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Abstract

Diffusion processes that evolve according to linear stochastic differential equations
are an important family of continuous-time dynamic decision-making models.
Optimal policies are well-studied for them, under full certainty about the drift
matrices. However, little is known about data-driven control of diffusion processes
with uncertain drift matrices as conventional discrete-time analysis techniques are
not applicable. In addition, while the task can be viewed as a reinforcement learning
problem involving exploration and exploitation trade-off, ensuring system stability
is a fundamental component of designing optimal policies. We establish that the
popular Thompson sampling algorithm learns optimal actions fast, incurring only a
square-root of time regret, and also stabilizes the system in a short time period. To
the best of our knowledge, this is the first such result for Thompson sampling in
a diffusion process control problem. We validate our theoretical results through
empirical simulations with real matrices. Moreover, we observe that Thompson
sampling significantly improves (worst-case) regret, compared to the state-of-the-
art algorithms, suggesting Thompson sampling explores in a more guarded fashion.
Our theoretical analysis involves characterization of a certain optimality manifold
that ties the local geometry of the drift parameters to the optimal control of the
diffusion process. We expect this technique to be of broader interest.

1 Introduction

One of the most natural reinforcement learning (RL) algorithms for controlling a diffusion process
with unknown parameters is based on Thompson sampling (TS) [1]: a Bayesian posterior for the
model is calculated based on its time evolution, and a control policy is then designed by treating
a sampled model from the posterior as the truth. Despite its simplicity, guaranteeing efficiency
and whether sampling the actions from the posterior could lead to unbounded future trajectories is
unknown. In fact, the only known such theoretical result for control of a diffusion process is for an
epsilon-greedy type policy that randomize the control actions at a certain rate [2].

In this work, we consider a p dimensional state signal {xt}t≥0 that obeys the (Ito) stochastic
differential equation (SDE)

dxt = (A0xt +B0ut)dt+ dWt , (1)
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where the drift matrices A0 and B0 are unknown, ut ∈ Rq is the control action at any time t ≥ 0,
and it is designed based on values of xs for s ∈ [0, t]. The matrix B0 ∈ Rp×q models the influence
of the control action on the state evolution over time, while A0 ∈ Rp×p is the (open-loop) transition
matrix reflecting interactions between the coordinates of the state vector xt. The diffusion term in (1)
consists of a non-standard Wiener process Wt that will be defined in the next section. The goal is to
study efficient RL policies that can design ut to minimize a quadratic cost function, defined in the
next section, subject to uncertainties around A0 and B0.

At a first glance, this problem is similar to most RL problems since the optimal policy must balance
between the two objectives of learning the unknown matrices A0 and B0 (exploration) and optimally
selecting the control signals ut to minimize the cost (exploitation). However, unlike most RL
problems that have finite or bounded-support state space, ensuring stability, that xt stays bounded, is
a crucial part of designing optimal policies. For example, in the discrete-time version of the problem,
robust exploration is used to protect against unpredictably unstable trajectories [3–6].

Related literature. The existing literature studies efficiency of TS for learning optimal decisions
in finite action spaces [7–12]. In this stream of research, it is shown that, over time, the posterior
distribution concentrates around low-cost actions [13–15]. TS is also studied in further discrete-time
settings with the environment represented by parameters that belong to a continuum, and Bayesian and
frequentist regret bounds are shown for linear-quadratic regulators [16–31]. However, effectiveness
of TS in highly noisy environments that are modeled by diffusion processes remains unexplored to
date, due to technical challenges that will be described below.

For continuous-time linear time invariant dynamical systems, infinite-time consistency results are
shown under a variety of technical assumptions, followed by alternating policies that cause (small)
linear regrets [32–36]. From a computational viewpoint, pure exploration algorithms for computing
optimal policies based on multiple trajectories of the state and action data are studied as well [37–39],
for which a useful survey is available [40]. However, papers that study exploration versus exploitation
and provide non-asymptotic estimation rates or regret bounds are limited to a few recent work about
offline RL [41–43], with the exception of Randomized-Estimates policies [2] that TS outperforms
them, as will be illustrated at the end of this paper.

Contributions. This work, first establishes that TS learns to stabilize the diffusion process (1).
Specifically, in Theorem 1 of Section 3, we provide the first theoretical stabilization guarantee
for diffusion processes, showing that the probability of preventing the state process from growing
unbounded grows to 1, at an exponential rate that depends on square-root of the time length devoted
to stabilization. As mentioned above, for RL problems with finite state spaces, the process is by
definition stabilized, regardless of the policy. However, for the Euclidean state space of xt in (1),
stabilization is necessary to ensure that the state and the cost do not grow unbounded.

Then, efficiency of TS in balancing exploration versus exploitation for minimizing a cost function
that has a quadratic form of both the state and the control action is shown. Indeed, we establish
in Theorem 2 of Section 4 that the regret TS incurs, grows as the square-root of time, while the
squared estimation error decays with the same rate. It is also shown that both the above quantities
grow quadratically with the dimension. To the authors’ knowledge, the presented results are the first
theoretical analyses of TS for learning to control diffusion processes.

Additionally, through extensive simulations we illustrate that TS enjoys smaller average regret and
substantially lower worst-case regret than the existing policies [2], thanks to its informed exploration.

It is important to highlight that theoretical analysis of RL policies for diffusion processes is highly
non-trivial. Specifically, the conventional discrete-time RL technical tools are not applicable, due
to uncountable cardinality of the random variables involved in a diffusion process, the unavoidable
dependence between them, and the high level of processing and estimation noise. To address these, we
make four main contributions. First, non-asymptotic and uniform upper bounds for continuous-time
martingales and for Ito integrals are required to quantify the estimation accuracy. For that purpose,
we establish concentration inequalities and show sub-exponential tail bounds for double stochastic
integrals. Second, one needs sharp bounds for the impact of estimation errors on eigenvalues of
certain non-linear matrices of the drift parameters that determine actions taken by TS policy. To tackle
that, we perform a novel and tight eigenvalue perturbation-analysis based on the approximation error,
dimension, and spectrum of the matrices. We also establish Lipschitz continuity of the control policy
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with respect to the drift matrices, by developing new techniques based on matrix-valued curves. Third,
to capture evaluation of both immediate and long-term effects of sub-optimal actions, we employ
Ito calculus to bound the stochastic regret and specify effects of all problem parameters. Finally, to
study learning from data trajectories that the condition number of their information matrix grows
unbounded, we develop stochastic inequalities for self-normalized continuous-time martingales, and
spectral analysis of non-linear functions of random matrices.

Organization. The organization of the subsequent sections is as follows. We formulate the problem
in Section 2, while Algorithm 1 that utilizes TS for learning to stabilize the process and its high-
probability performance guarantee are presented in Section 3. Then, in Section 4, TS is considered for
learning to minimize a quadratic cost function, and the rates of estimation and regret are established.
Next, theoretical analysis are provided in Section 5, followed by real-world numerical results of
Section 6. Detailed proofs, auxiliary lemmas, and additional simulations are provided in a longer
version of the paper [54].

Notation. The smallest (the largest) eigenvalue of matrix M , in magnitude, is denoted by λ (M)
(λ (M)). For a vector a, ||a|| is the `2 norm, and for a matrix M , ||M || is the operator norm that is
the supremum of ||Ma|| for a on the unit sphere. N (µ,Σ) is Gaussian distribution with mean µ and
covariance Σ. If µ is a matrix (instead of vector), thenN (µ,Σ) denotes a distribution on matrices of
the same dimension as µ, such that all columns are independent and share the covariance matrix Σ. In
this paper, transition matrices A ∈ Rp×p together with input matrices B ∈ Rp×q are jointly denoted
by the (p + q) × p parameter matrix θ = [A,B]

>. We employ ∨ (∧) for maximum (minimum).
Finally, a . b expresses that a ≤ α0b, for some fixed constant α0.

2 Problem Statement

We study the problem of designing provably efficient reinforcement learning policies for minimizing
a quadratic cost function in an uncertain linear diffusion process. To proceed, fix the complete
probability space (Ω, {Ft}t≥0 ,P), where Ω is the sample space, {Ft}t≥0 is a continuous-time
filtration (i.e., increasing sigma-fields), and P is the probability measure defined on F∞.

The state comprises the diffusion process xt in (1), where θ0 = [A0, B0]
> ∈ R(p+q)×p is the un-

known drift parameter. The diffusion term in (1) follows infinitesimal variations of the p dimensional
Wiener process {Wt}t≥0. That is, {Wt}t≥0 is a multivariate Gaussian process with independent
increments and with the stationary covariance matrix ΣW, such that for all 0 ≤ s1 ≤ s2 ≤ t1 ≤ t2,[

Wt2 −Wt1
Ws2 −Ws1

]
∼N

([
0p
0p

]
,

[
(t2 − t1)ΣW 0p×p

0p×p (s2 − s1)ΣW

])
. (2)

Existence, construction, continuity, and non-differentiability of Wiener processes are well-known [44].
It is standard to assume that ΣW is positive definite, which is a common condition in learning-based
control [40, 41, 2, 42] to ensure accurate estimation over time.

The RL policy designs the action {ut}t≥0, based on the observed system state by the time, as well as
the previously applied actions, to minimize the long-run average cost

lim sup
T→∞

1

T

T∫
0

[
x>t ,u

>
t

]
Q

[
xt

ut

]
dt, for Q =

[
Qx Qxu

Q>xu Qu

]
. (3)

Above, the cost is determined by the positive definite matrix Q, where Qx ∈ Rp×p, Qu ∈ Rq×q,
Qxu ∈ Rp×q . In fact, Q determines the weights of different coordinates of xt,ut in the cost function,
so that the policy aims to make the states small, by deploying small actions. The cost matrix Q is
assumed known to the policy. Formally, the problem is to minimize (3) by the policy

ut = π̂
(
Q, {xs}0≤s≤t , {us}0≤s<t

)
. (4)

Without loss of generality, and for the ease of presentation, we follow the canonical formulation
that sets Qxu = 0; one can simply convert the case Qxu 6= 0 to the canonical form, by employing a
rotation to xt,ut [45–48]. It is well-known that if, hypothetically, the truth θ0 was known, an optimal
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policy πopt could be explicitly found by solving the continuous-time algebraic Riccati equation. That
is, for a generic drift matrix θ = [A,B]

>, finding the symmetric p× p matrix P (θ) that satisfies

A>P (θ) + P (θ)A − P (θ)BQ−1u B>P (θ) +Qx = 0. (5)

This means, for the true parameter θ0 = [A0, B0]
>, we can let P (θ0) solve the above equation, and

define the policy
πopt : ut = −Q−1u B>0 P (θ0)xt, ∀t ≥ 0. (6)

It is known that the linear time-invariant policy πopt minimizes the average cost in (3) [45–48]. This
optimal policy also stabilizes the system such that under πopt, the diffusion process xt does not grow
unbounded with time. Below, we define stabilizability and elaborate these properties.

Definition 1 The process in (1) is stabilizable, if all eigenvalues of A = A0 +B0K have negative
real-parts, for a matrix K. Such K,A are called a stabilizer and the stable closed-loop matrix.

We assume that the process (1) with the drift parameter θ0 is stabilizable. Therefore, P (θ0) exists,
is unique, and can be computed according to continuous-time Riccati differential equations [45–
48]. Furthermore, it is known that real-parts of all eigenvalues of A0 = A0 − B0Q

−1
u B>0 P (θ0)

are negative, i.e., the matrix exp
(
A0t
)

decays exponentially fast as t grows [45–48]. So, under
the linear feedback in (6), the closed-loop transition matrix is A0 and the solution of (1) is the

Ornstein–Uhlenbeck process xt = eA0tx0 +
t∫
0

eA0(t−s)dWs [44], which evolves in a stable manner

because of
∣∣λ (exp

(
A0t
))∣∣ < 1. In the sequel, we use (5) and refer to the solution P (θ) for

different stabilizable θ. More details about the above optimal feedback policy can be found in the
aforementioned references.

In absence of exact knowledge of θ0, a policy π̂ collects data and leverages it to approximate πopt

in (6). Therefore, at all (finite) times, there is a gap between the cost of π̂, compared to that of πopt.
The cumulative performance degradation due to this gap is the regret of the policy π̂, that we aim to
minimize. Technically, whenever the control action ut is designed by the policy π̂ according to (4),
concatenate the resulting state and input signals to get the observation zt(π̂) =

[
x>t ,u

>
t

]>
. If it is

clear from the context, we drop π̂. Similarly, zt(πopt) denotes the observation signal of πopt. Now,
the regret at time T is defined by:

Regπ̂ (T ) =

T∫
0

(∣∣∣∣∣∣Q1/2zt(π̂)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣Q1/2zt(πopt)

∣∣∣∣∣∣2)dt.
A secondary objective is the learning accuracy of θ0 from the single trajectory of the data generated
by π̂. Letting θ̂t be the parameter estimate at time t, we are interested in scaling of

∣∣∣∣∣∣θ̂t − θ0∣∣∣∣∣∣ with
respect to t, p, and q.

3 Stabilizing the Diffusion Process

This section focuses on establishing that Thompson sampling (TS) learns to stabilize the diffusion
process (1). First, let us intuitively discuss the problem of stabilizing unknown diffusion processes.
Given that the optimal policy in (6) stabilizes the process in (1), a natural candidate to obtain a stable
process under uncertainty of the drift matrices A0, B0, is a linear feedback of the form ut = Kxt.

So, letting A = A0 + B0K, we have xt = eAtx0 +
t∫
0

eA(t−s)dWs [44]. Thus, if real-part of an

eigenvalue of A is non-negative, then the magnitude of xt grows unbounded with t [44]. Therefore,
addressing instabilities of this form is important, prior to minimizing the cost. Otherwise, the regret
grows (super) linearly with time. In particular, if A0 has some eigenvalue(s) with non-negative
real-part(s), then it is necessary to employ feedback to preclude instabilities.

In addition to minimizing the cost, the algebraic Riccati equation in (5) provides a reliable and
widely-used framework for stabilization, as discussed after Definition 1. Accordingly, due to
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uncertainty about θ0, one can solve (5) and find P
(
θ̂
)

, only for an approximation θ̂ of θ0. Then, we
expect to stabilize the system in (1) by applying a linear feedback that is designed for the approximate
drift matrix θ̂. Technically, we need to ensure that all eigenvalues of A0 −B0Q

−1
u B̂>P

(
θ̂
)

lie in
the open left half-plane. To ensure that these requirements are met in a sustainable manner, the main
challenges are
(i) fast and accurate learning of θ0 so that after a short time period, a small error θ̂−θ0 is guaranteed,
(ii) specifying the effect of the error θ̂ − θ0, on stability of A0 −B0Q

−1
u B̂>P

(
θ̂
)

, and
(iii) devising a remedy for the case that the stabilization procedure fails.

Note that the last challenge is unavoidable, since learning from finite data can never be perfectly accu-
rate, and so any finite-time stabilization procedure has a (possibly small) positive failure probability.

Algorithm 1 addresses the above challenges by applying additionally randomized control actions, and
using them to provide a posterior belief D about θ0. Note that the posterior is not concentrated at
θ0, and a sample θ̂ from D approximates θ0, crudely. Still, the theoretical analysis of Theorem 1
indicates that the failure probability of Algorithm 1 decays exponentially fast with the length of the
time interval it is executed. Importantly, this small failure probability can shrink further by repeating
the procedure of sampling from D. So, stabilization under uncertainty is guaranteed, after a limited
time of interacting with the environment.

To proceed, let {wn}κn=0 be a sequence of independent Gaussian vectors with the distribution
wn ∼ N

(
0, σ2

wIq
)
, for some fixed constant σw. Suppose that we aim to devote the time length τ

to collect observations for learning to stabilize. Note that since stabilization is performed before
moving forward to the main objective of minimizing the cost functions, the stabilization time length
τ is desired to be as short as possible. We divide this time interval of length τ to κ sub-intervals
of equal length, and randomize an initial linear feedback policy by adding {wn}κn=0. That is, for
n = 0, 1, · · · ,κ − 1, Algorithm 1 employs the control action

ut = Kxt + wn, for
nτ

κ
≤ t < (n+ 1)τ

κ
, (7)

where K is an initial stabilizing feedback so that all eigenvalues of A0 + B0K lie in the open
left half-plane. In practice, such K is easily found using physical knowledge of the model, e.g.,
via conservative control sequence for an airplane [49, 50]. However, note that such actions are
sub-optimal involving large regrets. Therefore, they are only temporarily applied, for the sake of
data collection. Then, the data collected during the time interval 0 ≤ t ≤ τ will be utilized by the
algorithm to determine the posterior belief Dτ , as follows. Recalling the notation z>t =

[
x>t ,u

>
t

]
,

let µ̂0, Σ̂0 be the mean and the precision matrix of a prior normal distribution on θ0 (using the
notation defined in Section 1 for random matrices). Such a prior belief can be objectively calculated
according to a previously available data or formed by subjective believes about the diffusion process
understudy, and in both cases can be used for speeding up the learning-based control of the system.
Nonetheless, if there is no such prior, we simply let µ̂0 = 0(p+q)×p and Σ̂0 = Ip+q . Then, define

Σ̂τ = Σ̂0 +

τ∫
0

zsz
>
s ds, µ̂τ = Σ̂−1τ

Σ̂0µ̂0 +

τ∫
0

zsdx
>
s

 . (8)

Using Σ̂τ ∈ R(p+q)×(p+q) together with the mean matrix µ̂τ , Algorithm 1 forms the posterior belief

Dτ = N
(
µ̂τ , Σ̂

−1
τ

)
, (9)

about the drift parameter θ0. So, as defined in the notation, the posterior distribution of every column
i = 1, · · · , p of θ0, is an independent multivariate normal with the covariance matrix Σ̂−1τ , while the
mean is the column i of µ̂τ . The final step of Algorithm 1 is to output a sample θ̂ from Dτ .

Next, to establish performance guarantees for Algorithm 1, let us quantify the ideal stability by

ζ0 = − log λ
(
exp

[
A0 −B0Q

−1
u B>0 P (θ0)

])
. (10)
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Algorithm 1 : Stabilization under Uncertainty
Inputs: initial feedback K, stabilization time length τ
for n = 0, 1, · · · ,κ − 1 do

while nτ κ−1 ≤ t < (n+ 1)τ κ−1 do
Apply control action ut in (7)

end while
end for
Calculate Σ̂τ , µ̂τ according to (8)
Return sample θ̂ from the distribution Dτ in (9)

By definition, ζ0 is positive. In fact, it is the smallest distance between the imaginary axis in the
complex-plane, and the eigenvalues of the transition matrix A0 = A0 − B0Q

−1
u B>0 P (θ0), under

the optimal policy in (6). Since θ0 is unavailable, it is not realistic to expect that after applying
a policy based on θ̂ given by Algorithm 1, real-parts of all eigenvalues of the resulting matrix
A0 − B0Q

−1
u B̂>P

(
θ̂
)

are at most −ζ0. However, ζ0 is crucial in studying stabilization, such
that stabilizing controllers for systems with larger ζ0 can be learned faster. The exact effect of this
quantity, as well as those of other properties of the diffusion process, are formally established in the
following result. Informally, the failure probability of Algorithm 1 decays exponentially with τ 1/2.

Theorem 1 (Stabilization Guarantee) For the sample θ̂ given by Algorithm 1, let Eτ be the failure

event that A0 −B0Q
−1
u B̂>P

(
θ̂
)

has an eigenvalue in the closed right half-plane. Then, if κ & τ 2

and log (pqκ) . τ 1/2, we have

logP(Eτ ) . − λ (ΣW) ∧ σ2
w

λ (ΣW) ∨ σ2
w

1 ∧ ζ0p

1 ∨ ||K||3

√
τ

p3q
. (11)

The above result indicates that more heterogeneity in coordinates of the Wiener noise renders
stabilization harder. Moreover, using (10), the term 1∧ζ0p reflects that less stable diffusion processes
with smaller ζ0, are significantly harder to stabilize under uncertainty. Also as one can expect, larger
dimensions make learning to stabilize harder. This is contributed by higher number of parameters
to learn, as well as higher sensitivity of eigenvalues for processes of larger dimensions. Finally, the
failure probability decays as τ 1/2, mainly because continuous-time martingales have sub-exponential
distributions, unlike sub-Gaussianity of discrete-time counterparts [51–53].

4 Thompson Sampling for Efficient Control: Algorithm and Theory

In this section, we proceed towards analysis of Thompson sampling (TS) for minimizing the quadratic
cost in (3), and show that it efficiently learns the optimal control actions. That is, TS balances the
exploration versus exploitation, such that its regret grows with (nearly) the square-root rate, as time
grows. In the sequel, we introduce Algorithm 2 and discuss the conceptual and technical frameworks
it relies on. Then, we establish efficiency by showing regret bounds in terms of different problem
parameters and provide the rates of estimating the unknown drift matrices.

In Algorithm 2, first the learning-based stabilization Algorithm 1 is run during the time period
0 ≤ t < τ 0. So, according to Theorem 1, the optimal feedback of θ̂0 stabilizes the system with a
high probability, as long as τ 0 is sufficiently large. Note that if growth of the state vector indicates
that Algorithm 1 failed to stabilize, one can repeat sampling from Dτ0 . So, we assume that the
evolution of the controlled diffusion process remains stable when Algorithm 2 is being executed. On
the other hand, the other benefit of running Algorithm 1 at the beginning is that it performs an initial
exploration phase that will be utilized by Algorithm 2 to minimize the regret.

Then, in order to learn the optimal policy πopt with minimal sub-optimality, RL algorithms need
to cope with a fundamental challenge, commonly known as the exploration-exploitation dilemma.
To see that, first note that an acceptable policy that aims to have sub-linear regret, needs to take
near-optimal control actions in a long run; ut ≈ −Q−1u B>0 P (θ0)xt. Although such policies exploit
well and their control actions are close to that of πopt, their regret grows large since they fail to
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explore. Technically, the trajectory of observations {zt}t≥0 is not rich enough to provide accurate
estimations, since in z>t =

[
x>t ,u

>
t

]
, the signal ut is (almost) a linear function of the state signal

xt, and so does not contribute towards gathering information about the unknown parameter θ0.
Conversely, for sufficient explorations, RL policies need to take actions that deviate from those of
πopt, which imposes large regret. Accordingly, the above trade-off needs to be delicately balanced;
what we show that TS does.

Algorithm 2 is episodic; the parameter estimates θ̂n are updated only at the end of the episodes at

times {τn}∞n=0, while during every episode, actions are taken as if θ̂n =
[
Ân, B̂n

]>
is the unknown

truth θ0. That is, for τn−1 ≤ t < τn, using P
(
θ̂n

)
in (5), we let ut = −Q−1u B̂>n P

(
θ̂n

)
xt.

Then, for each n = 1, 2, · · · , at time τn, we use all the observations collected so far, to find Σ̂τn
, µ̂τn

according to (8). Next, we use them to sample θ̂n from the posterior Dτn in (9).

The episodes in Algorithm 2 are chosen such that their end points satisfy

0 < α ≤ inf
n≥0

τn+1 − τn

τn
≤ sup

n≥0

τn+1 − τn

τn
≤ α <∞, (12)

for some fixed constants α, α. Broadly speaking, (12) lets the episode lengths of Algorithm 2 scale
properly to avoid unnecessary updates of parameter estimates, while at the same time performing
sufficient exploration. To see that, first note that since Σ̂τ grows with τ , the estimation error θ̂n−θ0
decays (at best polynomially fast) with τn. So, until ensuring that updating the posterior yields to
significantly better approximations, it will not be beneficial to update it, sample from it, and solve
(5). So, the period τn+1 − τn that the data up to time τn is utilized, is set to be as long as ατn.
On the other hand, the above period cannot be too long, since we aim to improve the parameter
estimates after collecting enough new observations; τn+1 ≤ (1 + α) τn. A simple setting is to let
α = α, which yields to exponential episodes τn = τ 0 (1 + α)

n. Note that for TS in continuous time,
posterior updates should be limited to sufficiently-apart time points. Otherwise, repetitive updates are
computationally impractical, and also can degrade the performance by preventing control actions
from having enough time to effectively influence.

Algorithm 2 : Thompson Sampling for Efficient Control of Diffusion Processes
Inputs: stabilization time τ 0

Calculate sample θ̂0 by running Algorithm 1 for time τ 0

for n = 1, 2, · · · do
while τn−1 ≤ t < τn do

Apply control action ut = −Q−1u B̂>n−1P
(
θ̂n−1

)
xt

end while
Letting Σ̂τn

, µ̂τn
be as (8), sample θ̂n from Dτn

given in (9)
end for

We show next that Algorithm 2 addresses the exploration-exploitation trade-off efficiently. To see
the intuition, consider the sequence of posteriors Dτn

. The explorations Algorithm 2 performs by
sampling θ̂n from Dτn

, depends on Σ̂τn
. Now, if hypothetically λ

(
Σ̂τn

)
is not large enough, then

Dτn
does not sufficiently concentrate around µ̂τn

and so θ̂n will probably deviate from the previous

samples
{
θ̂i

}n−1

i=1
. So, the algorithm explores more and obtains richer data zt by diversifying the

control signal ut. This renders the next mean µ̂τn+1
a more accurate approximation of θ0, and also

makes λ
(

Σ̂τn+1

)
grow faster than before. Thus, the next posterior Dτn+1

provides a better sample

with smaller estimation error θ̂n+1−θ0. Similarly, if a posterior is excessively concentrated, in a few
episodes the posteriors adjust accordingly to the proper level of exploration. Hence, TS eventually
balances the exploration versus the exploitation. This is formalized below.
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Theorem 2 (Regret and Estimation Rates) Parameter estimates and regret of Algorithm 2, satisfy∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 .
λ (ΣW)

λ (ΣW)
(p+ q) p τ−1/2n log τn ,

Reg (T ) .
(
λ (ΣW) + σ2

w

)
τ 0 +

λ (ΣW)
2

λ (ΣW)

||P (θ0)||6

λ (Q)
6 (p+ q) p T 1/2 log T .

In the above regret and estimation rates, and similar to Theorem 1, λ (ΣW) /λ (ΣW) reflects the
impact of heterogeneity in coordinates of Wt on the quality of learning. Also, larger log(1 + α)
corresponds to longer episodes which compromises the estimation. Further, p(p+q) shows that larger
number of parameters linearly worsens the learning accuracy. In the regret bound, ||P (θ0)||/λ (Q)
indicates effect of the true problem parameters θ0, Q. Finally,

(
λ (ΣW) + σ2

w

)
τ 0 captures the initial

phase that Algorithm 1 is run for stabilization, which takes sub-optimal control actions as in (7).

5 Intuition and Summary of the Analysis

The goal of this section is to provide a high-level roadmap of the proofs of Theorems 1 and 2, and
convey the main intuition behind the analysis. Complete proofs and the technical lemmas can be
found in the longer version of the paper [54].

Summary of the Proof of Theorem 1. The main steps involve analyzing the estimation, studying
its effect on the solutions of (5), and characterizing impact of errors in entries of parameter matrices
on their eigenvalues. Next, we elaborate on these steps.

We show that the error satisfies
∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . p(p+ q)1/2τ−1/2. More precisely, the error depends

mainly on total strength of the observation signals zt, which are captured in the precision matrix
Σ̂τ , as well as total interactions between the signal zt and the noise Wt in the form of the stochastic

integral matrix
τ∫
0

ztdW>t . However, we establish an upper bound λ
(

Σ̂−1τ

)
. τ−1, that indicates the

concentration rate of the posterior Dτ . Similarly, thanks to the randomization signal wn, the signals
zt are diverse enough to effectively explore the set of matrices θ = [A,B]

>, leading to accurate
approximation of θ0 by the posterior mean matrix µ̂τ . Then, to bound the error terms caused by the
Wiener noise Wt, we establish the rate p(p + q)1/2τ 1/2. Indeed, we show that the entries of this
error matrix are continuous-time martingales, and use exponential inequalities for quadratic forms
and double stochastic integrals [52, 51] to establish that they have a sub-exponential distribution.

Moreover, the error rate of the feedback satisfies a similar property;
∣∣∣∣∣∣B̂>P (θ̂)−B>0 P (θ0)

∣∣∣∣∣∣ .
p(p+ q)1/2τ−1/2. So, letting A = A0 − B0Q

−1
u B̂>P

(
θ̂
)

and A0 = A0 − B0Q
−1
u B>0 P (θ0), it

holds that
∣∣∣∣A −A0

∣∣∣∣ . p(p+q)1/2τ−1/2. Next, to consider the effect of the errors on the eigenvalues
of A, we compare them to the eigenvalues of A0, which are bounded by −ζ0 in (10). To that end,
we establish a novel and tight perturbation analysis for eigenvalues of matrices, with respect to their
entries and spectral properties. Using that, we show that the difference between the eigenvalues of
A and A0 scales as

(
1 ∨ r1/2

∣∣∣∣A −A0

∣∣∣∣)1/r , where r is the size of the largest block in the Jordan
block-diagonalization of A0. Therefore, for stability of A, we need

∣∣∣∣A −A0

∣∣∣∣ . p−1/2 (1 ∧ ζ0p),
since r ≤ p. Note that if A0 is diagonalizable, r = 1 implies that we can replace the above upper
bound by 1 ∧ ζ0. Putting this stability result together with the estimation error in the previous
paragraph, we obtain (11).

Summary of the Proof of Theorem 2. To establish the estimation rates, we develop multiple
intermediate lemmas quantifying the exact amount of exploration Algorithm 2 performs. First, we
utilize the fact that the bias of the posterior distribution Dτn

depends on its covariance matrix Σ̂τn
,

as well as a self-normalized continuous-time matrix-valued martingale. For the effect of the former,
i.e., λ

(
Σ̂
−1/2
τn

)
, we show an upper-bound of the order τ−1/4n . To that end, the local geometry of the

optimality manifolds that contain drift parameters θ that has the same optimal feedback as that of the
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unknown truth θ0 in (6) are fully specified, and spectral properties of non-linear functions of random
matrices are studied. Then, we establish a stochastic inequality for the self-normalized martingale,
indicating that its scaling is of the order p(p+ q) log τn. Therefore, utilizing the fact that θ̂n − µ̂τn

has the same scaling as the bias matrix µ̂τn
− θ0, we obtain the estimation rates of Theorem 2.

Next, to prove the presented regret bound, we establish a delicate and tight analysis for the dominant
effect of the control signal ut on the regret Algorithm 2 incurs. Technically, by carefully examining
the infinitesimal influences of the control actions at every time on the cost, we show that it suffices to

integrate the squared deviations
∣∣∣∣∣∣ut +Q−1u B̂>n P

(
θ̂n

)
xt

∣∣∣∣∣∣2 to obtain Reg (T ). We proceed toward
specifying the effect of the exploration Algorithm 2 performs on its exploitation performance by
proving the Lipschitz continuity of the solutions of the Riccati equation (5) with respect to the drift
parameters:

∣∣∣∣∣∣P (θ̂n)− P (θ0)
∣∣∣∣∣∣ . ∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣. This result is a very important property of (5) that

lets the rates of deviations from the optimal action scale the same as the estimation error, and is
proven by careful analysis of integration along matrix-valued curves in the space of drift matrices, as
well as spectral analysis for approximate solutions of a Lyapunov equation. Thus, the regret bound is
achieved, using the estimation error result in Theorem 2.

6 Numerical Analysis

We empirically evaluate the theoretical results of Theorems 1 and 2 for the flight control of X-29A
airplane at 2000 ft [49]. Further numerical results for Boeing 747 airplanes [50] and for blood glucose
control [55], can be found in the longer version of the paper [54]. The true drift matrices of the
X-29A airplane are

A0 =

 −0.16 0.07 −1.00 0.04
−15.20 −2.60 1.11 0.00

6.84 −0.10 −0.06 0.00
0.00 1.00 0.07 0.00

 , B0 =

−0.0006 0.0007
1.3430 0.2345
0.0897 −0.0710
0.0000 0.0000

 .
Further, we let ΣW = 0.25 Ip, Qx = Ip, and Qu = 0.1 Iq where In is the n by n identity matrix. To
update the diffusion process xt in (1), time-steps of length 10−3 are employed. Then, in Algorithm 1,
we let σw = 5,κ = bτ 3/2c, while τ varies from 4 to 20 seconds. The initial feedbackK is generated
randomly. The results for 1000 repetitions are depicted on the left plot of Figure 1, confirming
Theorem 1 that the failure probability of stabilization, decreases exponentially in τ .

On the right hand side of Figure 1, Algorithm 2 is executed for 600 second, for τn = 20× 1.1n. We
compare TS with the Randomized Estimate algorithm [2] for 100 different repetitions. Average- and
worst-case values of the estimation error and the regret are reported, both normalized by their scaling
with time and dimension, as in Theorem 2. The graphs show that (especially the worst-case) regret of
TS substantially outperforms, suggesting that TS explores in a more robust fashion.

7 Concluding Remarks and Future Work

We studied Thompson sampling (TS) reinforcement learning policies to control a diffusion process
with unknown drift matrices. First, we proposed a stabilization algorithm for linear diffusion
processes, and established that its failure probability decays exponentially with time. Furthermore,
efficiency of TS in balancing exploration versus exploitation for minimizing a quadratic cost function
is shown. More precisely, regret bounds growing as square-root of time and square of dimensions are
established for Algorithm 2. Empirical studies showcasing superiority of TS over state-of-the-art, are
provided as well.

As the first theoretical analysis of TS for control of a continuous-time model, this work implies
multiple important future directions. Establishing minimax regret lower-bounds for diffusion process
control problem is yet unanswered. Moreover, studying the performance of TS for robust control
of the diffusion processes aiming to simultaneously minimize the cost function for a family of drift
matrices, is also an interesting direction for further investigation. Another problem of interest is
efficiency of TS for learning to control under partial observation where the state is not observed and
instead a noisy linear function of the state is available as the output signal.

9



Figure 1: For the X-29A flight control problem, percentage of stabilization for 1000 runs of Algo-
rithm 1 is plotted on the left. The graphs on the right depict the performance of Algorithm 2 (blue)
compared to Randomized Estimate policy (red) [2]. The top graph plots the normalized squared

estimation error,
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 divided by p(p + q)τ

−1/2
n log τn, versus time, while the lower one

showcases the regret Reg (T ), normalized by p(p+ q)T 1/2 log T . Curves for the worst-case among
100 replications are provided for both quantities, as well as for the averages over all replicates.
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