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Abstract

We develop a new algorithm for non-convex stochastic optimization that finds
an e-critical point in the optimal O(e~3) stochastic gradient and Hessian-vector
product computations. Our algorithm uses Hessian-vector products to “correct” a
bias term in the momentum of SGD with momentum. This leads to better gradient
estimates in a manner analogous to variance reduction methods. In contrast to prior
work, we do not require excessively large batch sizes, and are able to provide an
adaptive algorithm whose convergence rate automatically improves with decreasing
variance in the gradient estimates. We validate our results on a variety of large-scale
deep learning architectures and benchmarks tasks.

1 Introduction

In the last couple of decades, first-order algorithms such as Stochastic Gradient Descent (SGD) or
Adam [Kingma and Ba, [2014] have emerged as the main workhorse for modern Machine Learning
(ML) tasks. They achieve good empirical results while being easy to implement and requiring
relatively few computational resources. When the objective function is convex, SGD’s convergence is
well-understood [Zinkevich, [2003]]. However, the results are much less favorable for the non-convex
setting in which modern deep learning models operate. In fact, the problem of optimizing non-convex
function is NP-hard in general, so instead analysis often focuses on finding a critical point - that is, a
point at which the gradient of the loss is zero. SGD is well-known to find an e-approximate critical
point in at most O(e~*) total stochastic gradient evaluations [Ghadimi and Lan| 2013]. In an effort to
improve upon SGD, many different algorithms and heuristics have been proposed, including various
advanced learning rate schedules [Loshchilov and Hutter, 2016} |Goyal et al., [2017} Xie et al., 2020],
or per-coordinate learning rates and adaptive algorithms [Duchi et al.,|2011} [McMahan and Streeter,
2010l Kingma and Ba, [2014} Reddi et al.l 2018]]. All of these methods have enjoyed practical success,
but none of their convergence rates has shown any asymptotic benefit over the O(e~*) rate of SGD,
which is to be expected because this rate is in fact optimal in the worst-case for first-order methods
operating on smooth losses [Arjevani et al.,[2019]. Thus, in order to make improved algorithms, we
need additional assumptions. In this work, we consider the case in which our algorithm is not a pure
first-order method, but has some limited access to second-order information.

Second-order algorithms such as Newton’s method are among the most powerful methods in opti-
mization theory. Instead of using a linear approximation for the objective via the gradient, Newton’s
method employs a quadratic approximation using both the gradient and the Hessian. This quadratic
approximation hugs the curvature of the error surface and allows each iteration to make much faster
progress. Unfortunately, second-order algorithms are also much more complex and expensive to
implement. The cost of forming the Hessian matrix is O(d?) and the cost of a Newton step is typically
O(d?), thus rendering such algorithms largely impractical for large-scale learning problems [Bottou
and Bousquet, 2007].

The good news is we may not have to explicitly compute the Hessian matrix to be able to take
advantages of the nice properties of second-order methods. In particular, it is possible to compute
a Hessian-vector product, that is a vector of the form V2 F(x)v for arbitrary z and v, in roughly
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the same time it takes to evaluate V F'(x) [Pearlmutter, [1994]. In this paper, we develop a novel
second-order SGD-based algorithm that uses a stochastic gradient and Hessian-vector product oracle
to expedite the training process. Our algorithm not only enjoys optimal theoretical properties, it
is also practically effective, as demonstrated through our experimental results across various deep
learning tasks. Importantly, our method works well on a variety of tasks in different domains, while
standard practice is to employ different optimizers for different domains (e.g. AdamW for NLP, SGD
for computer vision).

1.1 Contributions

We present a novel algorithm based on SGD with momentum (SGDHess) that uses Hessian-vector
products to “correct” a bias term in the momentum. Through our theoretical analysis, we show that
our algorithm requires the optimal O(e~3) oracle calls for finding stationary points [Arjevani et al.,
2020b]]. In contrast to previous algorithms with this property (e.g. [Arjevani et al.| 2020b]), we do
not require excessively large batch sizes, and we also feel that our algorithm and analysis is relatively
more straightforward: our method is a simple modification to SGD that could easily be applied to any
momentum-based optimizer.

We also provide a variant of our algorithm based on normalized SGD, which dispenses with a Lipschitz
assumption on the objective, and another variant with an adaptive learning rate that automatically
improves to a rate of O(e~2) when the noise in the gradients is negligible.

Finally, we test our algorithm on multiple learning tasks on different deep architectures. In all of these
tasks, our algorithm consistently matches or exceeds the best algorithms for the task. Further, the
tuning process of our algorithm is reasonably simple; in many cases, we can use the exact parameters
of SGD for the new algorithm.

1.2 Related works

Although second-order methods have many attractive theoretical properties, making these methods
practical is challenging. There have been multiple efforts to develop efficient second-order algorithms.
One popular approach is the Broyden—Fletcher—Goldfarb—Shanno algorithm (BFGS) [Keskar and
Wichter, |2019] [Liu and Nocedall, 1989, Bollapragada et al., 2018|, [Pan et al.,|2017]], which provides a
faster approximation to the Newton step using only a first-order oracle. Although BFGS and similar
methods have been applied with some success to deep learning tasks [Bollapragada et al., 2018],
Ma, [2020]], we stress that such methods are fundamentally incapable of matching the convergence
guarantees available to algorithms that truly use the Hessian in the stochastic non-convex setting
[Arjevani et al.|[2019].

More recent attention has focused on the use of Hessian-vector products as a way to achieve some
of the benefits of second-order information without incurring significant computational overhead
[Carmon et al., 2018}, |Agarwal et al., 2017|]. [Tripuraneni et al., 2017 uses Hessian-vector products
to approximate the cubic regularized Newton method [Nesterov and Polyak} 2006], converging in

only O(e3%) stochastic oracle calls. [Zhou et al.; 2019] leverages both Hessian information and
variance-reduction techniques to achieve a convergence rate of O(Z:—//:) for finite-sum problems with
n summands. However, both algorithms fail to achieve the optimal O(e~3) rate and to our knowledge
none of these have been tested extensively on deep learning benchmarks. The first algorithm achieving
the optimal O(e~3) using Hessian-vector products rate was introduced in [Arjevani et al., [2020al].
However, their algorithm requires the batch size to be roughly O(Tl/ 3), which is excessively large

for practical use-cases. On the other hand, our algorithm will work with any batch size.

Finally, variance-reduction based algorithms [Johnson and Zhang} 2013|| can also achieve this same
O(Tl/ 3) rate for non-convex optimization [Fang et al., 2018, Zhou et al., 2018 [Cutkosky and
Orabona, 2019, [Tran-Dinh et al.,2019]. Despite favorable theoretical guarantees, variance-reduction
algorithms often rely on stronger smoothness assumptions, are tricky to implement properly, and
seem to not perform as well as expected in practice [Defazio and Bottou, 2018|]. Comparison between
variance-reduction algorithms and our algorithm (SGDHess) will be further discussed at the end of
the paper.



1.3 Problem setup

We are interested in minimizing a function F' given by:

P@) = E (/@)

Where f(Z, z) is a differentiable function of Z. Z indicates the model parameters (e.g. the weights of
some neural networks), z indicates an example data pointﬂ We are also given a point ¥ and define
A € Rby:

sup F(%) — F(¥) = A (D)
TER?

Further, we assume F' is L-smooth. That is, for all Z and -
IVE(@) = VF(G)| < L[| - 4] 2
To design a second-order algorithm, we also assume access to second-order stochastic oracle. Given

any ¥ and vector w0, we are allowed to sample z ~ P, and compute V f(Z, z) and V2 f(Z, 2)w. We
assume that for all & and

E[|Vf(Z, ) VE(@)|*] < ot 3)
E[[V?f(&, 2)d — V2F(2)d*] < o || )
In addition, we will also need the assumption of second-order smoothness. For all Z, ¥/, and &:
I(V2F(@) = V2F())d] < pllZ — gl ]| (5)
Finally, in two of our algorithms, we need to assume f is G—Lipschitz.
Vi@ 2 <G (6)

2 SGD with Hessian-corrected momentum

In this section, we provide our SGD-based second-order algorithm. Before we go into the analysis,
let us compare our algorithm to SGD to see why adding the Hessian-vector product term to the
momentum update is a good idea. The standard SGD with momentum update is the following:

Gt = (1 —a)Gr—1 + aV f(Zy, 2¢)
ft+1 =7 — Ngt

To gain some intuition for this update, let us suppose that §;—; = VF(Z;_1). Then, viewing §; as an
estimate of VF(;), define the error as:

€& =G+ — VF(Z4)
Intuitively, SGD will converge rapidly if this error is small. We can write:
&= (1—a)(gi—1 — VF(T1)) + oV f(Z, 2¢) — VF(T4))

The second term is fairly benign: it is zero in expectation and is multiplied by a potentially small value
a. However, the first term is a bit trickier to bound since VF(#;_1) # VF(Z;). Our approach is to
leverage the second-order oracle to improve this estimate. Specifically, we modify the momentum
update to:

=1 -a)(g—1+ VQf(ft, 2) (T — T4—1)) + aV (T, 24)
Now, if §;_1 = VF(#;_1), we would have
Elgi—1 + VQf(fty 2e) (& — T4—1)] = g1 + VQF(ft, 2) (& — Ty1)
~ V() + O(|T — & ?)

'z could also indicate a minibatch of examples



Further, we have:
&= (1= a)(§i—1—VF (&) + V2 f(Z1, 20) (B — Foo1)) + AV f (T4, 2¢) — V(i)

so that the first term is now bounded by O(||#;_1 — #||?) which can be controlled through the
learning rate n and the second term is again easy to control via tuning «v. Without this second-order
correction, we need to rely on §;—1 = VF(Z;) + O(||Z: — #4—1]|). Thus, by using another term of
the Taylor expansion, we have improved the dependency to O(||7; — Z;_1]|?), which will create a
corresponding reduction in our final error. Of course, the case §;—1 = VF(&;_1) above is examined
for intuition only. In our analysis, we do not make any such assumption.

Note that this approach is morally similar to the methods of |[Cutkosky and Orabonal[2019]], Tran-Dinh
et al.| [2019], which are themselves similar to the recursive variance reduction Nguyen et al.|[2017]]
algorithm for stochastic convex optimization. In these algorithms, the Hessian-vector product is
replaced with two gradient evaluations with the same example z;: V f (%, 2t) — Vf(Z¢—1, 2¢). So
long as the individual functions f(%;, z;) are L-smooth, this will eventually have a similar correction
effect. However, past empirical work suggests that variance reduction may not be effective in practice
on deep learning tasks [Defazio and Bottou| [2018]], while the use of Hessian-vector products has not
been as extensively tested to our knowledge.

Our SGD with Hessian-corrected momentum is described in Algorithm I and its analysis is presented
in Theorem [I] Note that we only need to make a small modification to the standard SGD update,
which allows for streamlined analyses. Concretely, we avoid the large batch-size requirement of
Arjevani et al.|[2020a], and can extend the analysis to adaptive learning rates in Section [4]

Algorithm 1 SGD with Hessian-corrected Momentum (SGDHess)

Input: Initial Point 71, learning rates 7;, momentum parameters «, time horizon 7', Lipschitz
parameter G.

Sample z; ~ P,.

~cli N R
9T g1+ V{(Ihzl)
£E2 $— fl ﬂlg‘lzlp

fort=2...T do
Sample 2z ~ P,.
gr +— (1 - Olt—l)(AClzp + V2 F( @y, 20) (B — Ti-1)) + a1 VF(Zy, 2t).
~cli ~cli

Gp P+ g if [|g¢]| < G5 otherwise, ;""" «+ GHZ:H

N ~clip
xt+1 <— ZCt 77t9t .
end for
Return Z uniformly at random from Z1, . .., Zp (in practice & = Z'r).

Theorem 1. Assume (I) (I) (l) (I) @ Then Algorlthmlwnh N = Ct11/3’ oy = 2K 1 with

C>V2Kand C > 4L, K = - +\/4U e and D = 24K+ 5?22 guarantees
T“YH H 2

T
20CA +96C2G2/K  20G2D(1 + log(T))
2
Z ||VF ] S T2/3 + 02T2/3

'ﬂ \

To see why we want to use a clipped gradient, let us consider the error term with an unclipped
gradient:

érr1 = (1= ar)(ge — VF()) + (1 = an) (V2 f(Fep, 2e01) = VEF(Trp1)(Frr — 7))
+ (1= ) (VE(#) + V2F(F41) (F141 — B) — VF(T141)) + aueryg
where E?H = Vf(Zi41, 2t41) — VF(Z41). It is easy to see that we could bound the second and the
fourth term using assumption (E]) and (6)) and the first term is simply (1 — o )é;, which we can use to

analyze how the error changes over each iteration . However, the third term is a bit trickier to control.
Let 6; = VF (&) + V2F(Z441)(Ti41 — T4) — VF(Z441), from second-order smoothness we have:

52<£—» _—»4<£4A4
1812 < 2 Nvs = Zl* < Sontlan]



Intuitively, if we let §; be unbounded, ||§;||* might be difficult to control since we only assume a
bound on the variance of the V f(Z;, z;) rather than the fourth moment. Therefore, by enforcing

some bound on the norm of g; (using clipping), we make sure that we can control this term properly.

In order to prove this Theorem, we will require two Lemmas. The first (Lemma 2)) is due to|Cutkosky
and Orabona| [2019]], and provides a bound on the progress of one iteration of stochastic gradient
descent without making any assumptions (such as unbiasedness) about the gradient estimates. The

second (Lemma , 1s a technical result characterizing the quality of the gradient estimates gdlp
generated by Algorlthm 1

Lemma 2. [|Cutkosky and Orabona|[2019] Lemma 1] Define:
€t = ACllp VF(QZ't)

Suppose 1, is a deterministic and non-increasing choice of learning rate. Then, so long as n; < ﬁ,
R - Nt - 377t
E[F(F141) = F(3)] < = EIIVF@)I?] + = Ell&])
Lemma 3. Suppose that f(Z, z) satisfies (E) (E]) (@) and . Define:
& = g{'" — VF(Z,)
Now, for some constant C' and oy, set K = 2G2p° —, ) = Ctll/s with C > /2K, and
—20H+\/4 442°8
oy = 2Knyniy1. Then we have:
6 24 16C5G?
3 - — —— VF S KG? + ———
o EllealP] - s mlle?) < - 2 wljal) + L EIVF@OI + o (S H6? + o)

Let us look into how Lemma [3]is used in our analysis. To prove Theorem [I] we use the Lyapunov
function defined as ®; = F(Z;) + OKU l|é:]|? to bound the E[||VF(&;)||?] term. Then:

6 6
BB =T | F( _ Pz . 2 b e
E[®:+1 t]=E [ (Z41) (%) + 5K lléesall 5K €Il }

6
SK N1

where the inequality comes from Lemma[2] Now if we plug in the result of Lemma[3] we are able to
simplify the bound of (7) by canceling the positive error term 37” ||é:]|* while keeping the coefficient

of [VF(Z,)|? negatlve Then, we can move the negative term to the left hand side and derive a
bound for E[||VE(Z,)||?]. With Lemma[2]and Lemma in hand, we are now ready to prove Theorem
[

3n:
<E[- HVF D>+ —- ||t||2

. 6 .
e+l — 5TmlletHQ] %)

Proof of Theorem[l] We define the potential:

O, = F(&y) + [

5K Nt
We will then show that ®, roughly decreases with ¢ at rate that depends on ||V F'(Z;)||?. Specifically:

E[®i41 — ] =E |:F(ft+1) — F(Z:) + 5K [e41]® — 5K [l ]I?
applying Lemmas 2] and [3}
g—%mww )P+ L Ellal?) - L Ellal?) + T EIIVEE)|P)
6
—@MWM@WHm%%%K+§%J



_ 24 1606 .
Let D = ?K—i_ BRZ-

= SV BIVE@E)) + 562D

Now sum over ¢, and use 7; > nr for all ¢:

E[@ri1 — &1 < — ZJE IVE(@)|?+G*D Zn?

t=1
T T
. 20 20G2%D 3
& S EIVF@)IP < 20 Bl - pp] + 2L 2
t=1 nr nr
Now, observe that:
E[®) — Srp] = B |F(@) - F@re1) + —o— &1 — momo—[ler |
— = — ——||€1]|* — ———1|€
1 T+1 1 T+1 5K771 1 5KT]T+1 T+1
24G? 240 G?
<A <A
- * 5K’I71 - + oK

where in the second line we used E[||é1||?] < 4G?. Also, we have:
T T
N N
i it 3

Putting all this together yields:

T T
20 QOGQDZ _ 773
= F@)|? < =—E[®1 — @ — ==l
T z:: [IIVF( ] = Tor E[®, 1] + Tr
< 20CA + 9602G2/K ZOGQD(l + log(T))
> T2/3 C272/3

3 Normalized SGD with Hessian-corrected momentum

Algorithm 2 Normalized SGD with Hessian-corrected Momentum (N-SGDHess)

Input: Initial Point &1, learning rates 7, momentum parameters c, time horizon 7
Sample z; ~ P,.
g1 — Vf(fl, 2:’1)
fg — fl — HHZ%H
fort=2...Tdo
Sample 2zt ~ P,.
gr < (1— a)(gt 1+ V2F(&, 20) (8 — Timr)) + aV f (T, 2).
Tier < T — NG
end for
Return Z uniformly at random from Z1, . .., Zp (in practice & = Zr).

In this section, we introduce an algorithm that dispenses with the assumption (6) required by
Algorithm [T} This method (Algorithm [2)) uses SGD with normalized updates and Hessian-vector
product-based momentum. We will show that normalization can significantly simplify the analysis
from sectionwhile still maintaining O(e~3) convergence rate. Indeed, the technical term in the
analysis of Algorithm|[I]that required us to enforce a bound on the updates via clipping simply does
not appear because the updates are automatically bounded by 7.

The new convergence bound is presented in Theorem 4]



Theorem 4. Assuming (1)), (2), (l) ), and (®) hold (but not assuming (6)), with o =

. AY/5,2/5 (2A 1/4 Aa)l/3
min{max{—, AT (T2;H2‘/3 },1} and n = min{ \/T(iéfHJH), ((pg))l/g} Algorlthm

guarantees

E[|VF(@)]] < 6o + 541/3(AUH)1/30é/3 . 603/5A2/5p1/5 VOAL + VT2Roy  6A2/3p1/3

T1/3 T2/5 VT T2/3
VISAcy  3A23pl/3
T3/2 + T5/3

In words, Algorithm |2| achieves O(1/T"/3) with large oy and og, and achieves O(1/\/T) in
noiseless case, without requiring a Lipschitz bound on the objective.

The proof of Theorem f]is provided in the appendix.

4 Adaptive SGD with Hessian-corrected Momentum

Algorithm 3 Adaptive learning rate for SGD with Hessian-corrected Momentum

Input: Initial Point &1, parameters ¢, w, «, time horizon T', parameter G

Sample z; ~ P,.

ﬁdlp — g1+ V@, 2)

G1 ||Vf($1,21)||
n < 1/3
IQ $— 1‘1 — ’Ihg‘l:hp
fort=2...T do

Sample z ~ P,.

G1 |V f(@, 2)||

Qtf_ (1= 1) (G5 + V2 (&0, 20) (@ — To-1)) + 1V (Fe, 20).

g7 gy if ||gtH < G; otherwise, gc P Gl\gfl\

U W (setng = wl/3 ).

N ~clip
Tet1 < Ty — MGy -
end for
Return Z uniformly at random from Z1, . .., Zp (in practice & = Z'r).

In previous sections, we have presented two different versions of our algorithm. Both algorithms
achieve the worst-case optimal O(1/T"/?) convergence rate. However, the bound in Section [2|is
non-adaptive and remains to be O(1/T"'/%) even in noiseless settings (e.g. if o = 0). The bound
for the normalized SGD algorithm of Section [3]is better in the sense that when the noise is negligible,
the algorithm can achieve O(1/+/T') with explicit tuning of the learning rate, but this requires us
to set the parameters 7 and a based on prior knowledge of o¢. In this section, we will describe an
adaptive version of our algorithm that has the best of both worlds (Algorithm [3). The algorithm does
not require the knowledge of o but still automatically improves to a tighter bound whenever o¢ is
small.

Theorem 5. With K = 262" M = —=ra5773 With ¢ < 26°7 nd w =
—4UH+\/160H+pQG2’ (w+3i27 G2 - VK

max{(4Lc)%,3G?}, ay = 2K 1. Algorithm[3| guarantees:

T 1/3

1 1/6./9M + 2M3/4 2

=S IVE@E)I| < - i 7¢
t=1

\/T T1/3

Where M = 1(20(A + 82622 ) L 199 K2 In(T + 1) +-86% InT).

In words, algorithm I converges with O (T1 /3) rate in noisy case and automatically improves to

O (ﬁ) in noiseless case. We defer the proof of Theoremlto the appendix.



5 Experiments

5.1 Setup

Our algorithm is a simple extension of the official SGD implementation in Pytorch. The Hessian-
vector products can be efficiently computed using the automatic differentiation package |Paszke et al.
[2017]): V2f(Z,2)v = Vh(Z) where h(T) = (Vf(F, z),v). Since Pytorch allows backprogation
through the differentiation process itself, this is straightforward to implement. To validate the
effectiveness of our proposed algorithm, we perform experiments in two tasks: image classification
and neural machine translation on popular deep learning benchmarks. The performance of SGDHess
(unclipped version - we found that the clipped version had similar results but was slightly slower)
is compared to those of commonly used optimizers such as Adam and SGD as well as AdaHessian,
another algorithm that incorporates second-order information. All experiments are run on NVIDIA
v100 GPUs. The link to the code is provided in the appendix.

a, Resnet20 on Cifarl0 b, Resnet32 on Cifarl0
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Figure 1: (a) SGDHess (Red) achieves the best accuracy among all optimizers (92.46 +0.07%).
(b) Similar to the experiment on Resnet20, SGDHess also converges to the best accuracy (93.19
+0.08%). For the full plot, refer to the appendix.

5.2 Image Classification

Our Cifarl0 experiment is conducted using the official implementation of AdaHessian. For
AdaHessian, we use their recommended values for the same task for all the parameters.
For the rest of the optimizers, we performed a grid search on the base learning rate n €
{0.001, 0.005,0.01,0.05,0.1,0.5,1} to find the best settings. Similar to the Cifar10 experiment
of AdaHessian, we also trained our models on 160 epochs and we ran each optimizer 5 times and
reported the average best accuracy as well as the standard deviation (detailed results in the appendix).
As we can see from the results in Figure [I, SGDHess outperforms all other optimizers (0.32% and
0.11% better than the next best optimizer in Resnet20 and Resnet32 respectively).

Table 1: Top 1 accuracy on Imagenet
| SGD | SGDHess | AdaHessian |

[7036 | 7058 | 69.89 |

We also train SGD, SGDHess, and AdaHessian with Imagenet Deng et al.|[2009] on Resnet18 to
see how well SGDHess perform on a larger-scale benchmark. We use standard parameter values
for SGD (Ir = 0.1, momentum = 0.9, weight_decay = le-4) for both SGD and SGDHess and the
recommended parameters values for AdaHessian. For the learning rate scheduler, we employ the
plateau decay scheduler that was used in|Yao et al.| [2020]]. We train our model in 90 epochs as usual.
Even without extensive tuning, SGDHess not only still outperforms SGD (as shown in Table|[T)) but
also comes close to the state-of-the-art accuracy (70.7%) on this particular task Redmon|[2013-2016]],
even though these settings were chosen with SGD in mind rather than SGDHess.



Table 2: Bleu Score on IWSLT 14
| SGD | SGDHess | AdamW | AdaHessian |

(2975 3373 | 3395 | 3362 |

5.3 Neural Machine Translation

We use the IWSLT’ 14 German to English dataset that contains 153k/7k/7k in the train/validation/test
set. Our experiments are run using all the default values specified in the official implementation
of Fairseq |Ott et al.|[2019]. We use BLEU |Papineni et al.|[2002] as the evaluation metrics for
our experiment. For AdaHessian, we use the parameters specified in|Yao et al.|[2020]]. For other
optimizers, we again run a grid search to find the best learning rate for the task. The best bleu scores
are reported in Table 2] It is worth stressing that SGDHess is an algorithm based on SGD, which
consistently performs much worse than adaptive algorithms such as AdaHessian and AdamW in
this type of task. Still, SGDHess is able to produce comparable results to those of AdaHessian and
AdamW, thus significant bridging the gap between SGD and other adaptive algorithms (an almost 4
points increase compared to SGD’s in BLEU score, which is significant for the task).

6 Conclusion and Future Work

In this paper, we have presented SGDHess, a novel SGD-based algorithm using Hessian-corrected
momentum. We show that when the objective is second-order smooth, our algorithm can achieve
the optimal O(e~?) bound, and we provide a variant that automatically adapts to the level of noise
in the gradients. Finally, we provide experimental results on computer vision and neural machine
translation. In both tasks, SGDHess consistently performs better or comparable to other commonly
used optimizers such as SGD and Adam. It is our hope that this work demonstrates that Hessian-
based optimization can combine both theoretical and practical improvements for large-scale machine
learning problems. Our algorithm is one of the first second-order method that is able to achieve the
optimal theoretical convergence rate and compete with first-order methods on large-scale tasks in
terms of performance and runtime.

Limitations: Our modification to the standard momentum formula is also extremely simple, and so
we suspect that is possible to make similar modifications to other popular optimization algorithms
that use momentum, but we did not investigate this possibility. For example, one might hope that an
appropriate per-coordinate or per-layer adaptaptation a la Adam Kingma and Ba|[2014], AMSGrad
Reddi et al.| or LAMB [You et al.|[2019] might improve performance. On the theoretical side, our
adaptive results require Lipschitz losses, which may not be truly necessary.
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