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Abstract

Semi-supervised learning (SSL) provides a powerful framework for leveraging
unlabeled data. Existing SSL typically requires all classes have labels. However,
in many real-world applications, there may exist some classes that are difficult to
label or newly occurred classes that cannot be labeled in time, resulting in there
are unseen classes in unlabeled data. Unseen classes will be misclassified as seen
classes, causing poor classification performance. The performance of seen classes
is also harmed by the existence of unseen classes. This limits the practical and
wider application of SSL. To address this problem, this paper proposes a new
SSL approach that can classify not only seen classes but also unseen classes. Our
approach consists of two modules: unseen class classification and learning pace
synchronization. Specifically, we first enable the SSL methods to classify unseen
classes by exploiting pairwise similarity between examples and then synchronize
the learning pace between seen and unseen classes by proposing an adaptive thresh-
old with distribution alignment. Extensive empirical results show our approach
achieves significant performance improvement in both seen and unseen classes
compared with previous studies.

1 Introduction

Machine learning, especially deep learning, has achieved great success in various tasks by leveraging
sufficient labeled training data [21]. However, for many practical tasks, it can be difficult to attain a
number of labeled examples due to the high cost of the data labeling process [41, 23], which limits
the widespread adoption of machine learning techniques.

Semi-supervised learning (SSL) [43] provides a powerful framework for leveraging unlabeled data
when labels are limited or expensive to obtain. There has been a rapid development of SSL methods in
recent years, such as entropy minimization methods [22, 8], consistency regularization methods [24,
29, 20, 32], and holistic methods[30, 2, 1, 35, 37]. It has been reported that in certain cases, such as
image classification [30], SSL methods can achieve the performance of purely supervised learning
even when a substantial portion of the labels in a given dataset have been discarded.

All the positive results of SSL, however, are based on a basic assumption that there are labels for
each of the classes that one wishes to learn, i.e., all training and testing data are from seen classes
that are observed in the labeled dataset. However, in many real-world applications, particularly those
involving open-environment scenarios [42, 11], such an assumption is difficult to hold. For example,
in the product recognition task, thousands of new types of products are introduced to the supermarkets
every once in a while, and it would be expensive to label them all in time; in the judicial sentencing
task, some sentencing elements are naturally scarce, resulting in labeled judgment documents being
difficult to obtain for these elements in the training phase.
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Figure 1: SSL when not all classes have labels. Training data includes labeled examples from a few
seen classes as well as unlabeled examples from both seen and unseen classes. Testing data includes
unlabeled examples from both seen and unseen classes. The goal is to classify not only seen class
examples into accurate classes but also partition unseen class examples into proper clusters.

It is evident that existing SSL methods will misclassify unlabeled examples from unseen classes into
seen classes. Even on the seen classes, SSL performance can also degrade severely with the presence
of unseen classes unlabeled data [25, 10, 40]. The problem is related to open-set SSL and novel
class discovery (NCD) studies. Open-set SSL [10, 6, 36, 28] aims to decrease the negative impact of
unseen classes and maintain the performance robustness of seen classes. However, these methods
simply detect and drop examples from unseen classes and fail to classify them. NCD [13, 15, 38]
aims to discover unseen classes automatically. However, they ignore the classification task on seen
classes, which results in performance degradation in seen classes.

An illustration of the problem concerned in this paper is presented in Figure 1. It is evident that both
existing SSL methods and NCD methods could not tackle the problem. This inspires us to consider
answering the following question in this study:

Can we design an robust SSL algorithm that can classify both seen and unseen classes when not
all classes have labels in the training data?

To this end, we propose a new SSL method called NACH, which consists of two key modules: unseen
class classification and learning pace synchronization. Specifically, we first propose a novel unseen
class classification loss that can exploit pairwise similarity to classify similar example pairs into
the same class and eliminate noisy pairs based on a similarity filter. We then adopt an adaptive
threshold with distribution alignment to alleviate the issue that different learning paces between seen
and unseen classes. Experimental results on CIFAR-10, CIFAR-100, and ImageNet-100 datasets
show that NACH achieves 37.7% improvement in unseen classes compared with SSL methods, and
26.3% improvement in seen classes compared with NCD methods.

2 Related Work

Semi-Supervised Learning. SSL assumes all training and testing data are from seen classes, no
matter whether labeled or unlabeled, and the goal is to classify unlabeled examples into the ground-
truth classes. SSL has a long research history [4]. Our paper is mainly related to deep SSL, which
introduces SSL techniques to deep neural networks and has achieved significant advancement in
recent years. The mainstream of deep SSL can be broadly categorized into entropy minimization
methods [22, 8], consistency regularization methods [24, 29, 20, 32], and holistic methods [30, 2, 1].
When not all classes have labels in the training data, these methods will misclassify unlabeled data
from unseen classes as the seen classes and fail to address the problem concerned in this paper.

Open-Set Semi-Supervised Learning. Open-set SSL relaxes the assumption of SSL and considers a
more practical scenario that training data could contain unseen class unlabeled examples. However,
they still assume all testing examples are from seen classes, and the goal is to decrease the negative
impact of unseen class unlabeled data in order to maintain the performance robustness in seen
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classes. Many open set SSL methods have been proposed in recent years [10, 6, 36, 31, 28, 16, 26,
17], such as DS3L [10], which assign weights to unlabeled data based on a bi-level optimization,
UASD [6], which �lter unlabeled examples based on the prediction consistency, MTC [36], which
adopt a multi-task curriculum learning framework to detect unseen classes and classify seen classes
simultaneously, T2T [16], which propose a novel cross-modal matching strategy to detect unseen
classes. OpenMatch [28], which unify FixMatch algorithm with novelty detection based on one-vs-all
(OVA) classi�ers. However, these methods can still not classify unseen classes.

Novel Class Discovery.NCD assumes training data consists of seen class labeled examples and
unseen class unlabeled examples, and the goal is to classify both seen and unseen classes during
the testing phase. The NCD problem is �rst formally introduced in [13]. Recently, many NCD
methods have been proposed based on a two-step training strategy [13–15, 7, 12, 39, 38], i.e., a data
embedding is learned on the labeled data using a metric learning technique, and then �ne-tuned while
learning the cluster assignments on the unlabeled data. In contrast to the problem studied in this
paper, NCD methods ignore the abundant seen unlabeled examples that are usually easy to collect in
real-world applications.

3 Preliminary and Background

Give the training data which containsn labeled examplesD l = f (x1; y1) ; � � � ; (xn ; yn )g andm
unlabeled examplesDu = f xn +1 ; � � � ; xn + m g. Usually,m � n. x 2 RD ; y 2 Y = f 1; � � � ; CL g
whereD is the feature dimension andCL is the number of seen classes. We useCU to represent the
total number of classes in unlabeled data, Previous SSL studies assumeCL = CU and NCD assumes
CL \ CU = ; . In this paper, the number of seen classesCseen = CL \ CU and the number of unseen
classesCunseen = CU n CL . The goal is to learn a classi�cation modelf (x ; � ) from training data.
Speci�cally, thef (x ; � ) can be decomposed of a representation learning modelg(x; � ) : RD ! Rd

to learn a low-dimensional featurez and a classi�cation modelh(z) : Rd ! RCseen + Cunseen .

The training loss of an SSL algorithm usually contains supervised lossL s and unsupervised lossL u
with a trade-off parameter� u > 0: L s + � u L u , whereL s is constructed onD l andL u is constructed
onDu . Typically, L s applies the standard cross-entropy loss on labeled examples:

L s =
1
n

nX

i =1

H (y i ; p(x i )) (1)

wherep(x) = Softmax(f (x ; � )) indicate the predicted probabilities produced by the modelf for the
input x, andH (�; �) is the cross-entropy function.

Different constructions of the unsupervised lossL u lead to different SSL algorithms. Typically, there
are two ways of constructingL u : one is to assign pseudo-labels to formulate a "supervised loss" such
as the cross-entropy loss, and another one is to optimize a regularization that does not depend on
labels such as consistency regularization.

Take the FixMatch [30] and UDA [34] for examples, FixMatch adopts the pseudo-label loss which
can be written as:

L u =
1
m

n + mX

i = n +1

I (max (p(� (x i ))) � � ) H (by i ; p(A (x i ))) (2)

where� (x) andA(x) indicate the weak and strong augmentation,by i = arg max p(� (x i )) represent
the pseudo-label for unlabeled examplex i , � is the con�dence threshold for pseudo-label selection,
I (�) is the indicator function.

UDA [34] adopts the consistency regularization which can be written as

L u =
1
m

n + mX

i = n +1

kp(aug(x i )) � p(aug0(x i ))k2
2 (3)

where aug(�) and aug0(�) represents different augmentation strategies.
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