
Appendix
Reinforcement Learning

with Non-Exponential Discounting

A Convergence proof for the value function under hyperbolic discounting

In the following, we assume a hyperbolic survival function as presented in Eq. (2), i.e.,

S(t;α, β) =
1

( tβ + 1)α
.

Part I If the reward function R(x,u, t) is bounded above for all (x,u, t) ∈ X × U × R+
0 , and

α0 > 1, the value function defined in equation Eq. (6) is well-defined.

We denote the supremum of the reward function R(x,u, t) for all (x,u, t) ∈ X × U × R+
0 by rsup.

We find

V ∗(x, t) = max
u[t,∞)

E
[∫ ∞

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

∣∣∣X(t) = x

]
≤

∫ ∞

t

S(τ)

S(t)
rsup dτ

=
rsup

S(t)

∫ ∞

t

S(τ) dτ

=
rsup

S(t)

∫ ∞

t

1(
τ
β + 1

)α dτ

≤
rsup

S(t)

∫ ∞

t

1(
τ
β

)α dτ

=
βα rsup

S(t)

∫ ∞

t

1

τα
dτ

=
βα rsup

S(t)

[
τ1−α

1− α

]∞
τ=t

=
βα rsup

S(t) (1− α)
[
τ1−α

]∞
τ=t

,

which is finite for α > 1.

Part II If R(x,u, t) is bounded below for all (x,u, t) ∈ X × U × R+
0 , and α0 ≤ 1, the value

function defined in equation Eq. (6) is not well-defined.
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We denote the infimum of the reward function R(x,u, t) for all (x,u, t) ∈ X × U × R+
0 by rinf. We

find

V ∗(x, t) = max
u[t,∞)

E
[∫ ∞

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

∣∣∣X(t) = x

]
≥

∫ ∞

t

S(τ)

S(t)
rinf dτ

=
rinf

S(t)

∫ ∞

t

S(τ) dτ

=
rinf

S(t)

∫ ∞

t

1(
τ
β + 1

)α dτ

=
rinf

S(t)

∫ ∞

t

1(
τ+β
β

)α dτ

=
βα rinf

S(t)

∫ ∞

t

1

(τ + β)α
dτ

=
βα rinf

S(t)

∫ ∞

t+β

1

τα
dτ

=
βα rinf

S(t)

[
1

τα

]∞
τ=t+β

=
βα rinf

S(t)

[
τ1−α

1− α

]∞
τ=t+β

=
βα rinf

S(t) (1− α)
[
τ1−α

]∞
τ=t+β

,

in which the integral diverges for α ≤ 1.

B Full derivation of the HJB equation

In this section, we provide a full derivation for the HJB equation introduced in Section 4.2. We start
with the value function defined in Eq. (6), i.e.,

V ∗(x, t) = max
u[t,∞)

E
[∫ ∞

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

∣∣∣X(t) = x

]
.

First, we split the integral into two terms and obtain

V ∗(x, t) = max
u[t,t+∆t]

E

[∫ t+∆t

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

+

∫ ∞

t+∆t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

∣∣∣X(t) = x

]
.

By identifying the second term as the value function of state x(t+∆t) at time t+∆t, we obtain the
recursive formulation

V ∗(x, t) = max
u[t,t+∆t]

E

[∫ t+∆t

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

+
S(t+∆t)

S(t)
V ∗(X(t+∆t), t+∆t)

∣∣∣X(t) = x

]
.

Consider a small ∆t, then the first term evaluates to∫ t+∆t

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ = R(X(t),u(t), t) ·∆t+ o(∆t).
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For the second term, we apply a Taylor expansion and get

V ∗(X(t+∆t), t+∆t) = V ∗(X(t), t) +

∫ t+∆t

t

d

dτ
V ∗(X(τ), τ) dτ + o(∆t)

= V ∗(X(t), t) +

∫ t+∆t

t

V ∗
x (X(τ), τ) dX(τ) +

∫ t+∆t

t

V ∗
t (X(τ), τ) dτ + o(∆t).

Here, the second term can be evaluated using Itô’s formula as∫ t+∆t

t

V ∗
x (X(τ), τ) dX(τ) =

∫ t+∆t

t

V ∗
x (X(τ), τ) f(X(τ),u(τ), τ) dτ

+

∫ t+∆t

t

1

2
tr

{
V ∗
xx(X(τ), τ)G(X(τ),u(τ), τ)G(X(τ),u(τ), τ)T

}
dτ

+

∫ t+∆t

t

V ∗
x (X(τ), τ)G(X(τ),u(τ), τ) dW(τ) + o(∆t).

Plugging in these terms into the equation above and dividing both sides by ∆t yields

1− S(t+∆t)
S(t)

∆t
V ∗(X(t), t) = max

u[t,t+∆t]

E

[
1

∆t

∫ t+∆t

t

S(τ)

S(t)
R(X(τ),u(τ), τ) dτ

+
1

∆t

∫ t+∆t

t

V ∗
x (X(τ), τ) f(X(τ),u(τ), τ) dτ +

∫ t+∆t

t

V ∗
t (X(τ), τ) dτ

+
1

∆t

∫ t+∆t

t

1

2
tr

{
V ∗
xx(X(τ), τ)G(X(τ),u(τ), τ)G(X(τ),u(τ), τ)T

}
dτ

+
1

∆t

∫ t+∆t

t

V ∗
x (X(τ), τ)G(X(τ),u(τ), τ) dW(τ) +

o(∆t)

∆t

∣∣∣X(t) = x

]
.

The factor on the l.h.s. in the limit ∆t→ 0 can be recognized to be the hazard rate (cf. Eq. (1)),

lim
∆t→0

1− S(t+∆t)
S(t)

∆t
= lim

∆t→0

1

∆t

S(t)− S(t+∆t)

∆t
= α(t).

Taking the limit ∆t → 0 on both sides and calculating the expectation w.r.t. W(t), we obtain the
HJB equation

α(t)V ∗(x, t) = max
u

[R(x,u, t) + V ∗
t (x, t) + V ∗

x (x, t) f(x,u, t)

+
1

2
tr

{
V ∗
xx(x, t)G(x,u, t)G(x,u, t)

T
}]
.

C Bellman equation for discrete time

We consider the discrete-time setting, in which the objective is given as

J (u0,u1, . . . ) = E

[ ∞∑
τ=0

S(τ)R(Xτ ,uτ , τ)

]
.

As in the continuous-time case, we can define the value function as

V (x, t) = max
ut,ut+1,...

E

[ ∞∑
τ=t

S(τ)

S(t)
R(Xτ ,uτ , τ)

∣∣∣Xt = x

]
.

By identifying the recursive definition of the value function and evaluating terms, we obtain the
Bellman equation

V (x, t) = max
u
{R(x,u, t) + λ(t)E [V (Xt+1, t+ 1) |Xt = x]} ,

with λ(t) = S(t+ 1)/S(t) being the hazard probability at time t.
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D Value function approximation and collocation method

In the collocation method in Algorithm 1, we need to sample random states x̂i and time points t̂i
for minimizing

∑
iE(V ψ, x̂i, t̂i)

2. If we assume a bounded state space X ∈ R, we can sample x̂i
uniformly from this space. The time points t̂i ∈ R+

0 can be sampled from an exponential distribution.
To do so, we first draw ŷi ∼ Uniform(0, 1) and compute t̂i = − log(1− ŷi)/λ. To feed a normalized
value of time into the network, we use ŷi instead of t̂i as input to the network. We denote the value
function network depending on y by Ṽ (x, y). Given a specific time value t, we can compute its
representation via y(t) = 1− exp(−λt).
When computing the partial derivative Vt, we have to take this reparametrization into account. By the
chain rule, we find

Vt(x, t) = Ṽy(x, t) yt(t),

for which we have with the chosen parametrization

yt(t) = λ exp(−λt).

In general, there are multiple solutions to the HJB equation and the encountered solution depends
on the initialization of the function approximator [29, 31]. In other work, this problem has been
dealt with by omitting stochastic terms in the first episodes of training or annealing the discount
factor [29, 31, 33]. We adopt the second approach and move from short to far-sighted discounting to
converge to the desired solution. For hyperbolic discounting, we initially add an offset to α0, leading
to a high expected hazard rate. Over time, we decrease the offset to converge to the desired solution.

E Experiments

Investment problem

• State space X = [0, 1]× [0, 1], modeling account balance and interest rate, i.e., x = [xb, xi]

• Action space U = {spend, invest}
• Dynamics model

f(x,u) =

{
[0, 0]T if u is spend
[0.1, 0]T if u is invest

G(x,u) =

(
0 0
0 0.01

)
• Reward function

R(x,u) = Rx(x) +Ru(u)

Rx([xb, xi]) = xb · xi

Ru(u) =

{
0.1 if u is spend
0 if u is invest

• Initial belief of hazard rate α0 = 3, β0 = 1 (visualized in Fig. 3)

Line problem

• State space X = [−1, 1]
• Action space U = {left, stay, right}
• Dynamics model

f(x,u) =


−1 if u is left
0 if u is stay
1 if u is right

G(x,u) =

{
0.05 if u ∈ {left, right}
0 if u is stay
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• Reward function

1 0 1
x

0

1

2

3

R
x

R(x,u) = Rx(x) +Ru(u)

Rx(x) =


0.5 if x ≥ 0.5

x if 0 ≤ x < 0.5

0 if − 0.95 ≤ x < 0

−60x− 57 if x < 0.95

Ru(u) =

{
0.1 if u ∈ {left, right}
0 if u is stay

• Initial belief of hazard rate α0 = 5, β0 = 1 (visualized in Fig. 3)

F Hyperparameters, implementation, and computing resources

Throughout the experiments, we have used the following hyperparameters:

• The neural networks are parametrized as

layers = (nn.Linear(input_dim, layer_size),
nn.Sigmoid(),
nn.Linear(layer_size, layer_size),
nn.Sigmoid(),
nn.Linear(layer_size, output_dim))

model = nn.Sequential(*layers)

• For the neural network representing V , we used

input_dim = x_dim + 1
output_dim = 1

• For the neural network representing Vθ, we used

input_dim = x_dim + 1
output_dim = theta_dim

• We set λ = 0.2.

• For the collocation method, we used 10.000 samples in each iteration and 125.000 episodes
for the investment problem and 100.000 episodes for the line problem. The initial offset of
α0 was set to 50 and linearly decreased to zero over 50.000 episodes.

• We used Adam optimizer with learning rate 0.003.

• For the runs with exponential discounting, the mean of the initial belief over the hazard rate
was taken for λ, i.e., 3 for the investment problem and 5 for the line problem.

More information about Implementation and computing resources:

• Methods were implemented in Python using the PyTorch framework [71], which has been
published under a BSD license.

• Resources used: Intel® Xeon® Platinum 9242 Processor, using 8 cores per run.

• Network training took ~50 min. for the investment problem and ~30 min. for the line
problem.
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A Hazard rate (investment prob.) B Discount function (investment prob.) C Hazard rate (line problem) D Discount function (line problem)

Figure 3: Hazard rates and Discounting functions. A Expected hazard rate for the investment
problem. For hyperbolic discounting, the expected risk of termination is decreasing over time,
while for exponential discounting, the hazard rate is constant. B Expected discount function for
the investment problem in comparison to an exponential discount function. C Expected hazard rate
for the line problem for hyperbolic discounting in comparison with the constant hazard rate when
applying exponential discounting D Expected discount function for the line problem in comparison
to an exponential discount function.

G Derivation of the hyperbolic discount function as uncertainty over the
constant hazard rate

We assume P (T > t | λ) = exp(−λt) and a belief λ ∼ Gamma(λ;α, β). For the expected survival
function, we calculate

S(t) =

∫
λ

exp (−λt)p (λ) dλ

=

∫
λ

exp (−λt)β
αλα−1 exp(−βλ)

Γ(α)
dλ

=

∫
λ

βαλα−1 exp(−(β + t)λ)

Γ(α)
dλ

=
βα

(β + t)α

∫
λ

Gamma(λ;α, β + t) dλ

=
1(

t
β + 1

)α .
H Interpretation of the discount factor as transition to terminal state

A Markov decision process (MDP) with discounting can be converted to an MDP without discounting
by adding an additional terminal state Υ [13]. From each state with a certain probability γ, one
transitions to the terminal state, and the remaining transition probabilities are renormalized. At the
terminal state there is no possibility to transition to any other state and a reward of zero is given. In
continuous time, the same formalization can be applied, but we consider a rate instead at which one
transitions to the terminal state. Further, we assume in the following that the rate depends on time
and denote it by λ(t). The probability to be in the terminal states at time Υ is given by the cumulative
distribution function (CDF),

P (X(t) = Υ) = P (T < t).

The probability of not having terminated yet is given by the complementary cumulative distribution
function (CCDF),

P (X(t) ̸= Υ) = 1− P (X(t) = Υ)

= P (T ≥ t)
= S(t),

which is equal to the discount function.
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For a constant termination rate, one obtains the CDF and CCDF of the exponential distribution,
respectively:

P (X(t) = Υ) = λ

∫ t

0

exp(−λτ) dτ

= 1− exp(−λt)

P (X(t) ̸= Υ) = 1− P (X(t) = Υ)

= exp(−λt)
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