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A Selecting helpful patches at inference time in 1-shot scenarios

Figure 6 in the main paper demonstrates that our approach is able to successfully learn at inference
time which image regions should be considered to classify the unknown query images in a 5-way
5-shot scenario. We additionally present the visualization of the token importance weights for the
query images of a 5-way 1-shot scenario in Figure A1. It can be clearly observed that the brighter
regions representing higher importance of the respective image patches strongly relate to the actual
objects that are to be classified, even in the case of smaller objects (2nd and 4th from the right). While
our method only has access to significantly less information in the here presented 1-shot than in the
case of 5-shot scenarios (see details in Section 2.4), our proposed way of masking the neighborhood
of each pixel during the online optimization procedure still enables selection of the most helpful areas
characteristic for the respective classes.

Figure A1: Learning token importance at inference time. Visualized importance weights learnt
via online optimization for support set samples in a 5-way 1-shot task on the miniImageNet test set.

B Discussion on model size and performance

Related works have shown that model size seems to not be a good indicator for few-shot performance,
most likely since training datasets are comparably small (e.g. 38.4K images in miniImageNet [20] vs.
standard ImageNet with 1.28M [16]) and big networks are thus much more prone to overfit. Chen et
al. [2] demonstrate in Figure 3 of their paper that the performance gains due to larger backbones
plateau across all methods for backbones bigger than ResNet10 in their experiments and only offer
diminishing gains (if any at all). The investigations of Mangla et al. [11] yielded similar results,
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where the performance on the miniImageNet and tieredImageNet datasets even decreased by around
0.5-1% when scaling up from ResNet18 to ResNet34 (Table 2). We thus conclude that increased
number of parameters on its own does not lead to better few-shot performance, and the tendency
of many recent works to choose the established ResNet12 (12.4M) over bigger backbones is highly
likely a result of this.

To gauge the influence of model size in FewTURE, we additionally investigate the use of the
significantly smaller ViT-tiny architecture with only 5M parameters [19]. Results in Table A1 show
that our method achieves a competitive accuracy of 81.10% on the miniImageNet test dataset with
less than one seventh of the number of parameters of a WRN-28-10, but is (in contrast to many other
methods like e.g. [22]) able to leverage increased model sizes to further boost performance.

Table A1: Investigating model size and performance. Average classification accuracy on the mini-
ImageNet test set, evaluated in a 5-way 5-shot scenario with a ViT-small backbone.

Method Backbone #Params Test Accuracy

ProtoNet [18] ResNet-12 ≈ 12.4M 79.46±0.48

FEAT [22] ResNet-12 ≈ 12.4M 82.05±0.14

DeepEMD [23] ResNet-12 ≈ 12.4M 82.41±0.56

COSOC [10] ResNet-12 ≈ 12.4M 85.16±0.42

Meta DeepBDC [21] ResNet-12 ≈ 12.4M 84.46±0.28

LEO [17] WRN-28-10 ≈ 36.5M 77.59±0.12

CC+rot [7] WRN-28-10 ≈ 36.5M 79.87±0.33

FEAT [22] WRN-28-10 ≈ 36.5M 81.11±0.14

PSST [4] WRN-28-10 ≈ 36.5M 80.64±0.32

MetaQDA [24] WRN-28-10 ≈ 36.5M 84.28±0.69

OM [13] WRN-28-10 ≈ 36.5M 85.29±0.41

FewTURE (ours) ViT-Tiny ≈ 5.0M 81.10±0.61

FewTURE (ours) ViT-Small ≈ 22.0M 84.51±0.53

FewTURE (ours) Swin-Tiny ≈ 29.0M 86.38±0.49

C Discussion on self-supervised vs. supervised pretraining

Performance in few-shot learning. We demonstrate in Figure 4 of the main paper that self-
supervised pretraining with masked image modelling as pretext task provides a significant advantage
over supervised pretraining for our approach – a finding that differs from prior non-few-shot literature
where self-supervised methods only moderately outperform their supervised counterparts [25] or
even perform worse in some cases [3]. We provide our interpretation and insights regarding this in
the following.

Few-shot classification is distinctively different from ‘conventional’ classification (like investigated
in [3]) in one important aspect: novel previously unseen classes are encountered at test time. As such,
supervised learning induces a tendency of the representation space to overfit to the structure of the
classes observed during training. In other words, the representation space is created and condensed to
easily separate observed training classes, but at the expense of distorting other dimensions that might
be crucial to correctly distinguish yet unseen classes. This is known in the few-shot literature as
‘supervision collapse’ [5]. Since no class labels are provided during the self-supervised pretraining,
we expect the method to create a more general/less distorted representation space that is significantly
better suited to generalize to yet unseen classes and avoid collapse. These intuitions are supported by
the results we have obtained (Fig 4.). We further observe that self-supervised training is helpful to
prevent early overfitting when learning from small few-shot datasets (e.g. 38.4K miniImageNet [20]
vs. 1.2M ImageNet1K [16]).

Training details of supervised pretraining. For adequate comparison to related work in few-shot
learning, we follow the widely adopted pretraining scheme used in FEAT [22] and other works (e.g.
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DeepEMD [23]) for our supervised pretraining. In detail, we train the network with a cross-entropy
loss on the training set of the respective dataset to solve a standard classification task (e.g. for
miniImageNet: 64 classes) – i.e., using the exact same data we use for self-supervised pretraining.
Like [22] we use the representations of the penultimate layer (before the classifier) to evaluate the
performance and quality of the embeddings. To judge suitability of the encoder for few-shot tasks,
an N-way 1-shot task is commonly solved (e.g. N=16 for miniImageNet due to the 16 classes in the
validation set) – and we tried three different variants here:

1. & 2. One sample per class is encoded to produce a class-embedding (‘prototype’), and classifica-
tion performance is evaluated using 15 queries per class (as used in recent related works).
To retrieve one embedding per sample, we use the average over all patch tokens produced
by the Transformer architecture. For fairness regarding metrics, we evaluate both:

1. embedding distance (MSE) and
2. embedding similarity (cosine) to perform classification.

3. We additionally use our own patch-based classifier to evaluate the few-shot setting using all
patch embeddings (as we later do during fine-tuning & evaluation).

We perform validation over 200 such few-shot tasks after every epoch during training and pick the
best-performing model regarding highest average validation accuracy. We encountered clear signs of
overfitting during this type of supervised training, with the training accuracy consistently improving
to convergence, but validation accuracy plateauing (or decreasing) rather early on (∼350-500ep),
independent of the variant we used to evaluate on the validation set.

D Ablation studies on components of FewTURE

In this section, we provide further insights into our approach and the design choices we made.

D.1 Ablation on inner loop token reweighting

A more detailed version of the average classification test accuracies achieved with a meta fine-tuned
ViT backbone on the miniImageNet dataset used for the visualization of the contribution for different
numbers of token reweighting steps during online optimisation (main paper, Figure 7) is presented
in Table A2, including the respective 95% confidence intervals. As discussed in the main paper,
we observed a strong initial increase of 1.15% when using our proposed adaptation via online
optimization (steps> 0). While a higher number of inner-loop updates seems to still lead to increased
accuracy across all our test runs, this benefit brings along higher computational cost as can be seen
in the second row of Table A2. We generally found settings between 5 and 15 steps to be a good
accuracy vs. inference-time trade-off. Our experiments were conducted using an Nvidia-2080ti GPU
and the stated inferences times have been averaged over 1800 query sample classifications. It is to
be noted that the code has not been specifically optimized for fast inference times, and these values
should rather be interpreted in a relative manner.

Table A2: Average classification accuracy and inference times on the mini-ImageNet test set for
varying inner loop optimization steps, evaluated in a 5-way 5-shot scenario with a ViT-small backbone
and SDG with 0.1 as learning rate. Experiments were conducted using an Nvidia-2080ti and runtimes
were averaged over 1800 query sample classifications.

0 steps 5 steps 10 steps 15 steps 20 steps

Accuracy 82.68±0.59 83.83±0.59 83.89±0.57 84.05±0.55 84.51±0.53

Inference time [ms] 156.86±2.16 159.86±2.12 162.11±2.11 165.62±2.06 168.62±2.22

D.2 Ablation on token aggregation and similarity metrics

As discussed in the main paper, we use the logsumexp operation to aggregate our similarity logits as
it poses a rigorous and numerically stable way of combining individual class probabilities (one for
each token) to a valid overall probability distribution over classes for each image, independent of how
the individual token (log) probability scores are obtained. Table A3 (a) shows the results of additional
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experiments (training and testing) using our method (ViT-small) and 15 token reweighting steps with
the only change being aggregation of the logtis via mean, and we found it to underperform our chosen
logsumexp method of aggregation. Direct addition without normalization (i.e. just summing up all
logits) proved unstable due to large logit values and was thus not included in this table.

We further investigated the use of alternate metrics to compute the similarity between different tokens.
Both the use of the negative Euclidean distance and unscaled dot-product yielded inferior results
compared to the temperature-scaled cosine distance we use in FewTURE (Table A3 (b)).

Table A3: Ablation on token aggregation method and similarity metric. Reported are the average
classification accuracies on the miniImageNet test set evaluated in a 5-way 5-shot scenario with a
ViT-small backbone.

(a) Token aggregation

Aggregation method Test Accuracy

logsumexp 84.05± 0.53
mean logits 80.13± 0.60

(b) Similarity metrics

Metric Test Accuracy

cosine similarity 84.05± 0.53
neg. Euclidean dist. 81.85± 0.58
unscaled dot-prod. 37.60± 0.64

D.3 Ablation regarding temperature scaling of embedding similarity logits

As reported in the main paper, we use the temperature τS to rescale the logits of our task-specific
similarity matrix S̃ via division (or the original similarity matrix S in case no task-specific adaptation
shall be used). We investigate two different ways of temperature scaling: (i) the possibility of using a
fixed temperature defined as 1/

√
d where d is the dimension of the patch embeddings of the respective

architecture, and (ii) learning the appropriate temperature during the meta fine-tuning procedure. In
practice, we learn log(τS) to ensure τS ≥ 0.

We observe throughout our 1-shot experiments depicted in Figure A2 (a) and (b) that the temperature
converges towards our default values of 1/

√
d shown as a dashed horizontal line. This is independent

of the initial value of the temperature parameter τ initS . For the 5-way 5-shot experiments presented in
Figure A2 (c) and (d) however, we observe that while our default value still achieves good results, the
learned temperature converges to a slightly lower value across all experiments.

D.4 Development over the course of pretraining

We further present insights into the development of the accuracy during self-supervised pretraining.
Since our pretraining procedure is entirely unsupervised and does hence not include any labels,
we investigate models trained for a variety of different epochs and evaluate these on the test set
using the proposed similarity-based classification method with (‘5 steps’ and ‘15 steps’) and without
(‘None’) and present the results in Table A4. Note that no meta fine-tuning was employed here. We
observe that while the performance significantly increases over the first 50 epochs, there seems to be
some saturation and even slight decrease in performance until above 500 epochs where the accuracy
increases again and (mostly) achieves highest results in this study.

Table A4: Development of test accuracy in self-supervised pretraining. Results obtained for a
5-way 5-shot scenario on the tieredImageNet test set using our proposed classifier with a ViT-small
backbone. For online optimisation (i.e., steps> 0), we use SGD with 0.1 as learning rate.

Reweighting Epochs
steps 1 50 100 250 500 800

None 39.20±0.69 73.30±0.75 73.63±0.73 72.84±0.72 71.51±0.72 73.83±0.74

5 steps 39.34±0.69 73.59±0.74 74.03±0.73 73.10±0.73 71.82±0.72 74.16±0.73

15 steps 39.43±0.69 73.86±0.73 74.48±0.74 73.41±0.75 72.16±0.73 74.42±0.74
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Figure A2: Temperature for rescaling similarity logits. (a) and (b) show the learned temperatures
for 5-way 1-shot scenarios on miniImageNet and tieredImageNet, respectively. The corresponding
5-way 5-shot results are depicted in (c) and (d). All experiments have been conducted using a
ViT-small architecture.

E Further visualization of instance embeddings

Figure 5 in the main paper depicts instance and class embeddings visualized via PCA projection to
the three dominant dimensions. Figure A3 additionally depicts a comparison of projected views of the
tokens of 5 instances from a novel class in embedding space for different ways of meta training. While
the representations obtained from the network meta fine-tuned by using common averaging over the
embeddings (‘average’) do not exhibit any clear separation of the instances, the embeddings obtained
with our classifier seem to retain the instance information (‘w/o v’) and separation is improved
when using token importance reweighting (‘w/ v’). These results indicate that our similarity-based
classifier coupled with task-specific token reweighting is able to better disentangle the embeddings of
different instances from the same class, which further prevents the network from supervision collapse
and helps to achieve the higher performance observed on the benchmarks.

F Datasets used for evaluation

We train and evaluate our approach presented in the main paper on the following few-shot image
classification datasets:

miniImageNet. The miniImageNet dataset has been initially proposed by [20] with follow-up
modifications by [14] and consists of a specific 100 class subset of ImageNet [16] with 600 images
for each class. The data is split into 64 training, 16 validation and 20 test classes.

tieredImageNet. Similar to the previous dataset, the tieredImageNet [15] is a subset of classes
selected form the bigger ImageNet [16] dataset, however with a substantially larger set of classes and
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pre-trained average w/o w/ 

Figure A3: Instance embeddings after meta fine-tuning. Visualized are the projected tokens of 5
instances of the same novel support set class for different meta fine-tuning (M-FT) methods (after
self-supervised pretraining). From left to right: self-supervised pretraining only, M-FT using an
average embedding per class, M-FT using our classifier but without task-specific token reweighting,
M-FT using our classifier with 15 reweighting steps. (Projection via PCA to main dimensions.)

different structure in mind. It comprises a selection of 34 super-classes with a total of 608 categories,
totalling in 779,165 images that are split into 20,6 and 8 super-classes to achieve better separation
between training, validation and testing, respectively.

CIFAR-FS. The CIFAR-FS dataset [1] contains the 100 categories with 600 images per category
from the CIFAR100 [8] dataset which are split into 64 training, 16 validation and 20 test classes.

FC-100. The FC-100 dataset [12] is also derived from CIFAR100 [8] but follows a splitting strategy
similar to tieredImageNet to increase difficulty through higher separation, resulting in 60 training, 20
validation and 20 test classes.

G Implementation details

We present further details regarding our implementation and used hyperparameters in the following.

G.1 Pretraining

GPU usage. We pretrain our models with the use of 4 Nvidia A100 GPUs with 40GB each for our
ViT [6, 19] and 8 such GPUs for our Swin [9] variants.

Hyperparameter choice. We follow the strategy introduced by [25] to pretrain our Transformer
backbones and mostly stick to the hyperparameter settings reported in their work. We generally use
two global crops and 10 local crops with crop scales of (0.4, 1.0) and (0.05, 0.4), respectively. We
further use a patch size of 16 for our ViT models and a window size of 7 for Swin, corresponding to
the default sizes for ViT-small [6, 19] and Swin-tiny [9]. We use an output dimension of 8192 for the
projection heads across all models, and employ random Masked Image Modelling with prediction
ratios (0, 0.3) and variances (0, 0.2). Our ViT and Swin architectures are trained with an image size
of 224× 224 arranged in batches of size 512 samples for 1600 and 800 epochs, respectively, using
a linearly ramped-up learning rate (over first 10 epochs) of 5e−4 × batchsize/256. For detailed
information, we would like to refer the interested reader to the work by Zhou et al. [25] where
more background information regarding the influence and justification of these hyperparameters is
provided.

G.2 Meta fine-tuning

GPU usage. During the meta fine-tuning (M-FT) stage, we use 1 and 2 Nvidia 2080-ti GPUs for
ViT-small and Swin-tiny, respectively, across all 4 datasets.

Hyperparameters. We fix the input image size as 224 × 224 for all datasets. We use the SGD
optimizer along with a learning rate of 2e−4, 0.9 as the momentum value and 5e−4 as the weight
decay. Additionally, we employ a learning rate scheduler with cosine annealing for 5,000 iterations
as one cycle, ramping down to 5e−5 at the end of each cycle.

Online optimization. During the online learning of the token importance reweighting vectors, we
adopt the SGD optimizer with 0.1 as the learning rate. For online update steps, we generally choose
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a default value of 15 steps across all datasets. For further details regarding the temperature scaling
procedure used to rescale our task-specific similarity logits, please refer to Section D.3.
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