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Abstract

Estimation and inference on causal parameters is typically reduced to a general-
ized method of moments problem, which involves auxiliary functions that corre-
spond to solutions to a regression or classification problem. Recent line of work
on debiased machine learning shows how one can use generic machine learning
estimators for these auxiliary problems, while maintaining asymptotic normality
and root-n consistency of the target parameter of interest, while only requiring
mean-squared-error guarantees from the auxiliary estimation algorithms. The lit-
erature typically requires that these auxiliary problems are fitted on a separate
sample or in a cross-fitting manner. We show that when these auxiliary estimation
algorithms satisfy natural leave-one-out stability properties, then sample splitting
is not required. This allows for sample re-use, which can be beneficial in moder-
ately sized sample regimes. For instance, we show that the stability properties that
we propose are satisfied for ensemble bagged estimators, built via sub-sampling
without replacement, a popular technique in machine learning practice.

1 Introduction

A large variety of problems in causal inference and more generally semi-parametric inference can
be framed as finding a solution to a moment condition:

M(✓, g) , EZ [m(Z; ✓, g)] M(✓0, g0) = 0

where Z 2 Z is a vector of random variables that, apart from the target parameter ✓0 2 ⇥ ⇢ Rp of
interest (we assume p = O(1)), also depends on unknown nuisance functions g0 2 G, which need to
be estimated in a flexible manner from the data. This framework has a long history in the literature on
semi-parametric inference [38, 26, 27, 47, 36, 51, 57, 12, 40, 49, 58, 13, 41, 1, 42, 2, 53, 37, 3], which
analyzes the following two-stage estimation process with sample re-use, when having access to n
iid samples {Z1, . . . , Zn} and as n grows, treating the target parameter dimension p as a constant:

1. Obtain an estimate ĝ 2 G of the nuisance function g0 based on all the samples.

2. Return any estimate ✓̂ 2 ⇥ that satisfies:

Mn(✓̂, ĝ) = op
⇣
n�1/2

⌘
with Mn(✓, g) , 1

n

nX

i=1

m(Zi; ✓, g).

Given that the estimation of function ĝ is a complex non-parametric problem, it will typically only
satisfy slower than parametric error rates. Moreover, in high dimensional settings, when machine
learning techniques are used to estimate ĝ, then the regularization bias of ĝ will propagate to the
final estimate ✓̂, leading to non-regular estimates and the inability to construct confidence intervals.
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The literature on efficient semi-parametric estimation provides conditions on the moment function
so that the influence of the estimation error of the nuisance function ĝ is of second order importance
and does not alter the distributional properties of the second stage [26, 13, 59, 7, 8, 9, 10, 31, 32,
33, 54, 46, 19, 43, 48, 28, 29, 30, 16, 61, 62]. This approach dates back to the classical work
on doubly robust estimation and targeted maximum likelihood [50, 49, 56, 55, 39, 52] as well as
the more recent work on locally robust or Neyman orthogonal conditions on the moment function
[44, 45, 18, 6, 17], typically referred to as double or debiased machine learning. At a high-level, the
earlier literature on semi-parametric inference shows that if the moment function satisfies some form
of robustness to nuisance perturbations and, importantly, as long as the space G used in the first stage
estimation is a relatively simple function class, in terms of statistical complexity, typically referred
to as a Donsker function class, then the second stage estimate is root-n consistent and asymptotically
normal. Hence, one can easily construct confidence intervals for the target parameter of interest.
Crucially the recent literature on debiased machine learning alters the standard two-stage estimation
algorithm to introduce the idea of sample-splitting, [11, 60]. In particular, instead of estimating ĝ on
all the samples, the recent work on debiased machine learning [17, 18, 22] estimates ĝ on a separate
sample, or for better sample efficiency invokes “cross-fitting,” where we train a nuisance model on
half the data and evaluate it in the second stage on the other half and vice versa. Sample splitting
avoids the Donsker conditions that were prevalent in the classic semi-parametric inference literature
and only requires a root-mean-squared-error (RMSE) guarantee of the estimate ĝ of op(n�1/4).
However, sample splitting or cross-fitting still leads to poorer sample usage, as we can lose half of
our data when training complex non-parametric or machine learning models, which can be problem-
atic in small and moderate sample regimes. Our main result is to show that root-n consistency and
asymptotic normality of the standard algorithm, without sample splitting, can be achieved without
the Donsker property, but solely if one assumes that the first stage estimation algorithm is o(n�1/2)
leave-one-out stable, a relatively widely studied property in the statistical machine learning and
generalization theory literature [15, 34, 23, 25]. As a leading example we show that our stability
conditions are satisfied by bagging estimators formed with sub-sampling without replacement.
Recent prior work of [21] also considered asymptotic normality based on stability conditions, but
as we expand in the main text, their requirement on the stability property is much harsher than the
one we derive here. Moreover, [21] analyzes only a special case of the class of moment problems
that we consider here. For instance, in our leading example of bagging estimators, the prior result of
[21] would require that the bias of the base estimator decays faster than 1/n, where n is the sample
size, which is typically not the case. In contrast, our stability condition does not impose any explicit
assumption on the bias and solely requires that the sub-sample size m is o(

p
n).

To simplify the regularity assumptions required for asymptotic normality, we focus on the case
where m(Z; ✓, g) is linear in ✓, i.e.

m(Z; ✓, g) = a(Z; g) ✓ + ⌫(Z; g)

where a(Z; g) 2 Rp⇥p is a p⇥ p matrix and ⌫(Z; g) 2 Rp is a p-vector, and we denote with:
A(g) := EZ [a(Z; g)] An(g) := En[a(Z; g)]

V (g) := EZ [⌫(Z; g)] Vn(g) := En[⌫(Z; g)].

Many of the leading examples in semi-parametric problems that arise in causal inference correspond
to linear moment problems. We present below a representative set of problems that are widely used
in the practice of causal inference.
Example 1 (Partially Linear Treatment Effect [51]). If one assumes that the outcome of interest Y
is linear in the treatment, i.e. Y = ✓00T + f0(X) + ✏, with E[✏ | T,X] = 0, then estimating the
treatment effect ✓0 boils down to solving the following linear moment:

m(Z; ✓, g) = (Y � q(X)� ✓0(T � p(X))) (T � p(X))

where the corresponding true values of (q, p) are q0(X) = E[Y |X], p0(X) = E[T |X].
Example 2 (Partially Linear IV [17]). If one assumes that the outcome of interest Y is linear in the
treatment, i.e. Y = ✓00T + f0(X) + ✏, but the treatment is endogenous (i.e. there are unobserved
confounders) and one has access to a random variable Z, that is referred to as an instrument, which
correlates with the treatment but is un-correlated with the residual in the outcome equation, i.e.
satisfies that E[✏ | Z,X] = 0, then estimating ✓0 boils down to solving the following linear moment:

m(Z; ✓, g) = (Y � q(X)� ✓0(T � p(X))) (Z � r(X))

where the true values of (q, p, r) are q0(X) = E[Y |X], p0(X) = E[T |X], r0(X) = E[Z|X].
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Example 3 (Average linear functionals of regression functions). Consider a class of moment func-
tions of the form:

m(Z; ✓, g) = ✓ �mb(Z; q)� µ(T,X) (Y � q(T,X))

where g = (q, µ), mb is a linear functional of q and the corresponding true value q is a regression
function q0(T,X) = E[Y | T,X] and µ0 is Riesz representer of the functional E[mb(Z; q)] (see [20]
for examples). For instance, in the case of a binary treatment T , where we have that Y = q(T,X)+✏
and E[✏ | T,X] = 0, then the average treatment effect ✓0 = E[q(1, X)� q(0, X)] is identified by a
moment of the latter type, with:

mb(Z; q) = q(1, X)� q(0, X) (Average Treatment Effect (ATE))

While if we have a target treatment policy ⇡ : X ! {0, 1}, and we want to estimate its average
value ✓0, we can identify do so with a moment of the aforementioned type, with:

mb(Z; q) = ⇡(X) (q(1, X)� q(0, X)) (Average Policy Effect)

For completeness, we also include in Appendix H an extension of our results to nonlinear moment
problems.

2 Asymptotic Normality without Sample Splitting

We start by providing an asymptotic normality theorem for semi-parametric moment estimators
without sample splitting and where the moment satisfies the well-studied property of Neyman or-
thogonality. Our theorem requires four main conditions: i) root-mean-squared-error (RMSE) rates
for the nuisance function estimates of op(n�1/4), ii) Neyman orthogonality of the moment with
respect to the nuisances, iii) second-order smoothness of the moment with respect to the nuisance
functions and, iv) stochastic equicontinuity of the Jacobian and the offset part of the linear moment
function as the nuisance estimate ĝ converges to g0. For a vector x 2 Rp we denote with kxk2 the
`2 norm and for a matrix X 2 Rp⇥p we denote with kXkop the operator norm with respect to the `2
norm.
Theorem 1. Suppose that the nuisance estimate ĝ 2 G satisfies:

kĝ � g0k22 , EX

⇥
kĝ(X)� g0(X)k22

⇤
= op

⇣
n�1/2

⌘
. (Consistency Rate)

Suppose that the moment satisfies the Neyman orthogonality condition: for all g 2 G

DgM(✓0, g0)[g � g0] , @

@t
M(✓0, g0 + t (g � g0))

��
t=0

= 0 (Neyman Orthogonality)

and a second-order smoothness condition: for all g 2 G

DggM(✓0, g0)[g � g0] , @2

@t2
M(✓0, g0 + t (g � g0))

��
t=0

= O
�
kg � g0k22

�
(Smoothness)

and that the moment m satisfy the stochastic equicontinuity conditions:
p
n kA(ĝ)�A(g0)� (An(ĝ)�An(g0))kop = op(1)
p
n kV (ĝ)� V (g0)� (Vn(ĝ)� Vn(g0))k2 = op(1).

(Stochastic Equicontinuity)

Assume that A(g0)�1 exists and that for any g, g0 2 G:

kA(g)�A(g0)kop = O (kg � g0k2) .

Moreover, assume that for any i, j 2 [p]⇥[p], the random variable ai,j(Z; g0) has bounded variance
and that k✓0k2 = O(1). Then ✓̂ is asymptotically normal:

p
n
⇣
✓̂ � ✓0

⌘
n!1,d�����! N

�
0, A(g0)

�1E
⇥
m(Z; ✓0, g0)m(Z; ✓0, g0)

>⇤A(g0)
�1
�
.
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The first three conditions are standard assumptions in the literature on debiased machine learning.
The final condition (stochastic equicontinuity) is exactly where sample splitting comes very handy in
the literature. To illustrate the reason why sample splitting helps with the stochastic equicontinuity
condition, let us consider the first part of the condition (the reasoning is analogous for the second
part). It asks that the difference of two centered empirical processes, namely An(ĝ) � A(ĝ) and
An(g0) � A(g0), goes to zero faster than n�1/2. We expect each empirical process to go down to
zero at exactly n�1/2 and so this condition asks, since ĝ converges to g0 is the empirical process
continuous in its argument and for that reason does the difference converge to zero faster than each
individual component. If the estimate ĝ was fitted on a separate sample, then conditional on ĝ, we
have that each element t = (i, j) 2 [p] ⇥ [p] of An(ĝ) � An(g0) is an empirical average of iid
random variables with mean A(ĝ)�A(g0). Thus a simple Bernstein inequality would show that the
difference of the two empirical processes would converge to zero at the order of:

Op

 r
E[(at(Z; ĝ)� at(Z; g0))2]

n
+

1

n

!
= Op

 r
kĝ � g0k22

n
+

1

n

!
= op(n

�1/2)

where we also invoked a mean-squared-continuity property of at(Z; g) and the fact that kĝ�g0k2 =
op(1). Thus, with sample splitting, no further constraint is required from ĝ, other than a convergence
rate on kĝ � g0k2. In fact, as was noted in recent work of [22], in the above step it suffices to
assume that E[(at(Z; ĝ) � at(Z; g0))2] = O (kĝ � g0kq2) for any q < 1, which is a much weaker
mean-squared-continuity assumption, and the property would still hold, since kĝ � g0kq/22 n�1/2 =
o(n�1/2), whenever kĝ � g0k2 = op(1).

Without sample splitting, note that ĝ is now correlated with the samples in the empirical averages
and hence An(ĝ) � An(g0) is no longer an average of i.i.d. random variables. Typical approaches
would try to prove a uniform stochastic equicontinuity property over the function space G, typically
referred to as a Donsker property of the function space G. In particular, if we could show that w.h.p.:

8g 2 G : O

 r
E[(at(Z; g)� at(Z; g0))2]

n
+

1

n

!
= O

�
�nkg � g0k2 + �2n

�
= O

�
�2n + kg � g0k22

�

then the above property would also hold for ĝ. Subsequently, since we know that kĝ � g0k22 =
op(n�1/2), by our convergence rate assumptions on ĝ, then it would suffice that �2n = o(n�1/2).
Such localized concentration inequalities have been known to hold for Donsker classes, which are
typically defined via entropy integrals, and more recently it was also noted that such inequalities
are satisfied with �n being the critical radius of the space G, defined via localized Rademacher
complexities.

However, the latter approach is conservative as it requires a uniform control over the function space
G and does not utilize at all the properties of the estimation algorithm itself. In particular, as we will
show in the next section, the main result of our work is that this stochastic equicontinuity condition
follows from o(n�1/2) leave-one-out stability conditions on our estimation algorithm, which are
typical in the machine learning literature and in the excess risk and generalization bounds literature.

3 Stochastic Equicontinuity via Stability

We will show that the Condition (Stochastic Equicontinuity) is satisfied, whenever the estimate ĝ sat-
isfies leave-one-out stability properties and the moment satisfies the weak mean-squared-continuity
property of [22]. We start by some preliminary definitions required to state our stability conditions.
Define Z(�l) as the data Z1, . . . , Zn with the l-th data point Zl replaced with an independent copy
Z̃l. Define Z(�l1,�l2) as the data Z1, . . . , Zn with both the l1-th and the l2-th data points Zl1 , Zl2

replaced with independent copies Z̃l1 , Z̃l2 . Define similarly for Z(�l1,�l2,�l3) and so on. Let ĝ(�l)

be the estimator trained on Z(�l) instead of Z1, . . . , Zn. Similarly, let ĝ(�l1,�l2) be trained on
Z(�l1,�l2) and so on. Moreover, we will always denote with Z a fresh random variable drawn from
the distribution of the samples, but which is not part of any training sample. For any random variable
X , we denote with kXk1 := E[|X|], with kXk2 :=

p
E[X2], and with kXkp := (E[|X|p])1/p for

any p � 1 in general.
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Lemma 2 (Main Lemma). If the estimation algorithm satisfies the stability conditions: for all
i, j 2 [p]

max
l2[n]

���ai,j(Zl, ĝ)� ai,j(Zl, ĝ
(�l))

���
1
= o(n�1/2) max

l2[n]

���ai,j(Z, ĝ)� ai,j(Z, ĝ
(�l))

���
2
= o(n�1/2)

max
l2[n]

���⌫i(Zl, ĝ)� ⌫i(Zl, ĝ
(�l))

���
1
= o(n�1/2) max

l2[n]

���⌫i(Z, ĝ)� ⌫i(Z, ĝ
(�l))

���
2
= o(n�1/2)

and the moment satisfies the mean-squared-continuity condition:
8g, g0 : E[(ai,j(Z; g)� ai,j(Z; g0))2]  Lkg � g0kq2 E[(⌫i(Z; g)� ⌫i(Z; g0))2]  Lkg � g0kq2

for some 0 < q < 1 and some L > 0, then the Condition (Stochastic Equicontinuity) is satisfied.
Remark 1. We show in section 3.1 that the stability conditions are tight. We present a counter
example for which

���⌫i(Z, ĝ)�⌫i(Z, ĝ(�l))
���
2

is exactly of order n�1/2 and for which the Stochastic
Equicontinuity condition is not satisfied.
Remark 2. We note that prior work of [21] that established asymptotic normality without sample
splitting via stability, required significantly stronger conditions than what we invoke here. In partic-
ular, if we let �n be the stability of the estimator ĝ as measured by the quantities in Lemma 2,
then the prior work of [21], would require that n�nkĝ � g0k2 ! 0. If we only know that
kĝ � g0k2 = o(n�1/4), then the above would require �n = o(n�3/4), which is much slower
than o(n�1/2). Moreover, for bagged kernel estimators that we analyze in section 4, the prior work
would require that if we use bags of size m, then the bias of the base estimator with m samples,
denoted as bias(m) satisfies that mbias(m) ! 0. This would rarely be satisfied and in prior work,
the only concrete case that was given was forest estimators with binary variables under strong spar-
sity conditions, in which case the bias decays exponentially with the sample size. For more general
estimators, we expect bias(m) = 1/m↵, for some ↵. For such settings, our work still applies and, as
we show in section 4, gives results for bagged 1-nearest neighbor estimation algorithms, which do
not satisfy any entropy or critical radius bound, but are stable. The key innovation that enables our
improved results is a “double centering” approach that derives intuition from techniques invoked
in the analysis of cross-validation via stability and the proof of the Efron-Stein inequality[14]. This
idea has already been used in the study of the cross validated risk [4, 5].

Proof of Main Lemma. We will show the first part of the lemma, i.e. that if for all i, j 2 [p]

max
l2[n]

���ai,j(Zl, ĝ)� ai,j(Zl, ĝ
(�l))

���
1
= o(n�1/2) max

l2[n]

���ai,j(Z, ĝ)� ai,j(Z, ĝ
(�l))

���
2
= o(n�1/2)

then p
n kA(ĝ)�A(g0)� (An(ĝ)�An(g0))kop = op(1)

The analogous statement for ⌫ and V , follows in an identical manner.
Since A(g) and An(g) are p ⇥ p matrices and p = O(1), it suffices to show the above property for
every element (i, j) 2 [p]⇥ [p], i.e. that

p
n |Ai,j(ĝ)�Ai,j(g0)� (An,i,j(ĝ)�An,i,j(g0))| = op(1).

For this it suffices to show that:
Jn :=

p
n kAi,j(ĝ)�Ai,j(g0)� (An,i,j(ĝ)�An,i,j(g0))k1 = o(1).

In the remainder of the proof we look at a particular (i, j) and hence for simplicity we overload

notation and we let a := ai,j and A := Ai,j .

By triangle inequality and domination of Lp norms we have

Jn =

�����
1p
n

nX

l=1

�
a(Zl, ĝ)�A(ĝ)�

⇥
a(Zl, g0)�A(g0)

⇤ 
�����
1



�����
1p
n

nX

l=1

n
a(Zl, ĝ)� a(Zl, ĝ

(�l))
o�����

1

+
p
nmax

l2[n]

���A(ĝ)�A(ĝ(�l))
���
1

+

�����
1p
n

nX

l=1

n
a(Zl, ĝ

(�l))� a(Zl, g0)�
�
A(ĝ(�l))�A(g0)

�o
�����
2

.
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To ease notations, we denote

J1,n :=

�����
1p
n

nX

l=1

n
a(Zl, ĝ)� a(Zl, ĝ

(�l))
o�����

1

,

J2,n :=
p
nmax

l2[n]

���A(ĝ)�A(ĝ(�l))
���
1
,

J3,n :=

�����
1p
n

X

l

n
a(Zl, ĝ

(�l))� a(Zl, g0)�
�
A(ĝ(�l))�A(g0)

�o
�����
2

.

Now we have that by triangle inequality

J1,n  1p
n

X

l

���a(Zl, ĝ)� a(Zl, ĝ
(�l))

���
1


p
nmax

`2[n]

���a(Zl, ĝ)� a(Zl, ĝ
(�l))

���
1
= o(1).

Similarly we can handle J2,n:

J2,n 
p
nmax

l2[n]

���a(Z, ĝ)� a(Z, ĝ(�l))
���
1


p
nmax

l2[n]

���a(Z, ĝ)� a(Z, ĝ(�l))
���
2
= o(1).

We now aim to show that J3,n = o(1). Write for simplicity

Kl := a(Zl, ĝ
(�l))� a(Zl, g0)�

�
A(ĝ(�l))�A(g0)

�

Now by expanding the square we obtain

J2
3,n = E

2

4
 

1p
n

nX

l=1

Kl

!2
3

5  max
l2[n]

E
⇥
K2

l

⇤
+ (n� 1) max

l1 6=l22[n]
E[Kl1Kl2 ]

To bound the first term, we have by mean-squared continuity:

E[K2
l ] = E

⇣
a(Zl, ĝ

(�l))� a(Zl, g0)�
�
A(ĝ(�l))�A(g0)

�⌘2
�

 2E
⇣

a(Zl, ĝ
(�l))� a(Zl, g0)

⌘2
�
+ 2E

⇣
A(ĝ(�l))�A(g0)

⌘2
�

= 2E

E
⇣

a(Zl, ĝ
(�l))� a(Zl, g0)

⌘2 ���Z(�l)

��
+ 2E


E
⇣

A(ĝ(�l))�A(g0)
⌘2 ���Z(�l)

��

 2L · E
h���ĝ(�l) � g0

���
q

2

i
+ 2L · E

h���ĝ(�l) � g0
���
q

2

i
= 4L · E [kĝ � g0kq2] = o(1).

where we invoked the property that kĝ � g0k2 = op(1), and the second to last equality exploited the
tower law. Thus maxl2[n] E

⇥
K2

l

⇤
= o(1).

Double centering. We now bound the term, (n�1)maxl1 6=l22[n] E[Kl1Kl2 ]. Define, for simplic-
ity, for l1 6= l2

K(l2)
l1

:= a(Zl1 , ĝ
(�l1,�l2))� a(Zl1 , g0)�

�
A(ĝ(�l1,�l2))�A(g0)

�
.

Note that K(l2)
l1

does not depend on the l2-th data point and is only a function of Z(�l2), Z̃l1 .

Moreover, by the definition of A, noting that Zl is independent of Z(�l) and Zl1 is independent of
Z(�l1,�l2):

E
h
Kl

���Z(�l)
i
= E

h
a(Zl, ĝ

(�l))�A(ĝ(�l))
���Z(�l)

i
� E

h
a(Zl, g0)�A(g0)

���Z(�l)
i

= E
h
a(Zl, ĝ

(�l))�A(ĝ(�l))
���Z(�l)

i
� E [a(Zl, g0)�A(g0)] = 0
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and

E
h
K(l2)

l1

���Z(�l1,�l2)
i

= E
h
a(Zl1 , ĝ

(�l1,�l2))�A(ĝ(�l1,�l2))
���Z(�l1,�l2)

i
+ E

h
a(Zl1 , g0)�A(g0)

���Z(�l1,�l2)
i

= E
h
a(Zl1 , ĝ

(�l1,�l2))�A(ĝ(�l1,�l2))
���Z(�l1,�l2)

i
+ E [a(Zl1 , g0)�A(g0)] = 0

For simplicity, we show that (n � 1)E[K1K2] = o(1), i.e. we show that the second term vanishes
for l1 = 1 and l2 = 2. The same exact arguments generalize to arbitrary l1, l2. We begin by writing:

(n� 1)E[K1K2] = (n� 1)E
h⇣

K1 �K(2)
1

⌘
K2

i
,

since by tower law:

E
h
K(2)

1 K2

i
= E

h
E
h
K2

���Z(�2), Z̃1

i
K(2)

1

i
= E

h
E
h
K2

���Z(�2)
i
K(2)

1

i
= 0

Similarly by conditioning on Z(�1), Z̃2 and using tower law, we can show that

E
h⇣

K1 �K(2)
1

⌘
K(1)

2

i
= E

h
E
h
K1 �K(2)

1

���Z(�1), Z̃2

i
K(1)

2

i

= E
hn

E
h
K1

���Z(�1), Z̃2

i
� E

h
K(2)

1

���Z(�1), Z̃2

io
K(1)

2

i

= E
hn

E
h
K1

���Z(�1)
i
� E

h
K(2)

1

���Z(�1,�2)
io

K(1)
2

i
= 0.

Hence, we have

(n� 1)E[K1K2] = (n� 1)E
h⇣

K1 �K(2)
1

⌘
K2

i
= (n� 1)E

h⇣
K1 �K(2)

1

⌘⇣
K2 �K(1)

2

⌘i

With identical arguments, the same equality holds for any indices l1, l2. By Cauchy-Schwarz:

max
l1 6=l2

(n� 1)E[Kl1Kl2 ] = max
l1 6=l2

(n� 1)E
h⇣

Kl1 �K(l2)
l1

⌘⇣
Kl2 �K(l1)

l2

⌘i

 max
l1 6=l2

(n� 1)
���Kl1 �K(l2)

l1

���
2

���Kl2 �K(l1)
l2

���
2

Thus for maxl1 6=l2(n�1)E[Kl1Kl2 ] = o(1) it suffices that: maxl1 6=l2

���Kl1 �K(l2)
l1

���
2
= o(n�1/2).

Expanding the definitions Kl1 and K(l2)
l1

, the above simplifies to:
���Kl1 �K(l2)

l1

���
2
=
���a(Zl1 , ĝ

(�l1))�A(ĝ(�l1))�
⇣
a(Zl1 , ĝ

(�l1,�l2))�A(ĝ(�l1,�l2))
⌘���

2
.

The latter is upper bounded by a triangle inequality and a Jensen’s inequality by:
���Kl1 �K(l2)

l1

���
2
 2

���a(Zl1 , ĝ
(�l1))� a(Zl1 , ĝ

(�l1,�l2))
���
2
.

If we denote with Z a fresh random sample not part of the training sets, then since Zl1 is not part of
Z(�l1), we have:

���a(Zl1 , ĝ
(�l1))� a(Zl1 , ĝ

(�l1,�l2))
���
2
=

���a(Z, ĝ(�l1))� a(Z, ĝ(�l1,�l2))
���
2

=
���a(Z, ĝ)� a(Z, ĝ(�l2))

���
2

where we also used the fact that Z̃l1 only appears in the training sets of ĝ(�l1) and ĝ(�l1,�l2) and
we can simply rename it to Zl1 , as they are identically distributed and both independent from
all the other data points. Invoking the second of our stability conditions for a, we have that:
maxl1 6=l2

���Kl1 �K(l2)
l1

���
2
= o(n�1/2). Hence, J3,n = o(1), which completes the proof.
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3.1 Tightness of Stability Condition

We present here an example that shows that, without further structural constraints (on the moment
or the function space G), the stability condition we impose is required for stochastic equicontinuity
condition to hold. Let (Xi)

i.i.d⇠ unif[0, 1] be i.i.d uniform random variables. We set Yi := I(Xi 
0.5) and set Zi := (Xi, Yi). For any x 2 [0, 1], we define c(Z1:n, x) := argminin |Xi � x|
the function that returns the index of the nearest example to x in {X1, . . . , Xn} and note that the
quantity Yc(Z1:n,x) is its nearest neighbour estimator. Let

ĝ(Z1:n)(x, y) := n1/6I(y 6= Yc(Z1:n,x)), ⌫(Z, g) := g(Z)3.

We remark that ⌫(·, ĝ) does not satisfy our stability conditions as k⌫(Z, ĝ)�⌫(Z, ĝ(�1))k2 is exactly
of order 1/

p
n, neither does it respect the stochastic equicontinuity property.

Lemma 3. Let (Xi)
i.i.d⇠ unif[0, 1] be i.i.d uniform random variables. We set Yi := I(Xi  0.5)

and set Zi := (Xi, Yi). There are constants C, c > 0 such that

• Set g0(Z) := 0 then we have kĝ(Z)� g0(Z)k22 ! 0

• Cp
n
� k⌫(Z, ĝ)� ⌫(Z, ĝ(�1))k2 � cp

n

•
p
n|V (ĝ)� V (g0)�

�
Vn(ĝ)� Vn(g0)

�
| 6 P�! 0.

4 Application: Bagging Estimators

We remark that if the functions a and ⌫ satisfy certain Lp-Lipchitz conditions then the stability
conditions of lemma 2 are implied by the algorithmic stability of the estimator ĝ. Those conditions
are only marginally stronger than the condition of mean-squared-continuity found in lemma 2
Corollary 4. Fix any constant r > 1. Suppose that there is L < 1 such that the estimation
algorithm satisfies the following uniform L2r-continuity condition: for all i, j 2 [p] and l 2 [n]

E[(ai,j(Zl; ĝ)� ai,j(Zl; ĝ
(�l)))2]  L · E

h
sup
x

kĝ(x)� ĝ(�l)(x)k2r2
i1/r

(1)

E[(⌫i(Zl; ĝ)� ⌫i(Zl; ĝ
(�l)))2]  L · E

h
sup
x

kĝ(x)� ĝ(�l)(x)k2r2
i1/r

(L2r-Continuity)

E[(ai,j(Z; ĝ)� ai,j(Z; ĝ(�l)))2]  L · E
h
sup
x

kĝ(x)� ĝ(�l)(x)k2r2
i1/r

E[(⌫i(Z; ĝ)� ⌫i(Z; ĝ(�l)))2]  L · E
h
sup
x

kĝ(x)� ĝ(�l)(x)k2r2
i1/r

.

Suppose in addition that

max
ln

EZ1:n

h
sup
x

kĝ(x)� ĝ(�l)(x)k2r2
i1/2r

= o
⇣
n�1/2

⌘
(Algorithmic Stability)

and if in addition mean-squared-continuity condition is satisfied, then the conditions of lemma 2 are
satisfied.

The uniform L2r-continuity conditions are going to be satisfied by most moment functions m(·; ·, ·).
We notably show in the appendix that example 1, example 2 and example 3 with general moment
conditions satisfy our conditions.

The condition of (Algorithmic Stability) is a commonly assumed condition in recent literature [4, 5]
and is satisfied by various regularized empirical risk minimization estimators and stochastic gradient
descent estimators [15, 24]. Notably, it is satisfied by bagged estimators. We show in theorem 5 that
under very general conditions a bagged ensemble of any machine learning estimator is stable. Let
Z1, . . . , Zn 2 Z be an independent and identically distributed (i.i.d.) sample of size n. We sample
uniformly randomly without replacement from these observations repeatedly and independently,
each time taking a sample of size m, for a number of B times. We denote the resulting samples as

Zb
1:m :=

�
Zb
1, . . . , Z

b
m

 
, b 2 [B].
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Let ĥm : Zm ! RP be a base machine learning estimator trained on m observations. This base
estimator can be tree, a CNN, a nearest-neighbour classifier, or any other type of machine learning
estimator. The corresponding bagged estimator is

ĝ(·) = 1

B

BX

b=1

ĥm(Zb
1:m)(·).

We will show that subject to B and m being sufficiently big and mild moment conditions on the
base estimator ĥm, the bagged estimator satisfies condition (Algorithmic Stability).
Theorem 5. Fix any constants s, k � 2r such that 1

s +
1
k = 1

2r . Assume B,m are sufficiently large:

m = o(
p
n) B >> m2/k · n1� 2

k ,

and assume the base estimator ĥ has bounded moments:

max
ln

����sup
x

���ĥm(Z1
1:m)(x)

���
2

����
s

 C

for some constant C > 0. Then (Algorithmic Stability) is achieved:

max
ln

����sup
x

kĝ(x)� ĝ(�l)(x)k2
����
2r

= o(n�1/2).

Therefore if a and ⌫ satisfy the condition (1) then the condition (2) is satisfied.

In particular, we can take the base machine learning estimator to be the 1-nearest neighbor estimator.
This specific choice leads to a bagged estimator that can be proved to satisfy both our stability
conditions and our consistency rate condition in Theorem 1, in regression settings where covariates
are of small intrinsic dimension.
Let {Zi = (Xi, Yi)}ni=1 be a sample of size n, drawn independently and identically distributed from
Z = (X,Y ). Here X 2 X ⇢ RD are known covariates and Y 2 Y ⇢ RP is the response variable.
As in our bagging setting, let Z1

1:m, . . . , ZB
1:m be B independent samples of size m drawn without

replacement from observations {Zi}ni=1. A bagged 1-nearest neighbor (1-NN) estimator takes the
following form:

ĝ(x) :=
1

B

BX

b=1

nX

i=1

{Xi=Sb(x)}Yi,

where Sb(x) is the 1-NN of x in the set Zb
1:m. The estimator is used to estimate the conditional

expectation g0(x) := E[Y | X = x].

Lemma 6 (Special Case of Theorem 3 of [35]). Assume that

• The marginal distribution µ of X1 satisfies (C, d)-homogeneity on the ball B(x, r):

µ(B(x, r))  C↵�dµ(B(x,↵r)) 8↵ 2 (0, 1)

for some C, r > 0. Here d is referred to as the intrinsic dimension of the distribution.

• The conditional expectation E[Y | X = x] is a Lipschitz function in the coordinates x.

• The response variable Y is bounded in L1-norm: kY k1 < 1.

Then the bagged 1-NN estimator ĝ with B � n
m satisfies the following convergence condition:

r
E
h
kĝ(X)� g0(X)k22

i
 O

⇣
m�1/d

⌘
+O

 r
mP log log(Pn/m)

n

!
.

In particular, we note that when 0 < d < 2 and m = O(n
1
2�✏) for some 0 < ✏  1

2 � 1
4d, we

immediately have that r
E
h
kĝ(X)� g0(X)k22

i
= o(n�1/4),

achieving the convergence rate assumed in Theorem 1. Moreover, provided that we choose B to be
sufficiently large such that

B >> n✏+ 1
2 B � n1� 2✏+1

k ,
the required stability conditions can also be satisfied.
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5 Experimental Evaluation

We consider a synthetic experimental evaluation of our main theoretical findings. We focus on
the partially linear model with a scalar outcome Y 2 R, a scalar continuous treatment T 2 R
and many controls X 2 Rnx , where: T = p0(X) + ⌘, ⌘ ⇠ N(0, 1), Y = ✓0T + f0(X) + ✏,
✏ ⇠ N(0, 1). Our goal is the estimation of the treatment effect ✓0, while estimating the nuisance
functions p0(X) and q0(X) = ✓0p0(X) + f0(X) in a flexible manner. We will consider estimation
based on the orthogonal moment presented in Example 1. We considered sub-sampled 1-nearest
neighbor regression (NN) and sub-sampled fully grown (with only 1 sample minimum leaf size)
random forest (RF) regression (see Appendix A) for the estimation of p0 and q0, regressing T on X
and Y on X correspondingly. The true functions p0 and f0 are actually linear in our data generating
process, with p0(X) = �0

0X and f0(X) = �0
0X and where �0 and �0 have only one non-zero

coefficient (1-sparse), and which is the same coefficient for both �0 and �0. In other words, only
one of the nx potential confounding variables X is actually a confounder.

We evaluate the performance of the estimate for ✓0 for a range of values of the sample size n and the
dimension of the controls nx and with or without cross-fitting. For the cross-fitted estimates we used
2 splits. For each specification we draw 1000 experimental samples to evaluate the distributional
properties of the estimate. We considered sub-sample sizes for the nuisance regressions based on
our theoretical n0.49 specification and for larger specifications too. We find that the estimate without
cross-fitting typically has almost equal bias and smaller (and always comparable) variance (due
most probably to the smaller mean squared error of the nuisances, since they are trained on larger
sizes), especially in smaller sample sizes, and has better coverage properties, when the sub-sample
size is m = o(n1/2). Moreover, the estimate is approximately normally distributed, even without
cross-fitting as is verified qualitatively via quantile-quantile (Q-Q) plots (c.f. Appendix A).

We also report the mean of the estimate of the standard error across the 1000 experiments, to evaluate
the bias in the estimation of the standard error. We find that the estimate of the standard error
is more accurate without cross-fitting, potentially because the estimate of the standard error does
not incorporate the extra variance that stems from the sample-splitting process. This inaccuracy
of the standard error estimate is most probably the reason for the worst coverage properties of the
confidence intervals with cross-fitting.

In summary, we verify experimentally that for stable estimators, with the theoretically required level
of stability, sample splitting or cross-fitting is not needed to maintain asymptotic normality, small
bias and nominal coverage.

bias std std_est cov95

n=50, nx=1 cv=1 0.021 0.151 0.140 0.917
cv=2 0.022 0.173 0.139 0.866

n=50, nx=2 cv=1 0.042 0.149 0.143 0.920
cv=2 0.046 0.170 0.142 0.863

n=100, nx=1 cv=1 0.012 0.104 0.100 0.931
cv=2 0.014 0.119 0.100 0.884

n=100, nx=2 cv=1 0.030 0.110 0.101 0.911
cv=2 0.032 0.121 0.101 0.878

n=500, nx=1 cv=1 0.007 0.046 0.045 0.943
cv=2 0.007 0.049 0.045 0.920

n=500, nx=2 cv=1 0.015 0.045 0.045 0.927
cv=2 0.015 0.048 0.045 0.917

n=1000, nx=1 cv=1 0.003 0.032 0.032 0.946
cv=2 0.002 0.034 0.032 0.922

n=1000, nx=2 cv=1 0.010 0.031 0.032 0.944
cv=2 0.010 0.033 0.032 0.930

(a) Sub-sampled 1-NN with m = n0.49

bias std std_est cov95

n=50, nx=1 cv=1 0.008 0.186 0.135 0.826
cv=2 0.011 0.196 0.136 0.811

n=50, nx=2 cv=1 0.011 0.193 0.139 0.834
cv=2 0.020 0.196 0.138 0.831

n=100, nx=1 cv=1 0.001 0.132 0.098 0.838
cv=2 0.004 0.143 0.098 0.812

n=100, nx=2 cv=1 0.003 0.135 0.098 0.824
cv=2 0.011 0.141 0.099 0.828

n=500, nx=1 cv=1 0.002 0.056 0.045 0.881
cv=2 0.002 0.062 0.045 0.829

n=500, nx=2 cv=1 0.003 0.056 0.045 0.878
cv=2 0.003 0.060 0.045 0.851

n=1000, nx=1 cv=1 0.001 0.039 0.032 0.883
cv=2 0.000 0.043 0.032 0.849

n=1000, nx=2 cv=1 0.001 0.039 0.032 0.891
cv=2 0.000 0.043 0.032 0.853

(b) Sub-sampled 1-NN with m = n10/11

Figure 1: Comparison of bias, variance and coverage properties, with (cv=2) and without (cv=1)
cross-fitting (sample splitting), for the estimation of the treatment effect in the partially linear model,
when a sub-sampled 1-NN estimation is used for the nuisance function estimation. n is the number
of samples and nx the number of controls.
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