

the lemma. Since P satisfies911

Qx +K>QuK = −A>1 P − PA1 = −A>0 P − PA0 − E>1 P − PE1,

writing Lemma 10 for A = A0, but replacing Qx with Qx + E>1 P + PE1, we have912

P =

∞∫
0

eA
>
0 t
[
Qx +K>QuK + E>1 P + PE1

]
eA0tdt.

However, according to (5), we have913

P (θ0) =

∞∫
0

eA
>
0 t
[
Qx +K>QuK

]
eA0tdt. (61)

Thus, it holds that914

P = P (θ0) +

∞∫
0

eA
>
0 t
[
E>1 P + PE1

]
eA0tdt,

which leads to915

||P || ≤ ||P (θ0)||+ 2||E1||||P ||
∞∫
0

∣∣∣∣∣∣eA0t
∣∣∣∣∣∣2dt.

We will shortly show that 2||E1||
∞∫
0

∣∣∣∣∣∣eA0t
∣∣∣∣∣∣2dt < 1. So, by Lemma 10, we have

∣∣∣∣∣∣P (θ̂)∣∣∣∣∣∣ ≤ ||P || .916

||P (θ0)||, which is the desired result.917

To proceed, denote the closed-loop matrix by Â = Â − B̂Q−1u B̂>P
(
θ̂
)

, and let the p dimensional918

unit vector ν attain the maximum of
∣∣∣∣∣∣exp(Â)ν

∣∣∣∣∣∣, i.e.,
∣∣∣∣∣∣exp(Â)ν

∣∣∣∣∣∣ =
∣∣∣∣∣∣exp(Â)

∣∣∣∣∣∣. Then, (61) for θ̂919

(instead of θ0) implies that920 ∣∣∣∣∣∣P (θ̂)∣∣∣∣∣∣ ≥ ν>P
(
θ̂
)
ν =

∞∫
0

ν>eÂ
>
t

[
Qx + P

(
θ̂
)>

B̂Q−1u B̂>P
(
θ̂
)]
eÂtνdt.

Therefore, λ
(
Qx + P

(
θ̂
)>

B̂Q−1u B̂>P
(
θ̂
))
≥ λ (Qx), together with the fact that the magni-921

tudes of all eigenvalues are smaller than the operator norm, imply that for an arbitrary eigenvalue λ922

of Â, we have923

||P (θ0)|| &
∣∣∣∣∣∣P (θ̂)∣∣∣∣∣∣ ≥ λ (Qx)

∞∫
0

e2<(λ)tdt, (62)

which leads to the second desired result of the lemma. To complete the proof, we need to establish924

that ||E1||
∞∫
0

∣∣∣∣∣∣eA0t
∣∣∣∣∣∣2dt < 1/2. For that purpose, if we write (62) for θ0 instead of θ̂, the condition925

in (60) implies the above bound. �926

C.3 Perturbation analysis for algebraic Riccati equation in (5)927

Lemma 12 Assume that (60) holds. Then, we have928 ∣∣∣∣∣∣P (θ̂)− P (θ0)
∣∣∣∣∣∣ . ||P (θ0)||2

λ (Qx)

(
1 ∨

∣∣∣∣Q−1u B>0 P (θ0)
∣∣∣∣) ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣.
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Proof. First, fix the dynamics matrix θ̂, and let C be a linear segment connecting θ0 and θ̂:929

C =
{

(1− α)θ0 + αθ̂
}
0≤α≤1

.

Let θ1 ∈ C be arbitrary. Then, the derivative of P (θ) at θ1 in the direction of C can be found by930

using the difference matrices EA = Â − A0, EB = B̂ − B0. Denote E = [EA, EB ]
>. Then, we931

find P (θ2), where θ2 = θ1 + εE, for an infinitesimal value of ε. So, we have932

P (θ1)B2Q
−1
u B>2 P (θ1)

= εP (θ1)EBQ
−1
u B>2 P (θ1) + P (θ1)B1Q

−1
u B>2 P (θ1)

= O
(
ε2
)

+ εP (θ1)EBQ
−1
u B>1 P (θ1) + εP (θ1)B1Q

−1
u E>BP (θ1) + P (θ1)B1Q

−1
u B>1 P (θ1) .

Therefore, we can calculate P (θ2)B2Q
−1
u B>2 P (θ2). To that end, let P = P (θ2)− P (θ1), write933

P (θ2) in terms of P, P (θ1), and use the above result to get934

P (θ2)B2Q
−1
u B>2 P (θ2)

= P (θ2)B2Q
−1
u B>2 P + P (θ2)B2Q

−1
u B>2 P (θ1)

= O
(
||P ||2

)
+ P (θ1)B2Q

−1
u B>2 P + PB2Q

−1
u B>2 P (θ1) + P (θ1)B2Q

−1
u B>2 P (θ1)

= O
(
||P ||2

)
+ P (θ1)B2Q

−1
u B>2 P + PB2Q

−1
u B>2 P (θ1)

+ O
(
ε2
)

+ εP (θ1)EBQ
−1
u B>1 P (θ1) + εP (θ1)B1Q

−1
u E>BP (θ1)

+ P (θ1)B1Q
−1
u B>1 P (θ1) . (63)

Again, expanding A2 = A1 + EA and P (θ2) = P (θ1) + P , it yields to935

A>2 P (θ2) + P (θ2)A2

= A>2 P (θ1) +A>2 P + P (θ1)A2 + PA2

= A>1 P (θ1) + εE>AP (θ1) +A>2 P

+ P (θ1)A1 + εP (θ1)EA + PA2.

To proceed, plug in the continuous-time algebraic Riccati equation in (5) for θ1,θ2 below in the936

above expression:937

A>2 P (θ2) + P (θ2)A2 = P (θ2)B2Q
−1
u B>2 P (θ2) +Qx,

A>1 P (θ1) + P (θ1)A1 = P (θ1)B1Q
−1
u B>1 P (θ1) +Qx.

So, we obtain938

A>2 P (θ2) + P (θ2)A2 −A>1 P (θ1)− P (θ1)A1

= εE>AP (θ1) + εP (θ1)EA + PA2 +A>2 P

= P (θ2)B2Q
−1
u B>2 P (θ2)− P (θ1)B1Q

−1
u B>1 P (θ1)

= O
(
||P ||2

)
+ P (θ1)B2Q

−1
u B>2 P + PB2Q

−1
u B>2 P (θ1)

+ O
(
ε2
)

+ εP (θ1)EBQ
−1
u B>1 P (θ1) + εP (θ1)B1Q

−1
u E>BP (θ1) ,

where in the last equality above, we used (63). Now, rearrange the terms in the above statement to939

get an equation that does not contain any expression in term of θ2. So, it becomes940

0 =
[
A>2 − P (θ1)B2Q

−1
u B>2

]
P + P

[
A2 −B2Q

−1
u B>2 P (θ1)

]
−O

(
||P ||2

)
−O

(
ε2
)

+ εE>AP (θ1) + εP (θ1)EA − εP (θ1)EBQ
−1
u B>1 P (θ1)− εP (θ1)B1Q

−1
u E>BP (θ1) .

Next, to simplify the above equality, define the followings:941

D = A2 −B2Q
−1
u B>2 P (θ1) ,

K (θ1) = −Q−1u B>1 P (θ1) ,

R = εP (θ1)
[
EA + EBK (θ1)

]
+ ε
[
K (θ1)

>
E>B + E>A

]
P (θ1)−O

(
ε2
)
.
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So, writing our equation in terms of D,K (θ1) , R, it gives942

0 = D>P + PD −O
(
||P ||2

)
+R. (64)

The discussion after (6) states that all eigenvalues ofA1 = A1−B1Q
−1
u B>1 P (θ1) lie in the open left943

half-plane. Therefore, if ε is small enough, real-parts of all eigenvalues of D are negative, according944

to Lemma 5. Therefore, (64) implies that945

λ (P ) ≤ λ

 ∞∫
0

eD
>tReDtdt

 ≤ ||R|| ∞∫
0

∣∣∣∣eDt∣∣∣∣2dt.
So, as ε decays, R vanishes, which by the above inequality shows that P shrinks as ε tends to zero.946

Further, as ε decays, D converges to A1. Thus, by (64), we have947

lim
ε→0

ε−1P =

∞∫
0

eA
>
1 t
(
P (θ1) [EA + EBK (θ1)] + [EA + EBK (θ1)]

>
P (θ1)

)
eA1tdt. (65)

Recall that the above expression is the derivative of P (θ) at θ1, along the linear segment C. Thus,948

integrating along C, (65) and Cauchy-Schwarz Inequality imply that949 ∣∣∣∣∣∣P (θ̂)− P (θ0)
∣∣∣∣∣∣ . ∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ sup

θ1∈C
||P (θ1)|| (1 ∨ ||K (θ1)||)

∞∫
0

∣∣∣∣∣∣eA1t
∣∣∣∣∣∣2dt.

Finally, using Lemma 11, (61), and (62), we obtain the desired result. �950
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D Numerical Results951

In this section, we provide further empirical results illustrating the performance of Algorithm 2 in the952

settings of flight control, as well and blood glucose control. First, we provide box plots depicting953

the distribution of the normalized squared estimation error and the normalized regret of Algorithm 2954

for X-29A airplane. Note that the corresponding worst- and average-case curves are presented in955

Figure 1. Then, Figures 3 and 4 provide the corresponding curves of estimation and regret versus956

time as well as the box-plots, for Boeing 747. Finally, we present similar empirical result for learning957

to control blood glucose level. As shown in the presented figures, Thompson sampling Algorithm 2958

clearly outperforms the competing reinforcement learning policy.959

Figure 2: The performance of Algorithm 2 (blue) compared to Randomized Estimate policy (red) [2]
for flight control of X-29A airplane. The top box-plots are for the normalized squared estimation

error,
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, at times 100, 200, 300, 400, 500, and 600

for 100 replications. Similarly, the lower graph showcases the distribution of the regret Reg (T ),
normalized by p(p+ q)T 1/2 log T .

Figure 2 depicts the box plot corresponding to Figure 1 that is for the flight control of X-29A airplane960

at 2000 ft. In the following experiments, we keep the setting given in Section 6 for the cost and noise961

covariance matrices, and compare Algorithm 2 to Randomized Estimate policy [2].962

Next, the empirical results of the flight control problem in Boeing 747 airplane at 20000 ft altitude963

are provided [37]. The true drift matrices of the Boeing 747 are964

A0 =

−0.199 0.003 −0.980 0.038
−3.868 −0.929 0.471 −0.008
1.591 −0.015 −0.309 0.003
−0.198 0.958 0.021 0.000

 , B0 =

−0.001 0.058
0.296 0.153
0.012 −0.908
0.015 0.008

 .
Then, the blood glucose control problem is studied [41, 47]. The true drift matrices are965

A0 =

[
1.91 −2.82 0.91
1.00 −1.00 0.00
0.00 1.00 −1.00

]
, B0 =

[−0.0992
0.0000
0.0000

]
.

Note that from a practical point of view, worst-case behavior are of crucial importance in this problem.966
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Figure 3: The performance of Algorithm 2 (blue) compared to Randomized Estimate policy (red) [2]
for the flight control of Boeing 747 airplane. The top graph plots the normalized squared estimation

error,
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p+ q)τ

−1/2
n log τn, for 100 replications. Similarly, the lower graph

showcases the regret Reg (T ), normalized by p(p+ q)T 1/2 log T .

Figure 4: The performance of Algorithm 2 (blue) compared to Randomized Estimate policy (red) [2]
for the flight control of Boeing 747 airplane. The top graph plots the normalized squared estimation

error,
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, at times 100, 200, 300, 400, 500, and 600

for 100 replications. Similarly, the lower graph showcases the regret Reg (T ), normalized by
p(p+ q)T 1/2 log T .
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Figure 5: The performance of Algorithm 2 (blue) compared to Randomized Estimate policy (red) [2]
for the the blood glucose control. The top graph plots the normalized squared estimation error,∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, for 100 replications. Similarly, the lower graph

showcases the regret Reg (T ), normalized by p(p+ q)T 1/2 log T .

Figure 6: The performance of Algorithm 2 (blue) compared to Randomized Estimate policy (red) [2]
for the the blood glucose control. The top graph plots the normalized squared estimation error,∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, at times 100, 200, 300, 400, 500, and 600 for

100 replications. Similarly, the lower graph showcases the regret Reg (T ), normalized by p(p +
q)T 1/2 log T .
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