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Abstract

Likelihood-to-evidence ratio estimation is usually cast as either a binary (NRE-A)
or a multiclass (NRE-B) classification task. In contrast to the binary classification
framework, the current formulation of the multiclass version has an intrinsic and
unknown bias term, making otherwise informative diagnostics unreliable. We
propose a multiclass framework free from the bias inherent to NRE-B at optimum,
leaving us in the position to run diagnostics that practitioners depend on. It
also recovers NRE-A in one corner case and NRE-B in the limiting case. For fair
comparison, we benchmark the behavior of all algorithms in both familiar and novel
training regimes: when jointly drawn data is unlimited, when data is fixed but prior
draws are unlimited, and in the commonplace fixed data and parameters setting.
Our investigations reveal that the highest performing models are distant from the
competitors (NRE-A, NRE-B) in hyperparameter space. We make a recommendation
for hyperparameters distinct from the previous models. We suggest a bound on
the mutual information as a performance metric for simulation-based inference
methods, without the need for posterior samples, and provide experimental results.

1 Introduction

Figure 1: Conceptual, interpolated map from in-
vestigated hyperparameters of proposed algorithm
NRE-C to a measurement of posterior exactness
using the Classifier Two-Sample Test. Best 0.5,
worst 1.0. Red dot indicates NRE-A’s hyperparam-
eters, γ = 1 and K = 1 [30]. Purple line implies
NRE-B [16] with γ = ∞ and K ≥ 1. NRE-C cov-
ers the entire plane, generalizing other methods.
Best performance occurs with K > 1 and γ ≈ 1,
in contrast with the settings of existing algorithms.

We begin with a motivating example: Consider
the task of inferring the mass of an exoplanet θo

from the light curve observations xo of a distant
star. We design a computer program that maps
hypothetical mass θ to a simulated light curve
x using relevant physical theory. Our simulator
computes x from θ, but the inverse mapping is
unspecified and likely intractable. Simulation-
based inference (SBI) puts this problem in a
probabilistic context [13, 64]. Although we can-
not analytically evaluate it, we assume that the
simulator is sampling from the conditional prob-
ability distribution p(x |θ). After specifying a
prior p(θ), the inverse amounts to estimating the
posterior p(θ |xo). This problem setting occurs
across scientific domains [1, 7, 10, 11, 29] where
θ generally represents input parameters of the
simulator and x the simulated output observa-
tion. Our design goal is to produce a surrogate
model p̂(θ |x) approximating the posterior for
any data x while limiting excessive simulation.

Density estimation [5, 54, 55] can fit the like-
lihood [2, 15, 43, 56] or posterior [6, 21, 42, 53] directly; however, an appealing alternative for
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practitioners is estimating a ratio between distributions [12, 16, 30, 34, 69]. Specifically, the
likelihood-to-evidence ratio p(θ |x)

p(θ) = p(x | θ)
p(x) = p(θ,x)

p(θ)p(x) . Unlike the other methods, ratio esti-
mation enables easy aggregation of independent and identically drawn data x. Ratio and posterior
estimation can compute bounds on the mutual information and an importance sampling diagnostic.

Figure 2: Schematic depicts how the loss is com-
puted in NRE algorithms. (θ, x) pairs are sampled
from distributions at the top of the figure, enter-
ing the loss functions as depicted. NRE-C controls
the number of contrastive classes with K and the
weight of independent and dependent terms with
p0 and pK . NRE-C generalizes other algorithms.
Hyperparameters recovering NRE-A and NRE-B
are listed next to the name within the dashed areas.
Notation details are defined in Section 2.1.

Estimating p(x | θ)
p(x) can be formulated as a bi-

nary classification task [30], where the classi-
fier σ ◦ fw(θ,x) distinguishes between pairs
(θ,x) sampled either from the joint distribution
p(θ,x) or the product of its marginals p(θ)p(x).
We call it NRE-A. The optimal classifier has

fw(θ,x) ≈ log
p(θ |x)
p(θ)

. (1)

Here, σ represents the sigmoid function, ◦ im-
plies function composition, and fw is a neural
network with weights w. As a part of an effort
to unify different SBI methods and to improve
simulation-efficiency, Durkan et al. [16] refor-
mulated the classification task to identify which
of K possible θk was responsible for simulating
x. We refer to it as NRE-B. At optimum

gw(θ,x) ≈ log
p(θ |x)
p(θ)

+ cw(x), (2)

where an additional bias, cw(x), appears. gw
represents another neural network. The cw(x)
term nullifies many of the advantages ratio esti-
mation offers. cw(x) can be arbitrarily patholog-
ical in x, meaning that the normalizing constant
can take on extreme values. This limits the appli-
cability of verification tools like the importance
sampling-based diagnostic in Section 2.2.

The cw(x) term also arises in contrastive learn-
ing [23, 71] with Ma and Collins [45] attempting
to estimate it in order to reduce its impact. We
will propose a method that discourages this bias
instead. Further discussion in Appendix D.

There is a distinction in deep learning-based SBI between amortized and sequential algorithms
which produce surrogate models that estimate any posterior p(θ |x) or a specific posterior p(θ |xo)
respectively. Amortized algorithms sample parameters from the prior, while sequential algorithms use
an alternative proposal distribution–increasing efficiency at the expense of flexibility. Amortization is
usually necessary to compute diagnostics that do not require samples from p(θ |xo) and amortized
estimators are empirically more reliable [31]. Our study therefore focuses on amortized algorithms.

Contribution We design a more general formulation of likelihood-to-evidence ratio estimation
as a multiclass problem in which the bias inherent to NRE-B is discouraged by the loss function
and it does not appear at optimum. Figure 1 diagrams the interpolated performance as a function of
hyperparameters. It shows which settings recover NRE-A and NRE-B, also indicating that highest
performance occurs with settings distant from these. Figure 2 shows the relationship of the loss
functions. We call our framework NRE-C1 and expound the details in Section 2.

An existing importance sampling diagnostic [30] tests whether a classifier can distinguish p(x |θ)
samples from from samples from p(x) weighted by the estimated ratio. We demonstrate that, when
estimating accurate posteriors, our proposed NRE-C passes this diagnostic while NRE-B does not.

1The code for our project can be found at https://github.com/bkmi/cnre under the Apache License 2.0.
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Taking inspiration from mutual information estimation [58], we propose applying a variational bound
on the mutual information between θ and x in a novel way–as an informative metric measuring a
lower bound on the Kullback-Leibler divergence between surrogate posterior estimate pw(θ |x) and
p(θ |x), averaged over p(x). Unlike with two-sample testing methods commonly used in machine
learning literature [44], our metric samples only from p(θ,x), which is always available in SBI, and
does not require samples from the intractable p(θ |x). Our metric is meaningful to scientists working
on problems with intractable posteriors. The technique requires estimating the partition function,
which can be expensive. We find the metric to be well correlated with results from two-sample tests.

We evaluate NRE-B and NRE-C in a fair comparison in several training regimes in Section 3. We
perform a hyperparameter search on three simulators with tractable likelihood by benchmarking the
behavior when (a) jointly drawn pairs (θ,x) are unlimited or when jointly drawn pairs (θ,x) are
fixed but we (b) can draw from the prior p(θ) without limit or (c) are restricted to the initial pairs. We
also perform the SBI benchmark of Lueckmann et al. [44] with our recommended hyperparameters.

2 Methods

The ratio between probability distributions can be estimated using the “likelihood ratio trick” by
training a classifier to distinguish samples [12, 19, 27, 30, 50, 66, 69]. We first summarize the
loss functions of NRE-A and NRE-B which approximate the intractable likelihood-to-evidence ratio
r(x |θ) := p(x | θ)

p(x) . We then elaborate on our proposed generalization, NRE-C. Finally, we explain
how to recover NRE-A and NRE-B within our framework and comment on the normalization properties.

NRE-A Hermans et al. [30] train a binary classifier to distinguish (θ,x) pairs drawn dependently
p(θ,x) from those drawn independently p(θ)p(x). This classifier is parameterized by a neural
network fw which approximates log r(x |θ). We seek optimal network weights

w∗ ∈ argmin
w

− 1

2B

[
B∑

b=1

log
(
1− σ ◦ fw(θ(b),x(b))

)
+

B∑
b′=1

log
(
σ ◦ fw(θ(b′),x(b′))

)]
(3)

θ(b),x(b) ∼ p(θ)p(x) and θ(b′),x(b′) ∼ p(θ,x) over B samples. NRE-A’s ratio estimate converges
to fw∗ = log p(x | θ)

p(x) given unlimited model flexibility and data. Details can be found in Appendix A.

NRE-B Durkan et al. [16] train a classifier that selects from among K parameters (θ1, . . . ,θK)
which could have generated x, in contrast with NRE-A’s binary possibilities. One of these parameters
θk is always drawn jointly with x. The classifier is parameterized by a neural network gw which
approximates log r(x |θ). Training is done over B samples by finding

w∗ ∈ argmin
w

[
− 1

B

B∑
b′=1

log
exp ◦gw(θ

(b′)
k ,x(b′))∑K

i=1 exp ◦gw(θ
(b′)
i ,x(b′))

]
(4)

where θ
(b′)
1 , . . . ,θ

(b′)
K ∼ p(θ) and x(b′) ∼ p(x |θ(b′)

k ). Given unlimited model flexibility and data
NRE-B’s ratio estimate converges to gw∗(θ,x) = log p(θ |x)

p(θ) + cw∗(x). Details are in Appendix A.

2.1 Contrastive Neural Ratio Estimation

Our proposed algorithm NRE-C trains a classifier to identify which θ among K candidates is
responsible for generating a given x, inspired by NRE-B. We added another option that indicates x
was drawn independently, inspired by NRE-A. The introduction of the additional class yields a ratio
without the specific cw(x) bias at optimum. Define Θ := (θ1, ...,θK) and conditional probability

pNRE-C(Θ,x | y = k) :=

{
p(θ1) · · · p(θK)p(x) k = 0

p(θ1) · · · p(θK)p(x |θk) k = 1, . . . ,K
. (5)
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We set marginal probabilities p(y = k) := pK for all k ≥ 1 and p(y = 0) := p0, yielding the
relationship p0 = 1 − KpK . Let the odds of any pair being drawn dependently to completely
independently be γ := KpK

p0
. We now use Bayes’ formula to compute the conditional probability

p(y = k |Θ,x) =
p(y = k) p(Θ,x | y = k)/p(Θ,x | y = 0)∑K
i=0 p(y = i) p(Θ,x | y = i)/p(Θ,x | y = 0)

=
p(y = k) p(Θ,x | y = k)/p(Θ,x | y = 0)

p(y = 0) +
∑K

i=1 p(y = i) p(Θ,x | y = i)/p(Θ,x | y = 0)

=

{
K

K+γ
∑K

i=1 r(x | θi)
k = 0

γ r(x | θk)

K+γ
∑K

i=1 r(x | θi)
k = 1, . . . ,K

.

(6)

We dropped the NRE-C subscript and substituted in γ to replace the p(y) class probabilities. We train
a classifier, parameterized by neural network hw(θ,x) with weights w, to approximate (6) by

qw(y = k |Θ,x) =

{
K

K+γ
∑K

i=1 exp ◦hw(θi,x)
k = 0

γ exp ◦hw(θk,x))

K+γ
∑K

i=1 exp ◦hw(θi,x)
k = 1, . . . ,K.

. (7)

We note that (7) still satisfies
∑K

k=0 qw(y = k |Θ,x) = 1, no matter the parameterization.

Optimization We design a loss function that encourages hw(θ,x) = log p(x | θ)
p(x) at convergence,

and holds at optimum with unlimited flexibility and data. We introduce the cross entropy loss

ℓ(w) := Ep(y,Θ,x) [− log qw(y |Θ,x)]

= −p0Ep(Θ,x | y=0) [log qw(y = 0 |Θ,x)]− pK

K∑
k=1

Ep(Θ,x | y=k) [log qw(y = k |Θ,x)]

= −p0Ep(Θ,x | y=0) [log qw(y = 0 |Θ,x)]−KpKEp(Θ,x | y=K) [log qw(y = K |Θ,x)]
(8)

and minimize it towards w∗ ∈ argminw ℓ(w). We point out that the final term is symmetric up to
permutation of Θ, enabling the replacement of the sum by multiplication with K. When γ and K
are known, p0 = 1

1+γ and pK = 1
K

γ
1+γ under our constraints. Without loss of generality, we let

θ1, . . . ,θK ∼ p(θ) and x ∼ p(x |θK). An empirical estimate of the loss on B samples is therefore

ℓ̂γ,K(w) := − 1

B

[
1

1 + γ

B∑
b=1

log qw

(
y = 0 |Θ(b),x(b)

)
+

γ

1 + γ

B∑
b′=1

log qw

(
y = K |Θ(b′),x(b′)

)]
.

(9)

In the first term, the classifier sees a completely independently drawn sample of x and Θ while θK is
drawn jointly with x in the second term. In both terms, the classifier considers K choices. In practice,
we bootstrap both θ

(b)
1 , . . . ,θ

(b)
K and θ

(b′)
1 , . . . ,θ

(b′)
K−1 from the same mini-batch and compare them

to the same x, similarly to NRE-A and NRE-B. Proof of the above is in Appendix B.

Recovering NRE-A and NRE-B NRE-C is general because specific hyperparameter settings recover
NRE-A and NRE-B. To recover NRE-A one should set γ = 1 and K = 1 in (9) yielding

ℓ̂1,1(w) = − 1

2B

[
B∑

b=1

log
1

1 + exp ◦hw(θ(b),x(b))
+

B∑
b′=1

log
exp ◦hw(θ(b′),x(b′))

1 + exp ◦hw(θ(b′),x(b′))

]

= − 1

2B

[
−

B∑
b=1

log
(
1− σ ◦ hw(θ(b),x(b))

)
+

B∑
b′=1

log
(
σ ◦ hw(θ(b′),x(b′))

)] (10)
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where we dropped the lower index. Recovering NRE-B requires taking the limit γ → ∞ in the loss
function. In that case, the first term goes to zero, and second term converges to the softmax function.

ℓ̂∞,K(w) = lim
γ→∞

ℓ̂γ,K(w) = − 1

B

[
B∑

b′=1

log
exp ◦hw(θk,x))∑K
i=1 exp ◦hw(θi,x)

]
(11)

is determined by substitution into (9). Both equations are obviously the same as their counterparts.

Estimating a normalized posterior In the limit of infinite data and infinite neural network capacity
(width, depth) the optimal classifier trained using NRE-C (with γ ∈ R+) satisfies the equality:

hw∗(θ,x) = log
p(θ |x)
p(θ)

. (12)

In particular, we have that the following normalizing constant is trivial:

Z(x) :=

∫
exp (hw∗(θ,x)) p(θ) dθ =

∫
p(θ |x) dθ = 1. (13)

This is a result of Lemma 1 in Appendix B. However, practitioners never operate in this setting, rather
they use finite sample sizes and neural networks with limited capacity that are optimized locally. The
non-optimal function exp(hw(θ,x)) does not have a direct interpretation as a ratio of probability
distributions, rather as the function to weigh the prior p(θ) to approximate the unnormalized posterior.
In other words, we find the following approximation for the posterior p(θ |x):

pw(θ |x) := exp(hw(θ,x))

Zw(x)
p(θ), Zw(x) :=

∫
exp (hw(θ,x)) p(θ) dθ, (14)

where in general the normalizing constant is not trivial, i.e. Zw(x) ̸= 1. As stated above, the NRE-C
(and NRE-A) objective encourages Zw(x) to converge to 1. This is in sharp contrast to NRE-B, where
even at optimum with an unrestricted function class a non-trivial x-dependent bias term can appear.

There is no restriction on how pathological the NRE-B bias cw(x) can be. Consider a minimizer of
(4), the NRE-B loss function, hw∗ +cw∗(x). Adding any function d(x) cancels out in the fraction and
is also a minimizer of (4). This freedom complicates any numerical computation of the normalizing
constant and renders the importance sampling diagnostic from Section 2.2 generally inapplicable.
We report Monte Carlo estimates of Zw(x) on a test problem across hyperparameters in Figure 14.

2.2 Measuring performance & ratio estimator diagnostics

SBI is difficult to verify because, for many use cases, the practitioner cannot compare surrogate
pw(θ |x) to the intractable ground truth p(θ |x). Incongruous with the practical use case for SBI,
much of the literature has focused on measuring the similarity between surrogate and posterior
using two-samples tests on tractable problems. For comparison with literature, we first reference
a two-sample exactness metric which requires a tractable posterior. We then discuss diagnostics
which do not require samples from p(θ |x), commenting on the relevance for each NRE algorithm
with empirical results. Further, we find that a known variational bound to the mutual information
is tractable to estimate within SBI, that it bounds the average Kullback-Leibler divergence between
surrogate and posterior, and propose to use it for model comparison on intractable inference tasks.

Comparing to a tractable posterior with estimates of exactness Assessments of approximate
posterior quality are available when samples can be drawn from both the posterior θ ∼ p(θ |x) and
the approximation θ ∼ q(θ |x). In the deep learning-based SBI literature, exactness is measured as a
function of computational cost, usually simulator calls. We investigate this with NRE-C in Section 3.3.

Based on the recommendations of Lueckmann et al. [44] our experimental results are measured using
the Classifier Two-Sample Test (C2ST) [17, 40, 41]. A classifier is trained to distinguish samples
from either the surrogate or the ground truth posterior. An average classification probability on
holdout data of 1.0 implies that samples from each distribution are easily identified; 0.5 implies either
the distributions are the same or the classifier does not have the capacity to distinguish them.
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Figure 3: The figures visualize the importance sampling diagnostic on ratio estimators trained
using NRE-B and NRE-C. (a) Both methods produce satisfactory posterior estimates that agree with
p(θ |x). (b) p(x |θ) is shown along with p(x) samples weighted by NRE-A exp ◦fw(θ,x) and
NRE-B exp ◦gw(θ,x). Each plot corresponds to a different θ. Despite high posterior accuracy,
the NRE-B estimates are distinct from p(x |θ). (c) Two classifier’s ROC curves, each trained to
distinguish p(x |θ) samples from p(x) samples weighted by the corresponding NRE’s r̂ estimate.
The classifier failed to distinguish likelihood samples from the NRE-C weighted data samples, but
successfully identified NRE-B weighted samples. NRE-B accurately approximates the posterior, but
fails the diagnostic. NRE-C produces an accurate posterior surrogate and passes the diagnostic.

Importance sampling diagnostic An accurate likelihood-to-evidence weight transforms the data
distribution into the likelihood by p(x |θ) = p(x)r(x |θ). Since NRE necessitates simulator access,
we can test the ratio estimator by training a classifier to distinguish unweighted p(x |θ) samples from
weighted p(x)r̂(x |θ) samples, where r̂ implies an estimate. Indistinguishability between samples
implies either that the approximate ratio is accurate for parameter θ or that the classifier does not
have sufficient power to find predictive features. Issues with classification power can be detected by
assessing the classifier’s ability to distinguish p(x) from p(x |θ). The performance can be visualized
in a receiver operating curve (ROC) or measured by the area under the curve (ROC AUC). This
diagnostic has been used for ratio estimators before [12, 30] but it comes from training models under
covariate shift [62]. It is particularly appealing because it does not require samples from p(θ |x).
Durkan et al. [16] do not mention this diagnostic in their paper, but due to its intrinsic bias NRE-B
does not fulfill the identity necessary for this diagnostic to hold at optimum. The unknown factor that
depends on x implies p(x |θ) ̸= p(x) exp ◦gw(x |θ). We provide empirical evidence of this issue
in Figure 3. Although NRE-B accurately approximates the true posterior, it demonstrably fails the
diagnostic. Given the limited options for verification of SBI results, this presents a major problem by
significantly limiting the trustworthiness of NRE-B on any problem with an intractable posterior. In
Appendix B, we show that the unrestricted NRE-B-specific cw(x) bias means approximating p(x |θ)
with normalized importance weights will not solve the issue.

Mutual information bound Selecting the surrogate model most-similar to the target posterior
remains intractable without access to p(θ |xo). Nevertheless, practitioners must decide which surro-
gate should approximate the posterior across training and hyperparameter search. Unfortunately, the
validation losses between different versions of NRE and different K and γ settings are not comparable.
A good heuristic is to choose the model which minimizes the Kullback-Leibler divergence on average
over possible data p(x). In Appendix D, we prove the relationship between I(θ;x), the mutual
information with respect to p(θ,x), our models’ variational bound I

(0)
w (θ;x), and the average KLD

Ep(x) [KLD(p(θ |x) ∥ pw(θ |x))] = I(θ;x)− I(0)w (θ;x), (15)

I(0)w (θ;x) := Ep(θ,x) [log r̂(x |θ)]− Ep(x)

[
logEp(θ)[r̂(x |θ)]

]
. (16)

The non-negativity of all terms in (15) implies I(θ;x) ≥ I
(0)
w (θ;x); that means the model which

minimizes −I
(0)
w (θ;x) best satisfies our heuristic. We propose to approximate −I

(0)
w (θ;x) with

Monte Carlo using held-out data as a metric for model selection during training and across hyper-
parameters. The expectation values average over p(θ,x), p(θ), and p(x). We can sample from all
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of these distributions in the SBI context. Since the second term in (16) computes the average log
partition function, our metric can compare NRE-B-based surrogates to NRE-C-based ones. However,
the metric comes with the normal challenges of estimating the log partition function, which can be
very expensive. Additionally, the presence of the ratio in the integrand can make this integral high
variance. We treat a generally tractable bound in Appendix D. We go into much more depth there
and discuss of the relevance to Neural Posterior Estimation [16, 21, 42, 53]. While the application
to SBI is novel, bounds on the mutual information have been broadly investigated for contrastive
representation learning and mutual information estimation [4, 22, 23, 25, 58, 71].

Empirical expected coverage probability For a candidate distribution to qualify as the posterior,
integrating over data must return the prior. A measurement that follows from calibration to the prior
is called expected coverage probability. Expected coverage probability can be estimated with samples
from p(θ,x) and any amortized SBI method. Although important, ability to compute this metric does
not distinguish NRE-C. We refer the interested reader to Hermans et al. [31]. We note that popular
sequential techniques generally render this diagnostic inapplicable, with exceptions [10, 47, 48].

3 Experiments

We perform experiments in three settings to measure the exactness of surrogate models under various
hyperparameters and training regimes. Section 3.1 aims to identify whether data or architecture is the
bottleneck in accuracy by drawing from the joint with every mini-batch. The next experiments aim to
determine how to optimally extract inference information given a limited amount of simulation data.
Section 3.2 leverages a cheap prior by drawing new contrastive parameters with every mini-batch.
Finally, Section 3.3 applies the commonplace training regime for deep learning-based SBI literature
of fixed data and bootstrapped contrastive parameters. In this setting, we also benchmark NRE-C on
ten inference tasks from Lueckmann et al. [44] using our recommended hyperparameters.

On all hyperparameter searches we consider three simulators from the simulation-based inference
benchmark, namely SLCP, Two Moons, and Gaussian Mixture [44]. SLCP is a difficult inference task
which has a simple likelihood and complex posterior [21, 56]. Parameters are five dimensional and
the data are four samples from a two dimensional random variable. Two Moons is two dimensional
with a crescent-shaped bimodal posterior. Finally, the Gaussian Mixture data draws from a mixture
of two, two-dimensional normal distributions with extremely different covariances [3, 63, 64, 70].

Our surrogate models are parameterized by one of these architectures: Small NN is like the benchmark
with 50 hidden units and two residual blocks. Large NN has 128 hidden units and three residual
blocks. We use batch normalization, unlike the benchmark. We compare their performance on a grid
of γ and K values. We report post-training results using the C2ST, and mid-training validation loss
for insight into convergence rate. We generally use residual networks [28] with batch normalization
[33] and train them using adam [37]. We also run NRE-B with the same architecture for comparison.
To compare with NRE-B we set the number of total contrastive parameters equal.

What does fair comparison mean in our experimentation? We compare models across fixed number
of gradient steps. This implies that models with more classes, i.e., greater K, evaluate the classifier-
in-training on more pairs at a given training step than a model with fewer classes. An alternative
which we do not apply in this paper: Vary the number of gradient steps, holding the number of pair
evaluations fixed, i.e., a model with higher K sees the same number of pairs as a model with lower
K but the model with lower K has been updated more times. We leave this analysis for future work.

3.1 Behavior with unlimited data

What is responsible for inaccuracies of the surrogate model when training has saturated? (a) the
amount of training data (b) the flexibility of the model? In this section we provide new simulation and
parameter data with every mini-batch and train until saturation, thereby eliminating the possibility of
(a). The newly drawn mini-batch parameters Θ are bootstrapped for the contrastive pairs.

The setting is similar to REJ-ABC where simulations are drawn until the posterior has converged. The
results of this study will provide a baseline to compare with limited-data results and help us understand
how the deep learning architecture’s limitations are affected by our introduced hyperparameters. The
results are reported in the top row of Figure 5.
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The trend is that increasing the number of contrastive examples helps NRE-B and NRE-C. There is
not a clear trend with respect to γ in the C2ST. Study of the detailed validation losses in Appendix C
reveals that high γ is associated with higher variance validation loss during training, but here it does
not seem to strongly affect convergence rate. Saturation is reached before the maximum number of
epochs have elapsed and Large NN converges to a better result. Although obfuscated in the averaged
results in Figure 5, the result is obvious on SLCP, the most difficult inference task that provides an
opportunity for a more flexible architecture to improve.

We argue that generally the performance bottleneck has to do with the number of contrastive
parameters, network flexibility, or training details rather than the amount of data. Despite saturating
validation losses, the C2ST improves based on these factors. Intuitively a more flexible model could
continue to extract information from this unlimited set of jointly drawn (θ,x) pairs. This has some
consequence because network flexibility may limit performance in the benchmark case. Appendix C
contains more detailed results.

3.2 Leveraging fast priors (drawing theta)

In practice, the simulator is often slow but one can often draw from the prior at the same pace as
training a neural network for one mini-batch. Our goal is to understand how our hyperparameter are
affected by this setting and whether it is valuable to use this technique in practice. To our knowledge,
this training regime has not been explored in the deep learning-based SBI literature.

Initially we draw a fixed set of around 20,000 samples (θ,x) ∼ p(θ,x). For every mini-batch during
training, we sample all necessary contrastive parameters from the prior. For each term in ℓ̂γ,K we
take the same batch of contrastive parameters and reshuffle them, thereby equalizing the number
of samples seen by NRE-B and NRE-C, up to bootstrap. The averaged C2ST results from the three
inference tasks are reported in the middle row of Figure 5.

The resulting estimators are markedly less sensitive to the number of contrastive parameters than in
Section 3.1. The number of network parameters has a positive effect, although again this is best seen
on the hardest task, SLCP, in the Appendix C. Empirically, lower values of γ improve performance
with Large NN; however, there is still high variance and this result may be from noise. In this
setting, γ ̸= 1 has a very small negative effect on convergence rate compared to unity, as seen in the
validation loss plots in Appendix C. Since training has saturated, we claim this result implies drawing
contrastive parameters from the prior helps extract the maximum amount of information from fixed
simulation data x–without being strongly affected by the number of contrastive parameters K.

100 101 102 103

Epochs

4

2

0

2

4

6

I(0
)

w
(

;x
)

NRE-B

(a) NRE-B

100 101 102 103

Epochs

4

2

0

2

4

6

I(0
)

w
(

;x
)

 (gamma) = 0.001

100 101 102 103

Epochs

 (gamma) = 1.0

100 101 102 103

Epochs

 (gamma) = 100.0

Contrastive
parameters

2
25
200

(b) NRE-C

Figure 4: Our proposed metric, a negative bound on the mutual information −Î
(0)
w (θ;x), for the

SLCP task estimated over the validation set versus training epochs using (a) NRE-B and (b) NRE-C
with various values of γ and K, a Large NN architecture, and fixed training data. The bound permits
visualization of the convergence rates and pairwise comparison across models. When K is fixed,
small γ slows convergences but leads to better optima than large γ. When γ is fixed, small K slows
convergence but leads to better optima than high K. Unlike when computing the validation loss
directly, this metric does not exhibit a γ and K dependent bias as seen in Figures 7, 8, and 9.

3.3 Simulation-based inference benchmark

In this section, we assume the traditional literature setting of limited simulation and prior budget.
Once we’ve selected hyperparameters based on a grid search of a subset of the SBI benchmark, we
perform the entire benchmark with those hyperparameters.

8



0.60

0.65

0.70

0.75

0.80

0.85

C2
ST

Draw ( , x) - Small NN Draw ( , x) - Large NN

0.60

0.65

0.70

0.75

0.80

0.85

C2
ST

Draw  - Small NN Draw  - Large NN

101 102

Contrastive parameter count

0.60

0.65

0.70

0.75

0.80

0.85

C2
ST

Fixed data - Small NN

101 102

Contrastive parameter count

Fixed data - Large NN

 (gamma)
0.001
0.01
0.1
1.0
10.0
100.0

Algorithm
NRE-C
NRE-B

Figure 5: Exactness of NRE posterior surrogates is
computed for various contrastive parameter counts,
γ values, and architectures on an average of three
tasks from the SBI benchmark [44]. C2ST assigns
1.0 to inaccurate and 0.5 to accurate posterior ap-
proximation. (top) p(θ,x) was sampled at every
mini-batch during training. The accuracy strongly
depends on K. (mid) A fixed number of dependent
(θ,x) pairs were drawn, but p(θ) was sampled at
every mini-batch during training. In this regime,
K has a smaller effect. (bot) The training data
is completely fixed. Contrastive parameters are
drawn in a bootstrap from the mini-batch. On the
problems with fixed simulation data x, higher K
improves accuracy and small γ with larger architec-
tures slightly improves performance. The effects
of the architecture are more clearly seen on diffi-
cult problems like SLCP in Appendix C.

Hyperparameter search To compare to the
previous two sections, the amount of training
data was fixed such that each epoch was com-
parable to Section 3.1, this amounts to about
20,000 samples. We first inspect the C2ST re-
sults in the last row of Figure 5. The sensitivity
to K appears less than in Section 3.1 but more
than in Section 3.2. Smaller γ slightly improves
Large NN’s performance but the noise makes
this result uncertain. The larger network per-
forms better, see Appendix C.

We do a Monte Carlo estimate of our proposed
metric, denoted −Î

(0)
w (θ;x), to show perfor-

mance on the SLCP task as a function of epochs
in Figure 4. For both NRE-B and NRE-C, increas-
ing K tends to positively affect the convergence
rate. Generally, with fixed γ and high K, peak
performance is negatively impacted, in contrast
to results from Figure 5 using the C2ST. Gener-
ally, with fixed K, small γ slows convergences
but leads to better optima than large γ. When γ
is fixed, small K slows convergence but leads to
better optima than high K. See Figure 12.

Our take-away is that γ ∈ [0.1, 10] has a small
effect, otherwise learning can become unstable
or very slow. γ = 1 has a good compromise
on high convergence rate without sacrificing
too much performance. Generally, we saw im-
proved performance on the C2ST by increasing
contrastive parameters K. However, larger K
also increases the magnitude of the normalizing
constant, and extreme values reduced the perfor-
mance on −Î

(0)
w (θ;x), see Appendix D. Since

the benchmark compares C2ST, we optimized
our architecture based on that metric. Due to
bootstrapping parameters from the batched θ,
the maximum K is B/2 without reusing any θ
to compare with x. This is considering both
terms in our loss function.

Benchmark We performed the benchmark tasks from Lueckmann et al. [44] with NRE-C. Our
architecture and hyperparameters deviate based on the results of the last paragraph. We applied the
largest number of computationally practical contrastive parameters, namely K = 99, and set γ = 1.
Since we identified potential architecture bottlenecks in Sections 3.1 and 3.3, we used Large NN for
our results. The averaged results are visible in Table 1. Sequential estimates are prepended with an S,
all other estimates are amortized. We trained a five amortized estimators per task with five seeds, then
we predicted the posterior for each of the ten observations x1, . . . ,x10. Lueckmann et al. [44] trained
an estimator for every x with a new seed. The reported C2ST for our method is averaged across ten
posteriors per seed with five seeds, i.e., fifty C2ST computations per task. The other methods are
averaged across one posterior per seed with ten seeds, i.e., ten C2ST computations per task.

NRE-C performed better than NRE-B at all budgets and generally well among the amortized algorithms.
The high performance at 105 simulation budget implies that our design has high capacity and may
scale well. Sequential methods naturally lead to high exactness since they are tailored to the specific
observation xo, but they come with drawbacks since they cannot practically perform empirical
expected coverage tests [31, 48] nor bound the mutual information, as discussed in Section 2.2.
Detailed results per task can be found in Appendix C.
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4 Conclusion

Table 1: Averaged C2ST for various budgets on the
simulation-based inference benchmark [44]. An S
implies a sequential i.e. non-amortized method.

C2ST
Simulation budget 103 104 105

Algorithm

NRE-C (ours) 0.853 0.762 0.680

REJ-ABC 0.965 0.920 0.871
NLE 0.826 0.753 0.723
NPE 0.838 0.736 0.654
NRE (NRE-B) 0.867 0.811 0.762
SMC-ABC 0.948 0.873 0.816
SNLE 0.783 0.704 0.655
SNPE 0.796 0.677 0.615
SNRE (SNRE-B) 0.788 0.703 0.610

We introduced a generalization of NRE-A and
NRE-B which discourages the NRE-B specific
cw(x) bias term and produces an unbiased es-
timate of the likelihood-to-evidence ratio at op-
timum. This property has implications for the
importance sampling diagnostic, which is criti-
cal to practitioners. We suggested using a vari-
ational bound on the mutual information as a
model-selection metric that could replace the
C2ST averaged over several observations. It
is significantly more practical since it does not
require access to the ground truth posterior; how-
ever, it remains a lower bound so we don’t know
the overall quality of our estimator. Further dis-
cussions and derivations related to the mutual
information are available in Appendix D.

In the context of NRE-C, we found that increas-
ing the number of contrastive parameters K im-
proved the C2ST in most cases, at the price of
increasing the normalizing constant. Setting γ ≈ 1 was generally the fastest to saturate and lower
values seemed to slightly improve performance with the Large NN and fixed simulation data. These
results indicate that better performance can be achieved by using NRE-C with these hyperparameters
than the other version of NRE. When both training parameters θ and simulation data x are unlimited,
the architecture size plays an important role in the quality of surrogate model. We tried drawing
contrastive parameters from the prior, a commonly available practical use-case, and found that it
damped the effect of K on the C2ST. According to the C2ST, for highest accuracy with a fixed budget
set K large, up to the mini-batch size divided by 2, and γ ≈ 1.0 for the best convergence rate. When
the prior is sampled for every mini-batch, applying a higher K may be less valuable. In situations
where the normalizing constant should be very close to unity, i.e., for practitioners who want to run
diagnostics, drawing θ from the prior with every mini-batch and using a smaller K and γ is best.

Broader Impact The societal implications of SBI are similar to other inference methods. The
methods are primarily scientific and generally lead to interesting discoveries; however, one must be
careful to use an accurate generative model and to carefully test empirical results. Model mismatch
and untested inference can lead to incorrect conclusions. That is why we emphasize the importance of
the diagnostics in our paper. This nuance can be missed by practitioners doing inference in any field;
however, special care should be taken when producing inference results that may be used for making
decisions in areas like predicting hidden variables that describe human behavior or determining what
factors are responsible for climate change. This list is non-comprehensive and not specific to SBI.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section .
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We introduce the generalization in Section 2.1. We
show that it has the properties we claim in Appendix B. We perform the experiments in
Section 3 and make a hyperparameter recommendation in Section 4

(b) Did you describe the limitations of your work? [Yes] We discussed the behavior of
ours and other algorithms in the finite sample setting, see Section 2.1 and limitations of
existing to test the convergence of our method, see Section 2.2.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We briefly
mentioned them in Section 4.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] This work applies toy simulation data thus no ethics concerns were raised
by the paper. Other matters of ethics during experimentation and writing conformed.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] These are laid

out in Appendix B.
(b) Did you include complete proofs of all theoretical results? [Yes] We have only one real

theoretical result and that is proven in Lemma 1. Anything else follows algebraically
and is shown in detail.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code will
be made available via a link in the supplemental material. It is a python package with
example calls and self-explanatory installation instructions. The details will be shown
in Section C. Results will be released upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Additionally to the hyperparameter search which is the primary
experimental result, seen in Section 3, we included more details in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The hyperparameter searches indeed included error bars
in Section 3. We did not include error bars in the computation of the diagnostic since
we emphasize that it is made possible by our method, not its statistical properties. The
details of the benchmark, including some uncertainty in the last experimental section
are shown in Appendix C.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] This is discussed in Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the

benchmark [44] several times in the paper. Also the sbi package [68]
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(b) Did you mention the license of the assets? [Yes] The license is mentioned in Ap-
pendix A

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] I
will link to my code in the supplemental material as discussed above. Upon acceptance
results will be made available.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] The publicly available data was used in accordance with the
aforementioned license in [44]. There was no need to get consent or mention it in the
paper.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data is generated by toy mathematical
models which abstractly relate parameters to data. It is highly unlikely any culture
would find them offensive.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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