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Abstract

Unlike RGB cameras that use visible light bands (384∼769 THz) and Lidars that
use infrared bands (361∼331 THz), Radars use relatively longer wavelength ra-
dio bands (77∼81 GHz), resulting in robust measurements in adverse weathers.
Unfortunately, existing Radar datasets only contain a relatively small number of
samples compared to the existing camera and Lidar datasets. This may hinder the
development of sophisticated data-driven deep learning techniques for Radar-based
perception. Moreover, most of the existing Radar datasets only provide 3D Radar
tensor (3DRT) data that contain power measurements along the Doppler, range,
and azimuth dimensions. As there is no elevation information, it is challenging
to estimate the 3D bounding box of an object from 3DRT. In this work, we in-
troduce KAIST-Radar (K-Radar), a novel large-scale object detection dataset and
benchmark that contains 35K frames of 4D Radar tensor (4DRT) data with power
measurements along the Doppler, range, azimuth, and elevation dimensions, to-
gether with carefully annotated 3D bounding box labels of objects on the roads.
K-Radar includes challenging driving conditions such as adverse weathers (fog,
rain, and snow) on various road structures (urban, suburban roads, alleyways, and
highways). In addition to the 4DRT, we provide auxiliary measurements from care-
fully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS. We
also provide 4DRT-based object detection baseline neural networks (baseline NNs)
and show that the height information is crucial for 3D object detection. And by com-
paring the baseline NN with a similarly-structured Lidar-based neural network, we
demonstrate that 4D Radar is a more robust sensor for adverse weather conditions.
All codes are available at https://github.com/kaist-avelab/k-radar.

1 Introduction

An autonomous driving system generally consists of sequential modules of perception, planning, and
control. As the planning and control modules rely on the output of the perception module, it is crucial
for the perception module to be robust even under adverse driving conditions.

Recently, various works have proposed deep learning-based autonomous driving perception modules
that demonstrate remarkable performances in lane detection (Paek et al., 2022; Liu et al., 2021),
object detection (Wang et al., 2021a; Lang et al., 2019; Major et al., 2019), and other tasks (Ranftl
et al., 2021; Teed and Deng, 2021). These works often use RGB images as the inputs to the neural
networks due to the availability of numerous public large-scale datasets for camera-based perception.
Moreover, an RGB image has a relatively simple data structure, where the data dimensionality is
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relatively low and neighboring pixels often have high correlation. Such a simplicity enables deep
neural networks to learn the underlying representations of images and recognize objects on the image.

Unfortunately, camera is prone to poor illumination, can easily be obscured by raindrops and
snowflakes, and cannot preserve depth information that is crucial for accurate 3D scene understanding
of the environment. On the other hand, Lidar actively emits measuring signals in the infrared
spectrum, therefore, the measurements are hardly affected by illumination conditions. Lidar can also
provide accurate depth measurements within centimeters resolution. However, Lidar measurements
are still affected by adverse weathers since the wavelength of the signals (�=850nm∼1550nm) is not
long enough to pass through raindrops or snowflakes (Kurup and Bos, 2021).

Figure 1: An overview of the signal processing of the FMCW Radar
and a visualization of the two main data types (i.e., Radar tensor (RT)
and Radar point cloud (RPC)). The RT is a dense data matrix with
power measurements in all element along the dimensions through a
Fast Fourier Transform (FFT) operation applied to FMCW signals.
Since all elements are non-zero values, the RT provides dense infor-
mation regarding the environment with minimal loss, at a cost of high
memory requirement. On the other hand, the RPC is a data type in
which target (i.e., object candidate group) information is extracted in
the form of a point cloud with a small amount of memory by applying
Constant False Alarm Rate (CFAR) algorithm to the RT. Due to the
ease of implementing FFT and CFAR directly on the hardware, many
Radar sensors provide RPCs as output. However, the RPC may lose
a significant amount of information regarding the environment due
to the CFAR algorithm.

Similar to Lidar, a Radar
sensor actively emits waves
and measures the reflection.
However, Radar emits radio
waves (� ≈ 4mm) that can
pass through raindrops and
snowflakes. As a result,
Radar measurements are ro-
bust to both poor illumina-
tion and adverse weather con-
ditions. This robustness is
demonstrated in (Abdu et al.,
2021), where a Frequency
Modulated Continuous Wave
(FMCW) Radar-based per-
ception module is shown to
be accurate even in adverse
weather conditions and can be
easily implemented directly
on the hardware.

As FMCW Radars with dense
Radar tensor (RT) outputs be-
come readily available, nu-
merous works (Dong et al.,
2020; Mostajabi et al., 2020;
Sheeny et al., 2021) propose
RT-based object detection net-
works with comparable detec-
tion performance to camera

and Lidar-based object detection networks. However, these works are limited to 2D bird-eye-
view (BEV) object detection, since FMCW Radars utilized in existing works only provide 3D Radar
tensor (3DRT) with power measurements along the Doppler, range, and azimuth dimensions.

In this work, we introduce KAIST-Radar (K-Radar), a novel 4D Radar tensor (4DRT)-based 3D
object detection dataset and benchmark. Unlike the conventional 3DRT, 4DRT contains power
measurements along the Doppler, range, azimuth, and elevation dimensions so that the 3D spatial
information can be preserved, which could enable accurate 3D perception such as 3D object detection
with Lidar. To the best of our knowledge, K-Radar is the first large-scale 4DRT-based dataset and
benchmark, with 35k frames collected from various road structures (e.g. urban, suburban, highways),
time (e.g. day, night), and weather conditions (e.g. clear, fog, rain, snow). In addition to the 4DRT,
K-Radar also provides high-resolution Lidar point clouds (LPCs), surround RGB images from four
stereo cameras, and RTK-GPS and IMU data of the ego-vehicle.

Since the 4DRT high-dimensional representation is unintuitive to human, we leverage the high-
resolution LPC so that the annotators can accurately label the 3D bounding boxes of objects on the
road in the visualized point clouds. The 3D bounding boxes can be easily transformed from the Lidar
to the Radar coordinate frame since we provide both spatial and temporal calibration parameters to
correct offsets due to the separations of the sensors and the asynchronous measurements, respectively.
K-Radar also provides a unique tracking ID for each annotated object that is useful for tracking
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Figure 2: Samples of K-Radar datasets for various weather conditions. Each column shows (1) 4DRTs,
(2) front view camera images, and (3) Lidar point clouds (LPCs) of different weather conditions.
4DRTs are represented in a two-dimensional (BEV) Cartesian coordinate system using a series of
visualization processes that are described in Section 3.3. In this example, yellow and red bounding
boxes represent the sedan and bus or truck classes, respectively. Appendix A contains further samples
of K-Radar datasets for each weather condition.

an object along a sequence of frames. Examples of information regarding tracking are shown in
Appendix I.7.

To demonstrate the necessity of 4DRT-based perception module, we present a 3D object detection
baseline neural network (baseline NN) that directly consumes 4DRT as an input. From the experimen-
tal results on K-Radar, we observe that the 4DRT-based baseline NN outperforms the Lidar-based
network in the 3D object detection task, especially in adverse weather conditions. We also show that
the 4DRT-based baseline NN utilizing height information significantly outperforms network that only
utilizes BEV information. Additionally, we publish the complete development kits (devkits) that
include: (1) training / evaluation codes for 4DRT-based neural networks, (2) labeling / calibration
tools, and (3) visualization tools to accelerate research in the field of 4DRT-based perception.

In a summary, our contributions are as follow,

• We present a novel 4DRT-based dataset and benchmark, K-Radar, for 3D object detection.
To the best of our knowledge, K-Radar is the first large-scale 4DRT-based dataset and
benchmark with diverse and challenging illumination, time, and weather conditions. With
the carefully annotated 3D bounding box labels and multimodal sensors, K-Radar can also
be used for other autonomous driving tasks such as object tracking and odometry.

• We propose a 3D object detection baseline NN that directly consumes 4DRT as an input
and verify that the height information of 4DRT is essential for 3D object detection. We also
demonstrate the robustness of 4DRT-based perception for autonomous driving, especially
under adverse weather conditions.

• We provide devkits that include: (1) training/evaluation, (2) labeling/calibration, and (3)
visualization tools to accelerate 4DRT-based perception for autonomous driving research.

The remaining of this paper is organized as follows. Section 2 introduces existing datasets and
benchmarks that are related to perception for autonomous driving. Section 3 explains the K-Radar
dataset and baseline NNs. Section 4 discusses the experimental results of the baseline NN on the
K-Radar dataset. Section 5 concludes the paper with a summary and discussion on the limitations of
this study.

2 Related Works

Deep neural networks generally require a large amount of training samples collected from diverse
conditions so that they can achieve remarkable performance with excellent generalization. In
autonomous driving, there are numerous object detection datasets that provide large-scale data of
various sensor modalities, shown in Table 1.
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