
Appendix The appendix is organized as follows. We present details of the K-Radar dataset, the
sensor suite, and criteria of conditions (weather conditions, road structures, and collection time) in
Section A, B, and C, respectively. We also provide details of the annotation/calibration process and
the baseline neural networks (NNs) in Section D and E, respectively. We discuss results regarding
each weather condition and consideration of the K-Radar dataset as a pre-training dataset for other
Radar tensor datasets in Section F and G, respectively. Finally, we introduce details of devkits and list
relevant URLs to help with understanding the content of the paper in Section H and I, respectively.

A Additional details for K-Radar dataset

In this section, we present additional samples of K-Radar dataset, sequence distribution, dataset
composition, license, and privacy concerns.

A.1 Additional samples of the K-Radar dataset and explanation of LPCs for each weather
condition

In the sleet (Figure 8-(e)) or heavy snow (Figure 8-(g)) condition, the Lidar point cloud (LPC)
measurements of some objects ahead are lost when the ego-vehicle is driving. Conversely, in the rain
(Figure 8-(d)) or light snow (Figure 8-(f)) condition, LPC measurements of objects exist. The reason
for this is as follows. Sleet is a mix of rain and snow that freezes when it falls from the sky in a liquid

Figure 8: Additional samples of K-Radar datasets for various weather conditions. (1) 4DRTs, (2)
front view camera images, and (3) Lidar point clouds (LPCs) of three different road conditions with
the same weather condition are depicted in three boxes in each column. In this example, yellow,
red, and blue bounding boxes represent the sedan, bus or truck, and pedestrian classes, respectively.
Objects with all LPC measurements missing due to the adverse weather are marked with purple
dotted lines. More samples of K-Radar dataset can be visualized using the devkits program described
in Section H.

1



state and comes into contact with a sensor or an ego-vehicle colder than the air (Zhou et al., 2016).
In our case, the sleet freezes on the front surface of the Lidar sensor, creating a layer of frost. Thus,
as shown in Figure 8-(e), the measuring signals from the Lidar cannot reach objects in the front of
the ego-vehicle, which results in missing points in the LPC. In addition, heavy snow is a weather
condition in which snow falls over 1 cm per hour as described in Table 8, and Figure 3 shows that a lot
of snow accumulates on the front surface of the sensor after the vehicle drives forward for 5 minutes.
For this reason, similar to sleet, some LPC measurements of objects in front of the ego-vehicle are
missing, as shown in Figure 8-(g). Unlike sleet and heavy snow, there is only a little-to-no amount of
snow accumulation on the front surface of the Lidar sensor in light snow condition, as described in
Table 8. In addition, LPC measurements of objects are also partially available in rain condition, since
raindrops slip over the front surface of the Lidar sensor. Therefore, the Lidar sensors can measure
objects in front of the ego-vehicle as shown in Figure 8-(d) and (f). Note that we provide a video clip
(Figure 9) in Section I URL 2 to show sensor measurements collected while driving forward under
the heavy snow condition.

A.2 Sequence distribution

Figure 9: A snippet of the video clip that shows each sensor
measurement dynamically changing during driving under the
heavy snow condition. (see Section I URL 2)

The K-Radar dataset provides a to-
tal of 35K frame data obtained in
different weather conditions, road
structures, and collection time. The
dataset is divided into 58 sequences,
where the details of each sequence
are shown in Table 5.

A.3 Dataset composition

Each of the 58 sequences consists of
12 compressed folders, as shown in
Table 6. Table 6 provides informa-
tion on the folder name, data type,
extension, size, and the usage of
each folder.

A.4 License

The K-Radar dataset is published
under the CC BY-NC-ND License,
and all codes are published under the Apache License 2.0.

A.5 Privacy concerns

We confirm that all the image sequences with pedestrians, bicycles, and motorcycles do not have
recognizable faces. Although everyone is wearing a mask due to COVID-19, we have taken additional
precautions and blurred all faces to protect their privacy as shown in Figure 10.

Figure 10: Examples of front images showing people whose faces are blurred.

2



Table 5: Sequence of the K-Radar dataset; sequences 1 through 20 are obtained in Dae-jeon, and
sequences 21 through 58 are obtained in Gang-won Province. ‘he. snow’ and ‘park.lot’ denotes heavy
snow and parking lot, respectively.

Seq. Num.
Fr.

Weather
Cond.

Road
Stru. Time Seq. Num.

Fr.
Weather
Cond.

Road
Stru. Time

1 597 normal urban night 30 470 sleet park.lot day
2 462 normal highway night 31 598 sleet suburban day
3 597 normal highway night 32 597 rain suburban day
4 588 normal highway night 33 598 rain suburban day
5 597 normal urban day 34 598 rain suburban night
6 594 normal urban night 35 597 sleet park.lot night
7 595 normal alleyway night 36 597 sleet park.lot night
8 567 normal university night 37 597 sleet suburban night
9 833 normal highway day 38 597 fog mountain day

10 1130 normal highway day 39 597 fog mountain day
11 1195 normal highway day 40 598 fog mountain day
12 888 normal highway day 41 597 fog mountain day
13 227 overcast highway day 42 598 light snow urban day
14 595 normal urban day 43 598 light snow urban day
15 591 normal urban day 44 597 fog shoulder day
16 578 normal university day 45 592 fog shoulder day
17 593 normal university day 46 598 he. snow highway night
18 594 normal urban day 47 266 he. snow highway night
19 592 normal alleyway day 48 443 light snow highway night
20 595 normal urban day 49 598 light snow highway night
21 597 rain alleyway night 50 597 sleet highway night
22 598 overcast urban night 51 597 sleet highway night
23 598 rain urban night 52 598 sleet highway night
24 598 rain urban night 53 597 sleet highway day
25 597 rain urban night 54 601 he. snow urban day
26 597 rain suburban day 55 494 he. snow urban day
27 598 sleet suburban day 56 598 he. snow urban day
28 597 sleet mountain day 57 598 he. snow urban day
29 597 sleet mountain day 58 598 he. snow urban day

Table 6: Dataset composition of each sequence. ‘res.’, ‘cam.’, and ‘img.’ denotes resolution, camera,
and image, respectively.

folder name data type extension size usage
radar_tesseract 4DRT .mat 360GB network input, visualization
radar_xyz_cube 3DRT-XYZ .mat 72GB network input

os1-128 High res. LPC .pcd 14GB network input, visualization
os2-64 Low res. LPC .pcd 7GB network input, visualization

cam-front Front cam. img. .png 4.5GB network input, visualization
cam-left Left cam. img. .png 4.5GB network input, visualization

cam-right Right cam. img. .png 4.5GB network input, visualization
cam-rear Rear cam. img. .png 4.5GB network input, visualization
cam-dash Dash cam. img. .mp4 75MB reference video of annotation
info_calib Calibration values .txt - calibration of 4DRT and LPC

info_condition Conditions .txt - conditional evaluation
info_label Labels .txt 0.5MB training, evaluation

B Details of the sensor suite

We use waterproofed sensors with grade IP66 or higher, as mentioned in Section 3.1, for safe data
collection in adverse weather conditions. Table 7 summarizes the detailed information (i.e., model

3



name, output data format, resolution, maximum operating distance, field of view (FOV), frames per
second (FPS)) of the sensors that we install for the K-Radar data collection.

Table 7: Sensor suite details: ‘Azi.’, ‘Ele.’, ‘res.’ and ‘CEP’ denotes azimuth, elevation angle,
resolution, and circular error probability, respectively.

sensors model
name

output
data resolution max

range
FOV

(Azi., Ele.) FPS

4D Radar RETINA
-4ST

64×256×107◦×37◦
size 4D tensor

0.06m/s,
0.46m,1◦,1◦ 118m 107◦,

37◦ 10

long range
Lidar os2-64 131,072 3D points 0.1cm,

0.18◦,0.35◦ 240m 360◦,
22.5◦ 10

high res.
Lidar os1-128 262,144 3D points 0.1cm,

0.18◦,0.35◦ 120m 360◦,
45◦ 10

4 stereo
cameras ZED2i 8 1280×720 size

images (left, right)
1280x720

pixels n/a 110◦,
70◦ 30

RTK-GPS GPS500,
C94-M8P3

latitude, longitude,
altitude

0.025m +
1ppm CEP n/a n/a 1

2 IMUs built-in
Lidar 6-axis IMU data n/a n/a n/a 100

C Criteria for weather conditions, road structures, and collecting time

We establish conditions for each sequence according to the criteria in Table 8, as mentioned in Section
3.2.

Table 8: Detailed criteria for each condition.

Criteria Name Detailed criteria

urban Roads with four or more lanes and traffic lights, and ego-vehicle
average speed is around 60 km/h

highway Roads without traffic lights and ego-vehicle average speed
is around 100km/h

alleyway Roads with two to four lanes and buildings nearby
road

structures suburban Two- or four-lane roads with rice paddies, fields and mountains
around it

university The inner roads of KAIST
mountain Sloped roads with two to four lanes in a countryside
parking

lots Areas for stopping or parking with other vehicles around

shoulder Parking spaces by the side of the road
normal Clear weather that does not meet the six weather conditions below
overcast Sunless, cloudy weather

weather
conditions fog Weather in which distant objects are dimly visible due to

omni-directional fog
rain Rainy weather
sleet Precipitation that consists of both rain and snow

light snow Snowfall within approximately 1 cm per hour
heavy snow Snowfall that exceed 1 cm per hour

time day Approximately 6:00 ∼ 16:00
zone night Approximately 20:00 ∼ 4:00

4



D Details of annotation and calibration

D.1 Details of annotation

Annotation process for calibrated LPC measurements As mentioned in Section 3.3, it is difficult
to intuitively recognize the shape of objects in BEV-2D. Therefore, we utilize the calibrated LPC
(Section D.2) with a maximum calibration error of 0.5cm to enable accurate 3D bounding box
annotations. We include the annotation program and code in the published devkits. The annotation
program supports a resolution of 1.4 cm per pixel, resulting in a maximum annotation error of 0.7
cm. The annotation program can be used by following the two steps: (1) annotate the BEV bounding
box of an object in the visualized BEV LPC, (2) annotate the height and center point of the BEV
bounding box. In Figure 11, we show the GUI and usage of the annotation program, and detailed
instructions can be found in the video clip that is available at Section I URL 3.

Figure 11: A snippet of the video clip that shows annotation process. (see Section I URL 3)

Annotation process in the absence of LPC measurements of objects As mentioned in Section
3.3, the annotation program we provide has a function to overlap the calibrated BEV-2D to the LPC
so that annotations can be created even in the absence of LPC measurements of objects for various
reasons such as adverse weather conditions. To annotate objects in the absence of LPC measurements,
the human annotator processes 3D bounding box annotation by referring to overlapped BEV-2D
and dash camera images of the ego-vehicle. The human annotator then verifies the height and size
information of the 3D bounding box with BFS-2D, as shown in Figure 6-(b). We note that the height
of the vehicle is set to a pre-defined value after checking the type of the vehicle through the dash cam
image. Figure 12 illustrates the GUI of the annotation program in the absence of LPC measurements,
and more detailed instructions can be found in the video clip available at Section I URL 4.

D.2 Details of the calibration between 4D Radar and Lidar

Accurate calibration of the 4DRT and LPC is crucial to utilize the 3D bounding box annotated in the
LPC as a label of the 4DRT. We utilize visualized BEV-2D and LPC as well as spatial information
(sensor placement location) of all sensors to precisely calibrate 4DRT and LPC. We develop a program
that matches temporal offset (i.e., frame error) and spatial offset (i.e., 2D translation, yaw) through
near-field (within about 30m) objects which are clearly visualized (calibration clue shown in Figure
13), as shown in Figure 14. The GUI program in Figure 14 supports a resolution of 1 cm per pixel,
resulting in a maximum calibration error of 0.5 cm. We have not considered the pitch angle difference
between 4D Radar and Lidar, since we fix the sensors precisely perpendicular to the ground, resulting
in no theoretical difference in the pitch angle. We note that the video clip containing the calibration
process (shown in Figure 14) is available in Section I URL 3, and the video clip containing the
calibration result (shown in Figure 15) is available in Section I URL 5. Through the calibration
process, we note that the vehicle approaching from the other side matches correctly as shown in the
calibration result (shown in Figure 15).

5



Figure 12: A snippet of the video clip that shows the annotation process in the absence of LPC
measurements of objects. (see Section I URL 4)

Figure 13: Examples of calibration clues.

Figure 14: A snippet of the video clip that shows 4DRT/LPC calibration process through BEV-2D
and LPC visualization. (see Section I URL 3)

6



Figure 15: A snippet of the video clip that shows calibration results images for two different roads.
(see Section I URL 5)

D.3 Details of the calibration between Lidar and camera

The calibration of the Lidar and camera is to determine a total of three parameters: 1) extrinsic
parameters to define the relative position of the Lidar coordinate system (i.e., reference frame) and the
camera coordinate system, 2) lens distortion parameters to correct camera distortion, and 3) intrinsic
parameters to match each pixel in the pixel coordinate system with the points in the camera coordinate
system. As shown in Figure 16, we scan a 3D model of the ego-vehicle with the sensor suite using a
Lidar scanner provided in iPhone 12 Pro (Luetzenburg et al., 2021). We extract the coarse position of
each sensor from the scanned 3D vehicle model. Second, we extract the lens distortion parameters
and the intrinsic parameters of the camera using the camera calibration process provided by ROS
(Stanford Artificial Intelligence Laboratory et al.). The previous two processes extract approximate
calibration parameters, which may include calibration errors. Therefore, we construct a GUI program
that can modify each parameter finely, as shown in Figure 17, and fine-tune the parameters so that the
measurements of the camera and the LIDAR at the close and far objects match accurately, as shown
in Figure 18.

Figure 16: The scanned 3D model of the ego-vehicle with sensor suite.

7



Figure 17: The GUI program to fine-tune the calibration parameters between Lidar and camera.

Figure 18: Examples of calibration result between the camera and Lidar, where colored points on the
front images show the projected points of the corresponding LPCs.

In addition, we obtain the ground-truth depth value of the corresponding pixel through the points
projected onto the camera image. Because the LPC is sparse, as shown in Figure 19-(b), the dense
depth map is provided through interpolation, as shown in Figure 19-(c). We note that these depth
maps can magnify the utilization of our dataset for the depth estimation tasks (Mertan et al., 2022),
which is one of the most widely studied fields in computer vision.

Figure 19: An example of generating a depth map based on calibration result.

8



E Details of baseline NNs

In this section, we describe the common structures of RTNH and RTN, neck, and head of the baseline
NNs, and the structures of 3D-SCB and 2D-DCB, which are the backbone of RTNH and RTN,
respectively.

E.1 Neck and head

As mentioned in Section 3.4, both RTNH and RTN extract multiple feature maps (FMs) of dif-
ferent resolutions. Neck transforms the FMs into the same size by applying TransposeConv2D
and concatentes the transformed FMs (Lin et al., 2017a). The size of the concatenated FM is
CFM × YFM ×XFM . CFM , YFM , and XFM represent the number of channels of the concatenated
FM, the number of grids for the left and right widths, and the number of grids for the front distance,
respectively. The head predicts the bounding boxes from the concatenated FM using an anchor-based
method as in Ren et al. (2015), and its structure is shown in Figure 20.

Figure 20: Head structure.

We apply 1 by 1 convolution to the concate-
nated FM to extract classification and regres-
sion output for each grid, as shown in Figure
20. We use two anchor boxes with yaw an-
gles of 0◦ and 90◦ for each class, resulting in
NCLS = 2(Anchor)+1(Background)= 3. In
addition, we assign a total of eight parame-
ters for each anchor: center point (xc, yc, zc),
length, width, height (xl, yl, zl), cos(yaw), and
sin(yaw) (Simony et al., 2018) of the bounding
box, resulting in NREG = 8(NCLS − 1) = 16.
We then extract M bounding box proposals from

the classification and regression outputs. In training process, proposals with an intersection over
union (IOU) of 0.5 or more with respect to the ground-truth are classified as positive bounding boxes,
and proposals with an IoU of less than 0.2 are classified as negative bounding boxes. We apply the
focal loss (Lin et al., 2017b) to cope with the problem of class imbalance between positive bounding
boxes and negative bounding boxes, and apply the smooth L1 loss between the regression value and
the target value. During inference, an index with the largest logit value from the classification output
is inferred as the proposal’s class, and a confidence threshold of 0.3 is applied, so that low-confidence
predictions are regarded as backgrounds. Thereafter, non-maximal suppression is applied to remove
overlapping bounding boxes and finally a total of N bounding boxes are obtained.

E.2 3D-SCB

As mentioned in Section 3.4, we extract FMs using 3D sparse conv blocks to reduce the usage
of GPU memory, while still using height information from the 4DRT. A 3D sparse conv block
consists of a total of three consecutive 3D convolution layers. We set the first 3D convolution layer
as 3D sparse convolution layer (Liu et al., 2015) and the remaining 3D convolution layer as 3D
submanifold convolution layer (Graham et al., 2018). The output of the 3D sparse conv block is a
sparse FM with four dimensions (channel, height, width, length) of different resolutions. Each sparse
FM is transformed into its dense tensor counterpart, and then TransposeConv2D is applied to the
three-dimensional dense FMs, resulting in dense FMs represented in BEVs with height information
encoded. Finally, all dense FMs are concatenated to produce the final concatenated FM, which is the
input of the head.

E.3 2D-DCB

We construct a 2D dense conv backbone (2D-DCB) with 2D conv blocks, as mentioned in Section
3.4, to extract FMs without encoding the height information. We utilize ResNet50 (He et al., 2016)
and ResNext101 (Xie et al., 2017) as the 2D conv blocks whose performance has been validated
on tasks such as classification (Mahajan et al., 2018) and object detection (Qiao et al., 2021). We
compare object detection performance for two variations, as shown in Table 9, and in Section 4.2,

9



we show the results of 2D-DCB-ResNext101, which has higher performance among the two, as the
representative result of RTN.

Table 9: Performance of two variants of RTN.

backbone AP 3D [%] APBEV [%] GPU RAM [MB]
2D-DCB-ResNext101 40.12 50.67 520
2D-DCB-ResNet50 39.86 49.37 257

F Qualitative results of RTNH and PointPillars with additional discussion in
various conditions

We show the object detection results of RTNH and PointPillars (Lang et al., 2019) under various
weather conditions in Figure 21 and 22 with 3D bounding box labels, BEV-2D, front camera
image, and LPC. We also show images from the dash camera, since some of the outdoor camera
measurements are unreliable due to the adverse weather conditions.

Figure 21: 3D object detection results of RTNH (4DRT) and PointPillars (LPC) in a road environment
where multiple vehicles exist. We use yellow and red boxes to represent the ground truths and
predictions, respectively.

Figure 21 shows the object detection results of RTNH and PointPillars for the road environments
where multiple vehicles exist under weather conditions without precipitation (e.g., normal, overcast).
As shown in Figure 21, RTNH produces similar or more robust detection results (robust to miss
detection) compared to PointPillars. The comparisons summarized in Table 4 and Figure 21 show that
4D Radar has similar or more robust detection performance to Lidar in various road environments
where multiple vehicles exist. This indicates that 4D Radar can be sufficiently used alone as a
perception sensor in autonomous driving.

In addition, notice that the general AP for the normal condition can be lower than the overcast
condition on K-Radar because of the following two reasons. One reason is that 4D Radar and Lidar
are not affected by lighting condition, so that the detection performance of 4D Radar and Lidar for
overcast condition cannot be lower than that for normal condition. Another reason is that the normal
condition in K-Radar has more difficult situation than the overcast condition; the normal condition
contains various situations including many vehicles parked along the side of alleyways, while the
overcast condition in K-Radar does not have many vehicles on clear urban roads of two lanes, as
shown in Table 5.

Figure 22 shows the object detection results of RTNH and PointPillars under weather conditions
with precipitation (e.g., sleet, light snow, heavy snow). As mentioned in Section A.1, Lidar can
produce reliable LPC measurements in rain and light snow condition, but not in sleet and heavy snow
conditions, since the sensor surfaces are covered by frost or snow. This can be seen in the LPC in
Figure 22, and also by comparing the PointPillars results in Table 4.

From the results of Figure 22 and Table 4, we demonstrate that 4D Radar is a more robust sensor
than Lidar in the adverse weathers. We note that the inputs of RTNH and PointPillars are 4DRT
and LPC, respectively. As mentioned in 4.3, we do not claim that RTNH is a better neural network

10



Figure 22: 3D object detection results of RTNH (4DRT) and Point Pillars (LPC) under weather
conditions with precipitation. From the left, sleet, light snow, and heavy snow. We use yellow and
red boxes to represent the ground truths and predictions, respectively.

architecture compared to PointPillars. Instead, we demonstrate the robustness of 4D Radar in all
weather conditions including adverse weathers.

G Consideration of the K-Radar dataset as a pre-training dataset for other
Radar tensor datasets

Pre-training on large scale datasets is well known to help neural networks converge faster (He
et al., 2019). Therefore, we may consider using K-Radar as a pre-training dataset for other Radar
tensor-based object detection datasets, or conversely, using other datasets as a pre-training dataset for
K-Radar.

However, we want to note that the pre-training on K-Radar does not directly guarantee a strong
improvement on RADIATE. This is because the characteristics of K-Radar and RADIATE are
inherently different.

First, the power measurements in K-Radar and RADIATE have different distributions due to the
different type of Radars used. When a neural network is trained on a dataset and applied to process
target data of different distribution, there will be a poorly degraded performance in the target domain,
as we see in Lidar object detection networks trained and evaluated on different type of point clouds
(e.g., Velodyne and Ouster) (Wang et al., 2020).

Second, the resolution of RADIATE (0.175m) is higher than K-Radar (0.46m). This mismatch
of resolution can also adversely affect the detection performance as usually seen in Lidar object
detection networks trained on NuScenes (32-channels) and evaluated on KITTI (64-channels) (Wang
et al., 2020).

Third, the data distributions are significantly different. K-Radar data is collected in South Korea
where cars drive on the right, while RADIATE is collected in the U.K where cars drive on the left.

The above reasons apply to other Radar tensor-based datasets as well as RADIATE. For these reasons,
it is difficult to expect performance improvement by using K-Radar as a pre-training dataset for other
Radar tensor-based datasets and vice versa.

H Details of devkits

To facilitate the experiments on various neural network structures, we provide modularized neural
network training codes that can manage each experiment with a single configuration file. We also
provide GUI-based programs for visualization and neural network inference, as shown in Figure 23,
to facilitate inference on large amounts of data. We provide a video clip on how to use the program,

11



which can be found through Section I URL 6, and all codes for devkits can be downloaded from
Section I URL 1.

Figure 23: A snippet of the video clip that shows GUI-based program for visualization and neural
network inference. (see Section I URL 6)

I Relevant URLs

(1) Publication of datasets and complete devkits code (learning, evaluation, reasoning, visualization,
labeling programs): https://github.com/kaist-avelab/K-Radar

(2) The video clip showing each sensor measurement dynamically changing during driving under the
heavy snow condition: https://www.youtube.com/watch?v=TZh5i2eLp1k&t=103s

(3) The video clip showing the 4DRT/LPC calibration and annotation process: https://www.
youtube.com/watch?v=ylG0USHCBpU&t=152s

(4) The video clip showing the annotation process in the absence of LPC measurements of objects:
https://www.youtube.com/watch?v=ILlBJJpm4_4&t=8s

(5) The video clip showing calibration results: https://www.youtube.com/watch?v=
U4qkaMSJOds&t=10s

(6) The video clip showing the GUI-based program for visualization and neural network inference:
https://www.youtube.com/watch?v=MrFPvO1ZjTY&t=3s

(7) The video clip showing the information regarding tracking for multiple objects on the roads:
https://www.youtube.com/watch?v=8mqxf58_ZAk

12

https://github.com/kaist-avelab/K-Radar
https://www.youtube.com/watch?v=TZh5i2eLp1k&t=103s
https://www.youtube.com/watch?v=ylG0USHCBpU&t=152s
https://www.youtube.com/watch?v=ylG0USHCBpU&t=152s
https://www.youtube.com/watch?v=ILlBJJpm4_4&t=8s
https://www.youtube.com/watch?v=U4qkaMSJOds&t=10s
https://www.youtube.com/watch?v=U4qkaMSJOds&t=10s
https://www.youtube.com/watch?v=MrFPvO1ZjTY&t=3s
https://www.youtube.com/watch?v=8mqxf58_ZAk


References
Yue Zhou, Shengjie Niu, Jingjing Lü, and Yuehua Zhou. The effect of freezing drizzle, sleet and snow on

microphysical characteristics of supercooled fog during the icing process in a mountainous area. Atmosphere,
7:143, 11 2016. doi: 10.3390/atmos7110143.

Gregor Luetzenburg, Aart Kroon, and Anders Bjørk. Evaluation of the apple iphone 12 pro lidar for an application
in geosciences. Scientific Reports, 11, 11 2021.

Stanford Artificial Intelligence Laboratory et al. Robotic operating system. URL https://www.ros.org.

Alican Mertan, Damien Jade Duff, and Gozde Unal. Single image depth estimation: An overview. Digital Signal
Processing, page 103441, 2022.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2117–2125, 2017a.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. Advances in neural information processing systems, 28, 2015.

Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael Gross. Complex-yolo: An euler-region-
proposal for real-time 3d object detection on point clouds. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pages 0–0, 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017b.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Penksy. Sparse convolutional neural
networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 806–814,
2015. doi: 10.1109/CVPR.2015.7298681.

Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9224–9232, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1492–1500, 2017.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised pretraining. In
Proceedings of the European conference on computer vision (ECCV), pages 181–196, 2018.

Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with recursive feature pyramid
and switchable atrous convolution. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10213–10224, 2021.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast
encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12697–12705, 2019.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4918–4927, 2019.

Yan Wang, Xiangyu Chen, Yurong You, Li Erran Li, Bharath Hariharan, Mark Campbell, Kilian Q Weinberger,
and Wei-Lun Chao. Train in germany, test in the usa: Making 3d object detectors generalize. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11713–11723, 2020.

13

https://www.ros.org


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] See Section 5.1.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Our paper conforms to the ethics review guidelines.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
3.4, 4.2, and 4.3.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 4 and
Appendix F.

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
H and I.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3.2 and 4.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We only use our

proposed dataset, and cite the corresponding paper for the existing neural networks.
(b) Did you mention the license of the assets? [Yes] See Appendix A. We mention the

license of our proposed dataset.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Appendix I.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	Additional details for K-Radar dataset
	Additional samples of the K-Radar dataset and explanation of LPCs for each weather condition
	Sequence distribution
	Dataset composition
	License
	Privacy concerns

	Details of the sensor suite
	Criteria for weather conditions, road structures, and collecting time
	Details of annotation and calibration
	Details of annotation
	Details of the calibration between 4D Radar and Lidar
	Details of the calibration between Lidar and camera

	Details of baseline NNs
	Neck and head
	3D-SCB
	2D-DCB

	Qualitative results of RTNH and PointPillars with additional discussion in various conditions
	Consideration of the K-Radar dataset as a pre-training dataset for other Radar tensor datasets
	Details of devkits
	Relevant URLs

