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Abstract

We study the complexity of PAC learning halfspaces in the presence of Massart
noise. In this problem, we are given i.i.d. labeled examples (x, y) ∈ RN × {±1},
where the distribution of x is arbitrary and the label y is a Massart corruption
of f(x), for an unknown halfspace f : RN → {±1}, with flipping probability
η(x) ≤ η < 1/2. The goal of the learner is to compute a hypothesis with
small 0-1 error. Our main result is the first computational hardness result for this
learning problem. Specifically, assuming the (widely believed) subexponential-time
hardness of the Learning with Errors (LWE) problem, we show that no polynomial-
time Massart halfspace learner can achieve error better than Ω(η), even if the
optimal 0-1 error is small, namely OPT = 2− logc(N) for any universal constant
c ∈ (0, 1). Prior work had provided qualitatively similar evidence of hardness in
the Statistical Query model. Our computational hardness result essentially resolves
the polynomial PAC learnability of Massart halfspaces, by showing that known
efficient learning algorithms for the problem are nearly best possible.

1 Introduction

A halfspace or linear threshold function (LTF) is any function hw,t : RN → {±1} of the form
hw,t(x) := sign(⟨w,x⟩ − t), where the vector w ∈ RN is called the weight vector, t ∈ R is
called the threshold, and sign : R → {±1} is defined by sign(t) = 1 if t ≥ 0 and sign(t) = −1
otherwise. Halfspaces are a central concept class in machine learning, extensively investigated
since the 1950s [Ros58, Nov62, MP68]. Here we study the computational complexity of learning
halfspaces in Valiant’s (distribution independent) PAC model [Val84], when the labels have been
corrupted by Massart noise [MN06]. We define the Massart noise model below.

Definition 1.1 (Massart Noise). We say that a joint distribution D of labeled examples (x, y),
supported on RN × {±1}, satisfies the Massart noise condition with noise parameter η ∈ [0, 1/2)
with respect to a concept class C of Boolean-valued functions on RN if there is a concept c ∈ C such
that for all x0 ∈ RN we have that η(x0)

def
= Pr(x,y)∼D[c(x) ̸= y | x = x0] ≤ η.

The Massart PAC learning problem for the concept class C is the following: Given i.i.d. samples
from a Massart distribution D, as in Definition 1.1, the goal is to output a hypothesis with small 0-1
error. In this work, we study the computational complexity of the Massart PAC learning problem,
when the underlying concept class C is the class of halfspaces on RN .

In its above form, the Massart noise model was defined in [MN06]. An essentially equivalent noise
model had been defined in the 80s by Sloan and Rivest [Slo88, RS94, Slo96], and a very similar
definition had been considered even earlier by Vapnik [Vap82].

The Massart model is a classical semi-random noise model that is more realistic than Random
Classification Noise (RCN) In contrast to RCN, Massart noise allows for variations in misclassification
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rates (without a priori knowledge of which inputs are more likely to be misclassified). Asymmetric
misclassification rates arise in a number of applications, including in human annotation noise [BK09].
Consequently, learning algorithms that can tolerate Massart noise are less brittle than those that
depend on the uniformity of RCN. The agnostic model [Hau92, KSS94], where the noise can be fully
adversarial, is of course even more robust; unfortunately, it is computationally hard to obtain agnostic
learners with any non-trivial guarantees, even for basic settings.

We now return to the class of halfspaces, which is the focus of this work. We recall that PAC learning
halfspaces with RCN is known to be solvable in polynomial time (to any desired accuracy) [BFKV96].
On the other hand, agnostic PAC learning of halfspaces is known to computationally hard (even for
weak learning) [GR06, FGKP06, Dan16].

The computational task of PAC learning halfspaces corrupted by Massart noise is a classi-
cal problem in machine learning theory that has been posed by several authors since the
1980s [Slo88, Coh97, Blu03]. Until recently, no progress had been made on the efficient PAC learn-
ability of Massart halfspaces. [DGT19] made the first algorithmic progress on this problem: they gave
a poly(N, 1/ϵ)-time learning algorithm with error guarantee of η+ ϵ. Subsequent work made a num-
ber of refinements to this algorithmic result, including giving an efficient proper learner [CKMY20]
and developing an efficient learner with strongly polynomial sample complexity [DKT21]. In a
related direction, [DIK+21] gave an efficient boosting algorithm achieving error η+ ϵ for any concept
class, assuming the existence of a weak learner for the class.

The error bound of η can be very far from the information-theoretically optimum error of OPT,
where OPT = RLTF(D) ≤ η. Indeed, known polynomial-time algorithms only guarantee error ≈ η
even if OPT is very small, i.e., OPT ≪ η. This prompts the following question:

Question 1.1. Is there an efficient learning algorithm for Massart halfspaces with a relative error
guarantee? Specifically, if OPT ≪ η is it possible to achieve error significantly better than η?

Our main result (Theorem 1.2) answers this question in the negative, assuming the subexponential-
time hardness of the classical Learning with Errors (LWE) problem (Assumption 2.4). In other words,
we essentially resolve the efficient PAC learnability of Massart halfspaces, under a widely-believed
cryptographic assumption.

1.1 Our Results

Before we state our main result, we recall the setup of the Learning with Errors (LWE) problem.
In the LWE problem, we are given samples (x1, y1), . . . , (xm, ym) and the goal is to distinguish
between the following two cases: (i) Each xi is drawn uniformly at random (u.a.r.) from Znq , and there
is a hidden secret vector s ∈ Znq such that yi = ⟨xi, s⟩+ zi, where zi ∈ Zq is discrete Gaussian noise
(independent of xi); (ii) Each xi and each yi are independent and are sampled u.a.r. from Znq and Zq
respectively. Formal definitions of LWE (Definition 2.3) and related distributions together with the
precise computational hardness assumption (Assumption 2.4) we rely on are given in Section 2.

Our main result can now be stated as follows:

Theorem 1.2 (Informal Main Theorem). Assume that LWE cannot be solved in 2n
1−Ω(1)

time. Then,
for any constant ζ > 0, there is no polynomial-time learning algorithm for Massart halfspaces on
RN that can output a hypothesis with 0-1 error smaller than Ω(η), even when OPT ≤ 2− log1−ζ N

and the Massart noise parameter η is a small positive constant.

The reader is also referred to Theorem D.1 in the Appendix for a more detailed formal statement.
Theorem 1.2 is the first computational hardness result for PAC learning halfspaces (and, in fact,
any non-trivial concept class) in the presence of Massart noise. Our result rules out even improper
PAC learning, where the learner is allowed to output any polynomially evaluatable hypothesis. As a
corollary, it follows that the algorithm given in [DGT19] is essentially the best possible, even when
assuming that OPT is almost inverse polynomially small (in the dimension N ). We also remark
that this latter assumption is also nearly the best possible: if OPT is o(ϵ/N), then we can just draw
Ω(N/ϵ) samples and output any halfspace that agrees with these samples.

We note that a line of work has established qualitatively similar hardness in the Statistical Query
(SQ) model [Kea98] — a natural, yet restricted, model of computation. Specifically, [CKMY20]
established a super-polynomial SQ lower bound for learning within error of OPT + o(1). Subse-
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quently, [DK22] gave a near-optimal super-polynomial SQ lower bound: their result rules out the
existence of efficient SQ algorithms that achieve error better than Ω(η), even if OPT = 2log

1−ζ N .
Building on the techniques of [DK22], more recent work [NT22] established an SQ lower bound
for learning to error better than η, even if OPT = 2log

1−ζ N — matching the guarantees of known
algorithms exactly. While the SQ model is quite broad, it is also restricted. That is, the aforemen-
tioned prior results do not have any implications for the class of all polynomial-time algorithms.
Interestingly, as we will explain in the proceeding discussion, our computational hardness reduction
is inspired by the SQ-hard instances constructed in [DK22].

1.2 Brief Technical Overview

Here we give a high-level overview of our approach. Our reduction proceeds in two steps. The first is
to reduce the standard LWE problem (as described above) to a different “continuous” LWE problem
more suitable for our purposes. In particular, we consider the problem where the x samples are taken
uniformly from Rn/Zn, y is either taken to be an independent random element of R/Z or is taken
to be ⟨x, s⟩ mod 1 plus a small amount of (continuous) Gaussian noise, where s is some unknown
vector in {±1}n. This reduction follows from existing techniques [Mic18a, GVV22].

The second step — which is the main technical contribution of our work — is reducing this continuous
LWE problem to that of learning halfspaces with Massart noise. The basic idea is to perform a
rejection sampling procedure that allows us to take LWE samples (x, y) and produce some new
samples (x̃, ỹ). We will do this so that if y is independent of x, then ỹ is (nearly) independent of
x̃; but if y = ⟨x, s⟩ + noise, then ỹ is a halfspace of x̃ with a small amount of Massart noise. An
algorithm capable of learning halfspaces with Massart noise (with appropriate parameters) would
be able to distinguish these cases by learning a hypothesis h and then looking at the probability that
h(x̃) ̸= ỹ. In the case where ỹ was a halfspace with noise, this would necessarily be small; but in the
case where x̃ and ỹ were independent, it could not be.

In order to manage this reduction, we will attempt to produce a distribution (x̃, ỹ) similar to the
SQ-hard instances of Massart halfspaces constructed in [DK22]. These instances can best be thought
of as instances of a random variable (x′, y′) in Rn × {±1}, where y′ is given by a low-degree
polynomial threshold function (PTF) of x′ with a small amount of Massart noise. Then, letting x̃ be
the Veronese map applied to x′, we see that any low-degree polynomial in x′ is a linear function of x̃,
and so ỹ = y′ is an LTF of x̃ plus a small amount of Massart noise.

As for how the distribution over (x′, y′) is constructed in [DK22], essentially the conditional dis-
tribution of x′ on y′ = 1 and on y′ = −1 are carefully chosen mixtures of discrete Gaussians in
the v-direction (for some randomly chosen unit vector v), and independent standard Gaussians in
the orthogonal directions. () Our goal will be to find a way to perform rejection sampling on the
distribution (x, y) to produce a distribution of this form.

In pursuit of this, for some small real number b and some a ∈ [0, b), we let x′ be a random Gaussian
subject to x′ ≡ bx (mod b) (in the coordinate-wise sense) conditioned on by ≡ a (mod b). We note
that if we ignore the noise in the definition of y, this implies that ⟨x′, s⟩ ≡ ⟨bx, s⟩ ≡ b ⟨x, s⟩ ≡ by ≡ a
(mod b) (recalling that s ∈ {±1}n). In fact, it is not hard to see that the resulting distribution on x′

is close to a standard Gaussian conditioned on ⟨x′, s⟩ ≡ a (mod b). In other words, x′ is close to
a discrete Gaussian with spacing b/∥s∥2 and offset a/∥s∥2 in the s-direction, and an independent
standard Gaussian in orthogonal directions. Furthermore, this x′ can be obtained from (x, y) samples
by rejection sampling: taking many samples until one is found with by ≡ a (mod b), and then
returning a random x′ with x′ ≡ bx (mod b). By taking an appropriate mixture of these distributions,
we can manufacture a distribution close to the hard instances in [DK22]. This intuition is explained
in detail in Section 3.1; see Lemma 3.3. (We note that Lemma 3.3 is included only for the purposes
of intuition; it is a simpler version of Lemma 3.5, which is one of the main lemmas used to prove our
main theorem.)

Unfortunately, as will be discussed in Section 3.2, applying this construction directly does not
quite work. This is because the small noise in the definition of y leads to a small amount of
noise in the final values of ⟨x′, s⟩. This gives us distributions that are fairly similar to the hard
instances of [DK22], but leads to small regions of values for u, where the following condition holds:
Pr(y′ = +1 | x′ = u) = Pr(y′ = −1 | x′ = u). Unfortunately, the latter condition cannot hold if
y′ is a function of x′ with Massart noise. In order to fix this issue, we need to modify the construction
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by carving intervals out of the support of x′ conditioned on y′ = −1, in order to eliminate these
mixed regions. This procedure is discussed in detail in Section 3.3.2.

1.3 Additional Related Work

There have also been several recent works showing reductions from LWE or lattice problems to
other learning problems. Concurrent and independent work to ours [Tie22] showed hardness of
weakly agnostically learning halfspaces, based on a worst-case lattice problem (via a reduction
from “continuous” LWE). Two recent works obtained hardness for the unsupervised problem of
learning mixtures of Gaussians (GMMs), assuming hardness of (variants of) the LWE problem.
Specifically, [BRST21] defined a continuous version of LWE (whose hardness they established) and
reduced it to the problem of learning GMMs. More recently, [GVV22] obtained a direct reduction
from LWE to a (different) continuous version of LWE; and leveraged this connection to obtain
quantitatively stronger hardness for learning GMMs. It is worth noting that for the purposes of our
reduction, we require as a starting point a continuous version of LWE that differs from the one defined
in [BRST21]. Specifically, we require that the distribution on x is uniform on [0, 1]n (instead of a
Gaussian, as in [BRST21]) and the secret vector is binary. The hardness of this continuous version
essentially follows from [Mic18b, GVV22].

2 Preliminaries
For x, s ∈ Rn with s ̸= 0, let xs def

= ⟨x, s⟩/∥s∥2 be the length of the projection of x in the s direction,
and x⊥s ∈ Rn−1 be the projection1 of x on the orthogonal complement of s. For f, g : U → R,
we write f(u) ∝ g(u) if there is c ∈ R such that f(u) = cg(u) for all u ∈ U . We use X ∼ D to
denote a random variable X with distribution D. We use PD or PX for the corresponding probability
mass function (pmf) or density function (pdf), and PrD or PrX for the measure function of the
distribution. We use DX to denote the distribution of the random variable X . For S ⊆ Rn, we will
use λ(S) to denote the n-dimensional volume of S. Let U(S) denote the uniform distribution on
S. For a distribution D on Rn and S ⊆ Rn, we denote by D | S the conditional distribution of
X ∼ D given X ∈ S. Let Ds (resp. D⊥s) be the distribution of xs (resp. x⊥s), where x ∼ D.
For distributions D1, D2, we use D1 +D2 to denote the pseudo-distribution with measure function
PrD1+D2

(A) = PrD1
(A) + PrD2

(A). For a ∈ R, let aD denote the pseudo-distribution with
measure function aPrD. On the other hand, let a ◦D denote the distribution of aX , where X ∼ D.
We use D1 ⋆ D2 to denote the convolution of distributions D1, D2.

We will use LTFN for the class of halfspaces on RN ; when N is clear from the context, we may
discard it and simply write LTF. For q ∈ N, we use Zq

def
= {0, 1, · · · , q − 1} and Rq

def
= [0, q). We

use modq : Rn 7→ Rnq to denote the function that applies modq(x) on each coordinate of x.

We use DN
Rn,σ to denote the n-dimensional Gaussian distribution with mean 0 and covariance matrix

σ2/(2π) · In and use DN
σ as a short hand for DN

R,σ. In some cases, we will use N (0, In) for the
standard (i.e., zero mean and identity covariance) multivariate Gaussian,

Definition 2.1 (Partially Supported Gaussian Distribution). For σ ∈ R+ and x ∈ Rn, let ρσ(x)
def
=

σ−n exp
(
−π(∥x∥2/σ)2

)
. For any countable set S ⊆ Rn, we let ρσ(S)

def
=
∑

x∈S ρσ(x), and let
DN
S,σ be the distribution supported on S with pmf PDN

S,σ
(x) = ρσ(x)/ρσ(S).

Definition 2.2 (Discrete Gaussian). For T ∈ R+, y ∈ R and σ ∈ R+, we define the “T -spaced,
y-offset discrete Gaussian distribution with σ scale” to be the distribution of DN

TZ+y,σ .

Learning with Errors (LWE) We use the following definition of LWE, which allows for flexible
distributions of samples, secrets, and noises. Here m is the number of samples, n is the dimension,
and q is the ring size.
Definition 2.3 (Generic LWE). Let m,n, q ∈ N, and let Dsample, Dsecret, Dnoise be distributions on
Rn,Rn,R respectively. In the LWE(m,Dsample, Dsecret, Dnoise,modq) problem, we are given m
independent samples (x, y) and want to distinguish between the following two cases: (i) Alternative

1More precisely, let B⊥s ∈ Rn×(n−1) for the matrix whose columns form an (arbitrary) orthonormal basis
for the orthogonal complement of s, and let x⊥s def

= (B⊥s)
T x.
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hypothesis: s is drawn from Dsecret. Then, each sample is generated by taking x ∼ Dsample, z ∼
Dnoise, and letting y = modq(⟨x, s⟩+ z); and (ii) Null hypothesis: x, y are independent and each
has the same marginal distribution as above.

When a distribution in LWE is uniform over some set S, we may abbreviate U(S) merely as S. Note
that LWE(m,Znq ,Znq , DN

Z,σ,modq) to the classical LWE problem.

Computational Hardness Assumption for LWE As alluded to earlier, the assumption for our
hardness result is the hardness of the (classic) LWE problem, with the parameters stated below.

Assumption 2.4 (Standard LWE Assumption (see, e.g., [LP11])). Let c > 0 be a sufficiently large
constant. For any constant β ∈ (0, 1), κ ∈ N, LWE(2O(nβ),Znq ,Znq , DN

Z,σ,modq) with q ≤ nκ and

σ = c
√
n cannot be solved in 2O(nβ) time with 2−O(nβ) advantage.

We recall that [Reg09, Pei09] gave a polynomial-time quantum reduction from approximating (the
decision version of) the Shortest Vector Problem (GapSVP) to LWE (with similar n, q, σ parameters).
Our hardness assumption is the widely believed sub-exponential hardness of LWE. We note that
the fastest known algorithm for GapSVP takes 2O(n) time [ALNS20]. Thus, refuting the conjecture
would be a major breakthrough. A similar assumption was also used in [GVV22] to establish
computational hardness of learning Gaussian mixtures. Our use of a sub-exponential hardness of
LWE is not a coincidence; see Section 4.

As mentioned earlier, we will use a different variant of LWE, where the sample is from Rn1 , the secret
is from {±1}n, and the noise is drawn from a continuous Gaussian distribution. The hardness of this
variant is stated below. The proof, which follows from [Mic18a, GVV22], is deferred to Appendix B.

Lemma 2.5. Under Assumption 2.4, for any β ∈ (0, 1) and γ ∈ R+, there is no 2O(nβ) time

algorithm to solve LWE
(
2O(nβ),Rn1 , {±1}n, DN

O(n−γ),mod1

)
with 2−O(nβ) advantage.

Decisional Massart Halfspace Problem For a distribution D on labeled examples and a concept
class C, we let RC(D)

def
= minh∈C Pr(x,y)∼D[h(x) ̸= y] be the error of the best classifier in C

with respect to D. We will prove hardness for the following decision version of learning Massart
halfspaces. This will directly imply hardness for the corresponding learning (search) problem.

Definition 2.6 (Testing Halfspaces with Massart Noise). For n,N ∈ N, η,OPT ∈ (0, 1/2), let
Massart(m,N, η,OPT) denote the problem of distinguishing, given m i.i.d. samples from D on
RN × {±1}, between the following two cases: (i) Alternative hypothesis: D satisfies the Massart
halfspace condition with noise parameter η and RLTF(D) ≤ OPT; and (ii) Null hypothesis: the
Bayes optimal classifier has cη error, where c > 0 is a sufficiently small universal constant.

3 Reduction from LWE to Learning Massart Halfspaces

In this section, we establish Theorem 1.2. Some intermediate technical lemmas have been deferred
to the Appendix C. Our starting point is the problem LWE(m,Rn1 , {±1}n, DN

σ ,mod1). Note that,
by Lemma 2.5, Assumption 2.4 implies the hardness of LWE(m,Rn1 , {±1}n, DN

σ ,mod1). We will
reduce this variant of LWE to the decision/testing version of Massart halfspaces (Definition 2.6).

Our reduction will employ multiple underlying parameters, which are required to satisfy a set of
conditions. For convenience, we list these conditions below.

Condition 3.1. Let n,m,m′ ∈ N, t, ϵ, σ ∈ R+, δ ∈ (0, 1), satisfy: (i) t/ϵ is a sufficiently large even
integer, (ii) σ ≤

√
n, (iii) 1

t
√
n
≥
√
c log(n/δ), where c is a sufficiently large universal constant,

(iv) ( c′ϵ
c′′tσ )

2 ≥ log(m′/δ), where c′ > 0 is a sufficiently small universal constant and c′′ > 0 is a
sufficiently large universal constant.

The main theorem of this work is stated below.

Theorem 3.2. Let n,m,m′ ∈ N, t, ϵ, σ ∈ R+, ϵ′, δ ∈ (0, 1) satisfy Condition 3.1 and η < 1/2.
Moreover, assume that m′ = c(ϵ/t)m, where c > 0 is a sufficiently small universal constant and
m(ϵ/t)2 is sufficiently large, and N = (n + 1)d, where d/(t/ϵ) is sufficiently large. Suppose that
there is no T + poly(m,N, log(1/δ))-time algorithm for solving LWE(m,Rn1 , {±1}n, DN

σ ,mod1)
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with ϵ′ −O(δ) advantage. Then there is no T time algorithm for solving Massart(m′, N, η,OPT)
with 2ϵ′ advantage, where OPT = exp(−Ω(t4/ϵ2)).

Note that Theorem 3.2, combined with Lemma 2.5, can be easily used to prove Theorem 1.2 (e.g., by
plugging in t = n−0.5−Θ(ζ), ϵ = Θ(n−1.5) in the above statement); see Appendix D. As such, we
devote the remainder of the body of this paper to give an overview to the proof of Theorem 3.2.
High-level Overview The starting point of our computational hardness reduction is the family
of SQ-hard instances obtained in [DK22]. At a high-level, these instances are constructed using
mixtures of “hidden direction” discrete Gaussian distributions, i.e., distributions that are discrete
Gaussians in a hidden direction and continuous Gaussians on the orthogonal directions.

In Section 3.1, we note that by using an appropriate rejection sampling procedure on the LWE samples
(drawn from the alternative hypothesis), we obtain a distribution very similar to the “hidden direction
discrete Gaussian”. A crucial difference in our setting is the existence of a small amount of additional
“noise”. A natural attempt is to replace the discrete Gaussians in [DK22] with the noisy ones obtained
from our rejection sampling procedure. This produces problems similar to the hard instances from
[DK22]. Unfortunately, the extra noise in our construction means that the naive version of this
construction will not work; even with small amounts of noise, the resulting distributions will not
satisfy the assumptions of a PTF with Massart noise. In Section 3.2, we elaborate on this issue and
the modifications we need to make to our construction in order to overcome it. In Section 3.3, we
provide the complete construction of our Massart PTF hard instance.
Overview of the [DK22] SQ-hard Construction [DK22] showed SQ-hardness for the following
hypothesis testing version of the problem (which implies hardness for the learning problem): For an
input distribution D on Rn × {±1}, distinguish between the cases where D is a specific distribution
Dnull in which x and y are independent or where D belongs to a class of alternative hypothesis
distributions Dalternative. In particular, for D ∈ Dalternative, y will be given by a low-degree PTF in
x with a small amount of Massart noise. As we will be trying to reproduce it, it is important for us to
understand this alternative hypothesis distribution. Each distribution in Dalternative is parameterized
by a hidden direction s ∈ Sn−1. We will denote the corresponding distribution by Ds. Ds is
constructed so that x⊥s ∼ DN

Rn−1,1 is independent of xs and y. This means that we can specify Ds

by describing the simpler distribution of (xs, y) ∈ R × {±1}. For (xs, y), we have that y = +1
with probability 1− η. The distributions of xs conditioned on y = ±1 are defined to be mixtures of
discrete Gaussians as follows:

Dxs|(y=+1) =
1

ϵ

∫ ϵ

0

DN
u+(t+u)Z,1du and Dxs|(y=−1) =

1

ϵ

∫ t/2+ϵ

t/2

DN
u+(t+u−t/2)Z,1du . (1)

As we noted, both xs | (y = +1) and xs | (y = −1) are mixtures of discrete Gaussians. Combining
this with the fact that x⊥s ∼ N (n, In−1), this indicates that x | (y = +1) and x | (y = −1)
are mixtures of “hidden direction discrete Gaussians” — with different spacing and offset for their
support on the hidden direction. These conditional distributions were carefully selected to ensure that
y is a Massart PTF of x with small error. To see why this is, notice that the support of xs | (y = +1)
is
⋃
i∈Z

[it, it+ (i+1)ϵ], while the support of xs | (y = −1) is
⋃
i∈Z

[it+ t/2, it+ t/2+ (i+1)ϵ]; both

supports are unions of intervals. Consider the implications of this for three different ranges of xs:

1. For xs ∈ [−t2/(2ϵ), t2/(2ϵ)], the intervals have lengths in [0, t/2]; thus, the +1 intervals and the
−1 intervals do not overlap at all.

2. For xs ∈ [−t2/ϵ,−t2/(2ϵ)) ∪ (t2/(2ϵ), t2/ϵ], the intervals have lengths in [t/2, t]; thus, the +1
intervals and the −1 intervals overlap, so that their union covers the space. We note that in this
case there are gaps between the +1 intervals; specifically, there are at most O(t/ϵ) such gaps.

3. For xs ∈ (−∞,−t2/ϵ)∪ (t2/ϵ,∞), the intervals have lengths in [t,∞), so the +1 intervals cover
the space by themselves.

Consider the degree-O(t/ϵ) PTF sign(p(x)) such that sign(p(x)) = +1 iff xs ∈
⋃
i∈Z

[it, it+(i+1)ϵ].

In particular, sign(p(x)) = 1 for x in the support of the conditional distribution on y = 1. Note that
the PTF sign(p(x)) has zero error in the first case; thus, its total 0-1 error is at most exp(−Ω(t2/ϵ)2).
Moreover, since the probability of y = 1 is substantially larger than the probability of y = −1, it is
not hard to see that for any x with sign(p(x)) = 1 that Pr[y = 1 | x = x] > 1−O(η). This implies
that y is given by sign(p(x)) with Massart noise O(η).
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3.1 Basic Rejection Sampling Procedure

In this subsection, we show that by performing rejection sampling on LWE samples, one can obtain a
distribution similar to the “hidden direction discrete Gaussian”. For the sake of intuition, we start with
the following simple lemma. The lemma essentially states that, doing rejection sampling on LWE
samples, gives a distribution with the following properties: On the hidden direction s, the distribution
is pointwise close to the convolutional sum of a discrete Gaussian and a continuous Gaussian noise.
Moreover, on all the other directions ⊥ s, the distribution is nearly independent of its value on s,
in the sense that conditioning on any value on s, the distribution on ⊥ s stays pointwise close to
a Gaussian. Note that this distribution closely resembles the “hidden direction discrete Gaussian”
in [DK22].

Lemma 3.3. Let (x, y) be a sample of the LWE(m,Rn1 , {±1}n, DN
σ ,mod1) from the alternative

hypothesis case, let y′ be any constant in [0, 1), and let x′ ∼ (1/σscale) ◦ DN
x+Zn,σscale

| (y = y′) .

Then we have the following: (i) For x′s, we have that for any u ∈ R it holds that Px′s(u) =

(1±O(δ))PD′⋆DN
σnoise

(u) , whereD′ = DN
T (y′+Z),σsignal

, and T = SR/(n1/2σscale), σsignal =
√
SR,

σnoise =
√
1− SR, and SR =

σ2
scale

σ2
scale+σ

2/n
, (ii) x′⊥s is “nearly independent” of x′s, namely for any

l ∈ R and u ∈ Rn−1 we have that Px⊥s|xs=l(u) = (1±O(δ))PDN
Rn−1,1

(u) .

Lemma 3.3 is a special case of Lemma 3.5, which is one of the main lemmas required for our proof.
We note that the distribution of x′ obtained from the above rejection sampling is very similar to the
“hidden direction discrete Gaussian” used in [DK22]. The key differences are as follows: (i) on the
hidden direction, x′s is close to a discrete Gaussian plus extra Gaussian noise (instead of simply
being a discrete Gaussian), (ii) x′⊥s and x′s are not perfectly independent. More importantly, by
taking different values for y′ and σscale, we can obtain distributions with the same hidden direction,
but their discrete Gaussian on the hidden direction has different spacing (T ) and offset (y′).

To obtain a computational hardness reduction, our goal will be to simulate the instances from [DK22]
by replacing the hidden direction discrete Gaussians with the noisy versions that we obtain from this
rejection sampling. We next discuss this procedure and see why a naive implementation of it does not
produce a PTF with Massart noise.

3.2 Intuition for the Hard Instance

The natural thing to try is to simulate the conditional distributions from [DK22] by replacing the
hidden direction discrete Gaussian terms in (1) with similar distributions obtained from rejection
sampling. In particular, Lemma 3.3 says that we can obtain a distribution which is close to this hidden
direction Gaussian plus a small amount of Gaussian noise. Unfortunately, this extra noise will cause
problems for our construction.

Recall that the support of xs | (y = +1) was
⋃
i∈Z

[it, it+ (i+ 1)ϵ], and the support of xs | (y = −1)

was
⋃
i∈Z

[it+ t/2, it+ t/2 + (i+ 1)ϵ] for [DK22]. With the extra noise, there is a decaying density

tail in both sides of each [it, it + (i + 1)ϵ] interval in the support of xs | (y = +1). The same
holds for each interval in the support of xs | (y = −1). Recalling the three cases of these intervals
discussed earlier, this leads to the following issue. In the second case, the intervals have length
within [t/2, t]; thus, the intervals [it, it+ (i+ 1)ϵ] and [it+ t/2, it+ t/2 + (i+ 1)ϵ] overlap, i.e.,
it + (i + 1)ϵ ≥ it + t/2. On the right side of [it, it + (i + 1)ϵ], in the support of xs | (y = −1),
there is a small region of values for u, where Pr[y′ = +1 | xs = u] = Pr[y′ = −1 | xs = u].
This causes the labels y = +1 and y = −1 to be equally likely over that small region, violating
the Massart condition. (We note that for the first case, there is also this kind of small region that
Pr[y′ = +1 | xs = u] = Pr[y′ = −1 | xs = u] caused by the noise tail. However, the probability
density of this region is negligibly small, as we will later see in Lemma 3.9.)

We can address this by carving out empty spaces in the [it+ t/2, it+ t/2 + (i+ 1)ϵ] intervals for
xs | (y = −1), so that these decaying parts can fit into. Since this only needs to be done for intervals
of Case 2, at most O(t/ϵ) many such slots are needed. It should be noted that no finite slot will totally
prevent this from occurring. However, we only need the slot to be wide enough so that the decay of
the error implies that there is negligible mass in the overlap (which can be treated as an error).
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We also need to discuss another technical detail. In the last section, we defined the rejection sampling
process as taking (1/σscale) ◦ DN

x+Zn,σscale
| (y = y′), where we can control the offset by y′ and

spacing by σscale (Lemma 3.3). This distribution is effectively a noisy version of a discrete Gaussian.
Therefore, we can produce a noisy version of the hard instances of [DK22] by taking a mixture of
these noisy discrete Gaussians. Unfortunately the noise rate of one of these instances will be σnoise.
This quantity depends on the spacing T of the discrete Gaussian, which varies across the mixture we
would like to take. This inconsistent noise rate is inconvenient for our analysis. However, we can fix
the issue by adding extra noise artificially to each of the discrete Gaussians in our mixture, so that
they will all have a uniform noise rate σnoise; see Algorithm 1 and Lemma 3.5.

The last bit of technical detail is that instead of doing the rejection for y = y′, which has 0 acceptance
probability, we will only reject if y is not corresponding to any discrete Gaussian we need. Then we
do another rejection to make sure that the magnitude of discrete Gaussians in the mixture is correct.
In the next subsection, we introduce the complete rejection sampling method.

3.3 The Full Hard Instance Construction

We first introduce the complete rejection algorithm, and then explain how the hard instance is
produced using it. Below we provide proof overviews; omitted proofs can be found in Appendix C.

3.3.1 The Complete Rejection Algorithm

The rejection sampling algorithm is the following. The sampling process produces the noisy
variant of the distribution which, for some carefully selected set B ⊆ [0, 1], has PDF function

1
λ(B)

∫
B
DN
k+(t+k−ψ)Z,1dk in the hidden direction, as we will see in Lemma 3.5.

Algorithm 1 Rejection Sampling Algorithm
Inputs: A sample (x, y) ∈ Rn1 × R1 and the input parameters are t, ϵ, ψ ∈ R>0, where ψ + ϵ ≤ t,
B ⊆ [ψ,ψ + ϵ], δ ∈ (0, 1). In addition, the parameters satisfy items (i)-(iii) of Condition 3.1.
Output: REJECT or a sample x′ ∈ Rn.

1. Reject unless there is a k ∈ B such that y = k
t+k−ψ .

2. Furthermore, reject with probability 1− t2

(t+k−ψ)2 .

3. Let SR = 1 − 4(t + ϵ)2σ2, σscale = SR
(t+k−ψ)

√
n

and σadd =

√
(1−SR)σ2

scale−SR(σ/
√
n)2

SR . Then,
sample independent noise xadd ∼ DN

Rn,σadd
and output x′ ∼ (1/σscale) ◦DN

x+xadd+Zn,σscale
.

Notice that the parameter SR does not depend on y, whereas σscale, σadd do depend on y.

For convenience, let us use the following notation for the output distributions.
Definition 3.4 (Output Distribution of Rejection Sampling). Let Dalternative

t,ϵ,ψ,B,δ be the distributions of
x′ produced by Algorithm 1 (conditioned that the algorithm accepts) given that (x, y) are sampled
as follows: let x ∼ U(Rn1 ), z ∼ DN

σ , and then let y = mod1(⟨x, s⟩+ z), where s ∈ {±1}n is the
secret. Furthermore, let Dnull

t,ϵ,ψ,B,δ be a similar distribution, but when x ∼ U(Rn1 ), y ∼ U(R1) are
independent.

Note that Dalternative
t,ϵ,ψ,B,δ depends on s, but we do not explicitly denote this in our notation.

Alternative Hypothesis Analysis The main properties of Dalternative
t,ϵ,ψ,B,δ are summarized in the

following lemma. Essentially, the lemma states that for this distribution Dalternative
t,ϵ,ψ,B,δ , the marginal

distribution on the hidden direction s is pointwise close to the convolution sum of D′ and a Gaussian
noise, where D′ is a linear combination of discrete Gaussians. Moreover, on all the other directions
⊥ s, the distribution is nearly independent of its value on s, in the sense that conditioning on any
value on s, the distribution on ⊥ s always stays pointwise close to a Gaussian.
Lemma 3.5. Let x′ ∼ Dalternative

t,ϵ,ψ,B,δ . Then we have the following: (i) For x′s, we have that for
any u ∈ R, Px′s(u) = (1 ± O(δ))PD′⋆DN

σnoise
(u) , where D′ = 1

λ(B)

∫
B
DN
k+(t+k−ψ)Z,σsignal

dk ,
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σsignal =
√
SR, and σnoise =

√
1− SR = 2(t + ϵ)σ. (SR is defined in Algorithm 1), (ii) x′⊥s is

“nearly independent” of x′s; namely, for any l ∈ R and u ∈ Rn−1, we have that Px′⊥s|x′s=l(u) =
(1±O(δ))PDN

Rn−1,1
(u) .

Null Hypothesis Analysis For Dnull
t,ϵ,ψ,B,δ , we can show that it is pointwise close to DN

Rn,1:

Lemma 3.6. For any u ∈ Rn, we have that PDnull
t,ϵ,ψ,B,δ

(u) = (1±O(δ))PDN
Rn,1

(u) .

3.3.2 The Reduction Algorithm

With the rejection sampling algorithm (Algorithm 1) at our disposal, we can now give the full
construction of the hard instance. We use Dt,ϵ,ψ+,B+,δ for x | y = +1, Dt,ϵ,ψ−,B−,δ for x | y = −1
(with a carefully chosen pair of (B+, ψ+) and (B−, ψ−), as we discussed in Section 3.2), and
take a proper marginal distribution of y to build a joint distribution of (x, y). We introduce a
reduction algorithm that, given samples from our LWE problem (either from the null or the alternative
hypothesis), produces i.i.d. samples (x, y) from a joint distribution with the following properties:

1. If the input LWE problem is the null hypothesis, then x | y = +1 and x | y = −1 are close in
total variation distance. Therefore, no hypothesis for predicting y in terms of x can do much better
than the best constant hypothesis.

2. If the input LWE problem is the alternative hypothesis, then the joint distribution of (x, y) we build
is close to a distribution D that satisfies O(η) Massart condition with respect to a degree-O(t/ϵ)
PTF, and there is a degree-O(t/ϵ) PTF with small error on D.

We formalize the idea from Section 3.2 here. For x | y = +1, we will use ψ+
def
= 0 and B+

def
= [0, ϵ].

For x | y = −1, we take ψ−
def
= t/2, which is also the same as [DK22]; but instead of taking

B−
def
= [t/2, t/2 + ϵ], we will need to carve out the slots on B−. First, we define the mapping

g : R− [−1.5t, 0.5t] 7→ [0.5t, t], as follows: for i ∈ Z and b ∈ Rt, we have that

g(it+ t/2 + b)
def
=

{
b
i+1 + t/2 if i ≥ 0;
b−t
i+2 + t/2 if i < 0.

This function maps a location it+ t/2 + b to the corresponding place we need to carve out on B−,
which is defined in Algorithm 2. These intervals are chosen so that the decaying density part of +1
can fit in, as we discussed in Section 3.2. Now we introduce the algorithm that reduces LWE to
learning Massart PTFs.

We similarly define the output distributions of the algorithms in the two cases as follows:
Definition 3.7. Let Dalternative

PTF be mixture of Dalternative
t,ϵ,ψ+,B+,δ

and Dalternative
t,ϵ,ψ−,B−,δ

with +1 and −1 labels
and weights 1−η and η respectively. Similarly, letDnull

PTF be mixture ofDnull
t,ϵ,ψ+,B+,δ

andDnull
t,ϵ,ψ−,B−,δ

with +1 and −1 labels and weights 1− η and η respectively.

The following observation is immediate from the algorithm.
Observation 3.8. In the alternative (resp. null) hypothesis case, the output distribution of Algorithm
2, conditioned on not failing, is the same as m′ i.i.d. samples drawn from Dalternative

PTF (resp. Dnull
PTF).

Alternative Hypothesis Analysis We prove that there exists a degree-O(t/ϵ) PTF such that
Dalternative

PTF is close to (in total variation distance) satisfying the O(η) Massart noise condition with
respect to this PTF, and this PTF has small error with respect to Dalternative

PTF .

Lemma 3.9. Dalternative
PTF is O(δ/m′) close in total variation distance to a distribution Dtruncated

such that there is a degree-O(t/ϵ) PTF sign(p(x)) that: (i) E(x,y)∼Dtruncated [sign(p(x)) ̸=
y] ≤ exp(−Ω(t4/ϵ2)), (ii) Dtruncated satisfies the O(η) Massart noise condition with respect
to sign(p(x)).

Null Hypothesis Analysis The reader is referred to Lemma C.8 in Appendix C for the null
hypothesis analysis.
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Algorithm 2 Reducing LWE to Learning PTFs with Massart Noise
Inputs: m samples from an instance of LWE(m,Rn1 , {±1}n,Nσ,mod1). The input parameters are
m′ ∈ N, t, ϵ ∈ R>0, δ ∈ (0, 1), and η > 0 a sufficiently small value. In addition, the parameters
satisfy Condition 3.1.
Output: m′ many samples in Rn × {±1} or FAIL.

1. We take ψ+ = 0, B+ = [0, ϵ], ψ− = t/2 and

B−
def
= [t/2, t/2 + ϵ]−

t
ϵ−1⋃

i= t
2ϵ−1

g([it− 2c′ϵ, it])−
t
ϵ−1⋃

i= t
2ϵ−1

g([it+ (i+ 1)ϵ, it+ (i+ 1)ϵ+ 2c′ϵ])

−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it+ (i+ 1)ϵ− 2c′ϵ, it+ (i+ 1)ϵ])−
− t

2ϵ−1⋃
i=− t

ϵ−1

g([it, it+ 2c′ϵ]) .

2. Repeat the following m′ times. If at any point the algorithm attempts to use more than m LWE
samples from the input, then output FAIL.
(a) With probability 1 − η, repeat the following until Algorithm 1 accepts and output x′: run

Algorithm 1 with the next unused LWE sample from the input and parameters t, ϵ, ψ =
ψ+, B = B+, δ. Add (x′,+1) to the output samples.

(b) With probability η, repeat the following until Algorithm 1 accepts and output x′: run
Algorithm 1 with the next unused LWE sample from the input and parameters t, ϵ, ψ =
ψ−, B = B−, δ. Add (x′,−1) to the output samples.

Putting Everything Together Having reduced LWE to learning Massart PTFs, we can apply a
Veronese mapping on the samples; this PTF becomes an LTF on the Veronese mapping. Since we use
degree-O(t/ϵ) Veronese mapping, the dimension for the Massart LTF problem is N = (n+ 1)O(t/ϵ).

4 Discussion

Our result rules out the existence of polynomial time algorithms achieving error smaller than Ω(η),
where η is the upper bound on the noise rate, even of the optimal error is very small, assuming the
subexponential time hardness of LWE. A technical open question is whether the constant factor in
the Ω(η)-term of our lower bound can be improved to the value C = 1; this would match known
algorithms exactly. (As mentioned in the introduction, such a sharp lower bound has been recently
established in the SQ model [NT22], improving on [DK22].)

It is also worth noting that our reduction rules out polynomial-time algorithms, but does not rule out,
e.g., subexponential or even quasipolynomial time algorithms with improved error guarantees. We
believe that obtaining stronger hardness for these problems would require substantially new ideas,
as our runtime lower bounds are essentially the same as the best time lower bounds for learning in
the (much stronger) agnostic noise model or in restricted models of computation (like SQ). This
seems related to the requirement that our bounds require subexponential hardness of LWE in our
assumption. As the strongest possible assumptions only allow us to prove quasi-polynomial lower
bounds, any substantially weaker assumption will likely fail to prove super-polynomial ones.
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