
A Additional Theory

In this section, we provide additional theoretical results, omitted in the main paper due to space
constraints. Concretely, in App. A.1 we provide a proof for Theorem 3.1 on the correctness of our PDF
computation. In App. A.2, we show that γl, γr and vm, computed as outlined in Section 4, are indeed
jointly MLE-optimal. Finally, we provide more details on ROBTREEBOOST and ROBADABOOST in
App. A.3 and App. A.4, respectively.

A.1 PDF Computation

Here, we provide a proof for Theorem 3.1 on the correctness of our efficient PDF-computation,
restated below for convenience.

Theorem 3.1. For z ∈ [0, 1], F̄M,x(z) =
∑⌊zM∆⌋

t=0 pdf[d][t] describes the exact CDF and thus
success probability py = Px′∼ϕ(x)[f̄M (x′) = y] = |y − F̄M,x(0.5)| for y ∈ {0, 1}.

Proof. Let the random variable Γ(i) be the prediction of the i-th meta-stump, then we have by
definition of the meta-stump P[Γ(i) = Γi,j ] = Px′

i∼ϕ(x)[vi,j−1 < x′i ≤ vi,j ] (see Section 3). Note
that, for presentational simplicity, we assume Γi,j ̸= Γi,k,∀k ̸= j. Now, we first show by induction
that pdf[i] computes the exact PDF of

∑i
l=1 Γ

(l) (Lemma 1), before showing how the CDF of the
meta-stump ensemble follows.

Lemma 1. Algorithm 1 computes pdf[i][t] = P
[∑i

l=1 Γ
(l) = t

]
.

Proof. We proceed by induction over i. In the base case, for i = 0, we directly have pdf[0][0] = 1.0
and pdf[0][t] = 0.0 for t > 0 by construction. Now the induction assumption is that pdf[i− 1][t] =

P
[∑i−1

l=1 Γ
(l) = t

]
for an arbitrary i ≤ d and all corresponding t. To compute the pdf[i][t], we now

have:

pdf[i][t] =

Mi∑
j=1

pdf[i− 1][t− Γi,j ] · Px′
i∼ϕ(x)[vi,j−1 < x′i ≤ vi,j ]

=

Mi∑
j=1

P

[(
i−1∑
l=1

Γ(l)

)
= t− Γi,j

]
· Px′

i∼ϕ(x)[vi,j−1 < x′i ≤ vi,j ]

=

Mi∑
j=1

P

[(
i∑

l=1

Γ(l)

)
= t

∣∣∣∣ Γ(i) = Γi,j

]
· P
[
Γ(i) = Γi,j

]

= P

[(
i∑

l=1

Γ(l)

)
= t

]

where we first use the definition pdf[i][t] according to Algorithm 1, followed by induction assumption,
the independency of different meta-stumps and the the law of total probability over j.

Now, we show how Theorem 3.1 directly follows from Lemma 1. Recall that γi,j =
Γi,j

∆ , where ∆ is
the number of discretization steps. Similarly to Γ(i), let γ(i) be the random variable describing the
prediction of the i-th meta-stump. Using Lemma 1, we obtain

F̄M,x(z) =

⌊zM∆⌋∑
t=0

pdf[d][t]

=

⌊zM∆⌋∑
t=0

P

[
d∑

i=1

Γ(i) = t

]
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= P

[
d∑

i=1

Γ(i) ≤ ⌊zM∆⌋
]

= P

[
d∑

i=1

γ(i)

M
M∆ ≤ ⌊zM∆⌋

]

= P

[
d∑

i=1

γ(i)

M
≤ z

]
= P

[
f̄M (x) ≤ z

]
.

Where the second to last step follows from the discretization of the leaf predictions leading to a
piece-wise constant CDF.

A.2 MLE-Optimal Stumps

In this section, we extend the theory from Section 4.1, showing that the vm, γl and γr computed as
outlined there, are, in fact, jointly MLE-optimal.

Recall that an individual stump operating on feature jm is characterized by three parameters: vm,
γl and γr. In Section 4.1, we show how to choose MLE-optimal γl and γr given vm. It remains to
show that if vm minimizes the entropy impurity Hentropy, then γϕ,MLE

l , γϕ,MLE
l , and vm are jointly

MLE-optimal.

For an arbitrary split position vm, we have the probabilities pl,i(vm) = Px′∼ϕ(xi)[x
′
jm

≤ vm] and
pr,i(vm) = 1 − pl,i(vm) of x′

i lying to the left or the right of vm, respectively, under the input
randomization scheme ϕ. For an i.i.d. dataset with n samples (xi, yi) ∼ (X ,Y), we define the
probabilities pyj (vm) = 1

n

∑
{i|yi=y} pj,i(vm) of picking the j ∈ {l, r} leaf, conditioned on the target

label, and pj(vm) = p0j (vm) + p1j (vm) as their sum. Now, we compute the entropy impurity Hentropy
[32] as

Hentropy(vm) = −
∑

j∈{l,r}

pj(vm)
∑

y∈{0,1}

pyj (vm)

pj(vm)
log

(
pyj (vm)

pj(vm)

)

= −
∑

j∈{l,r}

∑
y∈{0,1}

pyj (vm) log

(
pyj (vm)

pj(vm)

)
.

Similarly, let γϕ,MLE
l (vm) and γϕ,MLE

l (vm) be the MLE-optimal predictions given vm, as computed
in Section 4.1. We formalize our statement as follows in Theorem A.1:
Theorem A.1. Given an i.i.d. dataset with n samples (xi, yi) ∼ (X ,Y), let v∗m :=

argminvm Hentropy(vm), γl(v∗m) =
p1
l (v

∗
m)

p1
l (v

∗
m)+p0

l (v
∗
m)

and γr(v
∗
m) =

p1
r(v

∗
m)

p1
r(v

∗
m)+p0

r(v
∗
m) . Then v∗m, γl

and γr are jointly MLE-optimal with respect to that dataset.

Proof. Similarly to Section 4.1, but also optimizing over vm, we obtain:

vϕMLE
m , γϕMLE

l , γϕMLE
r = argmax

vm,γl,γr

P[Y | ϕ(X ), fm]

= argmax
vm,γl,γr

n∑
i=1

Ex′∼ϕ(xi) [logP[yi | x′, fm]]

= argmax
vm,γl,γr

n∑
i∈{i|yi=0}

pl,i(vm) log(1− γl) + pr,i(vm) log(1− γr)

+

n∑
i∈{i|yi=1}

pl,i(vm) log(γl) + pr,i(vm) log(γr)

18



= argmax
vm,γl,γr

p0l (vm) log(1− γl) + p0r(vm) log(1− γr)

+ p1l (vm) log(γl) + p1r(vm) log(γr)

As shown in Section 4.1, for a fixed vm, the MLE-optimal estimates for γl and γr are γϕMLE
l (vm) =

p1
l (vm)

p1
l (vm)+p0

l (vm)
and γϕMLE

r (vm) =
p1
r(vm)

p1
r(vm)+p0

r(vm) . Hence, in the following, it is enough to optimize

over vm, substituting in γϕMLE
l (vm) and γϕMLE

r (vm). We obtain:

vϕMLE
m = argmax

vm

p0l (vm) log(1− γϕ,MLE
l (vm)) + p0r(vm) log(1− γϕ,MLE

r (vm))

+ p1l (vm) log(γϕ,MLE
l (vm)) + p1r(vm) log(γϕ,MLE

r (vm))

= argmax
vm

p0l (vm) log

(
1− p1l (vm)

p1l (vm) + p0l (vm)

)
+ p0r(vm) log

(
1− p1r(vm)

p1r(vm) + p0r(vm)

)
+ p1l (vm) log

(
p1l (vm)

p1l (vm) + p0l (vm)

)
+ p1r(vm) log

(
p1r(vm)

p1r(vm) + p0r(vm)

)
= argmax

vm

p0l (vm) log

(
1− p1l (vm)

pl(vm)

)
+ p0r(vm) log

(
1− p1r(vm)

pr(vm)

)
+ p1l (vm) log

(
p1l (vm)

pl(vm)

)
+ p1r(vm) log

(
p1r(vm)

pr(vm)

)
= argmax

vm

−Hentropy(vm)

= argmin
vm

Hentropy(vm)

= v∗m

Thus, we have that the triplet v∗m := argminvm Hentropy(vm), γl(v∗m) =
p1
l (v

∗
m)

p1
l (v

∗
m)+p0

l (v
∗
m)

and

γr(v
∗
m) =

p1
r(v

∗
m)

p1
r(v

∗
m)+p0

r(v
∗
m) is jointly MLE-optimal.

A.3 Gradient Boosting for Certifiable Robustness

Below, we describe ROBTREEBOOST, already outlined in Section 4.2, in more detail. Formally,
we aim to minimize the cross-entropy loss between the certifiable prediction at the qth percentile
F−1

m−1,xi
(q) and the one-hot target probability given by the label y, where we choose q = ρ−1(r) for

some target radius r. Concretely, to add the mth stump to our ensemble, we begin by computing the
certifiable prediction y′i:

y′i =

{F̄−1
m−1,xi

(q) if y = 0

F̄−1
m−1,xi

(1− q) if y = 1.
(5)

Now, we define the pseudo label ỹ as the residual between the target label y and the certifiable
prediction y′, scaled to [0, 1] as ỹi = 1

2 +
yi−y′

i

2 . Subsequently, we select feature jm and split position
vm that minimize the mean squared error impurity (MSE) under the randomization scheme for these
pseudo-labels. As before, we define the mean squared error impurity HMSE in terms of the branching
probabilities pl,i = Px′∼ϕ(xi)[x

′
jm

≤ vm] and pr,i = 1− pl,i:

µj =

∑n
i=1 pj,i ỹi∑n
i=1 pj,i

HMSE =

∑n
i=1

∑
j∈{l,r} pj,i(ỹi − µj)

2

n
. (6)

The optimal leaf predictions can now be computed approximately [33] to

γl =

∑n
i=1 pl,i ỹ

′
i∑

i pl,i |2ỹ′i − 1|(1− |2ỹ′i − 1|) , (7)

and γr analogously. We initialize this boosting process with an ensemble of individually MLE-optimal
stumps and repeat this boosting step until we have added as many stumps as desired.
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A.4 Adaptive Boosting for Certifiable Robustness

Below, we describe ROBADABOOST, already outlined in Section 4.2, in more detail. Our goal is to
obtain a weighted ensemble F̄K

F̄K(x) =
1∑K

k=1 α
k

K∑
k=1

αk1Px′∼ϕ(x)[f̄
k
M (x′)>0.5]>0.5, (8)

consisting of K stump ensembles f̄kM , that is certifiably robust at a pre-determined radius r. Here,
F̄K(x) : Rd → [0, 1] is a soft-classifier, that predicts class 1 for outputs > 0.5 and class 0 else.

To train the K constituting ensembles such that the overall ensemble F̄K is certifiably robust at radius
r, we proceed as follows: First, we initialize the weights of all samples xi to w1

i = 1
n . Then, for

k = 1 to K, we iteratively fit a new stump ensemble f̄kM as described in Section 4.1 using the sample
weights wk

i . Then, similar to Freund and Schapire [34] although targeting certifiability instead of
accuracy, we update the sample weights as follows: First, we compute whether the newly trained k-th
ensemble f̄kM is certifiably correct (ci) for each sample xi in the training set:

ci =

{
1Px′∼ϕ(xi)

[f̄k
M (x′)≤0.5]>ρ−1

x (r) if y = 0

1Px′∼ϕ(xi)
[f̄k

M (x′)>0.5]>ρ−1
x (r) if y = 1.

(9)

Then, we determine the certifiable error errk, and the model weight αk of fkm as:

errk =

∑n
i=1 wi(1− ci)∑n

i=1 wi
αk = log

1− errk

errk

and update the sample weights for the next iteration to:

wk+1
i =

wk
i exp(α

k(1− ci))∑n
i=1 w

k
i exp(α

k(1− ci))

before training the next ensemble. This way, we are minimizing the overall loss for certified
predictions at radius r.

To certify F̄K at a specific radius r, we now have to show that we can certify individual ensembles
corresponding to at least half the total weights, or more formally (here, without loss of generality
assuming a label of y = 1):

K∑
k=1

αk1Px′∼ϕ(x)[f̄
k
M (x′)>0.5]>ρ−1

x (r) >

∑K
k=1 |αk|
2

. (10)

To compute the certifiable radius for F̄k, we compute the certifiable radii Rk of the individual
ensembles, sort them in decreasing order such that Rk ≥ Rk+1 and obtain the largest radius Rk such
that

∑k
l=1 α

l >
∑K

l=1 |αl|
2 . Intuitively, we need to find a subset of models such that their weighted

predictions for class 1 reach at least half the possible weight, accounting for negative weights.

B Experimental Details

Here, we describe our experimental setup in greater detail. Note that we also publish all code, models,
and instructions required to reproduce our results at https://github.com/eth-sri/drs.

B.1 Datasets

In this section, we describe the datasets we use in detail.

Datasets with Numerical Features We conduct experiments focusing on numerical features only
on all the datasets considered by prior work [23, 22]. More concretely, we use the tabular datasets
BREASTCANCER [37] and DIABETES [36], where we follow prior work [23] in using the first 80%
of the samples as train set and the remaining 20% as test set, normalizing the data to [0, 1], and the
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vision datasets MNIST 1 VS. 5 [39], MNIST 2 VS. 6 [39], and FMNIST-SHOES [38], where we
use all samples of the right classes from the train and test sets.

Additionally, we consider the SPAMBASE [37] dataset, where the task is to predict whether an email
is spam (binary classification) given 57 numerical features. We normalize all features using the mean
and standard deviation of the training data before applying any perturbations.

Datasets with Numerical and Categorical Features We conduct our experiments on the joint
certification of numerical and categorical features using the popular ADULT [37], CREDIT [37],
MAMMO [37], and BANK [37] datasets. By default, we use the first 70% of the samples as the train
set, and the remaining 30% as the test set. For error bound experiments (in App. C.1), we use 5-fold
cross-validation over the whole datasets, and report the mean and standard deviations over the 5 folds.
Here, we normalize the numerical features using the mean and standard deviation of the training data,
before applying any perturbations.

The ADULT [37] dataset is a societal dataset based on the 1994 US Census database. It contains
eight categorical and six numerical variables for each individual. The cardinalities of the categorical
variables range from 2 to 42 (concretely, they are 9, 16, 7, 15, 6, 5, 2, and 42). The task is to predict
whether an individual’s salary is below or above 50k USD.

The CREDIT [37] dataset is a financial dataset containing 13 categorical and 7 numerical fea-
tures. The cardinalities of the categorical features range from 2 to 10 (concretely, they are
4, 5, 10, 5, 5, 4, 3, 4, 3, 3, 4, 2, and 2). The task is to predict whether a customer has a low or high risk
to default on a loan.

The MAMMO [37] dataset is medial dataset where the goal is to predicting whether breast biopsies are
needed. It consists of 3 numerical and 2 categorical where the categorical features have cardinalities
4 and 5.

The BANK [37] dataset is a financial dataset, consisting of 9 categorical and 7 numerical features.
The task is to predict whether a client will subscribe to a bank term deposit or not, given the features.

Some datasets exhibit a significant class imbalance, with the minority class constituting 24.6% of
the ADULT and 29.6% of the CREDIT train set. Therefore, we report balanced certified accuracy,
computed as the arithmetic mean of the per class certified accuracies.

Dataset with Categorical Features The MUSHROOM [37] dataset contains 22 categorical features
encoding physical features of mushrooms with the goal to predicting whether a mushroom is edible
or poisonous.

B.2 Training Details

Table 5: Noise magnitudes used for Table 2.
Method Dataset λ (for ℓ1) σ (for ℓ2)

Independent

BREASTCANCER 2.00 4.00
DIABETES 0.35 0.25

MNIST 1 VS. 5 4.00 0.25
MNIST 2 VS. 6 4.00 0.25

FMNIST-SHOES 4.00 0.25

Boosting

BREASTCANCER 2.00 0.25
DIABETES 0.28 0.15

MNIST 1 VS. 5 4.00 0.25
MNIST 2 VS. 6 4.00 0.25

FMNIST-SHOES 4.00 0.25

The key (and for independent training, the only)
hyper-parameter of our approach is the noise
magnitude, λ for ℓ1-certification and σ for ℓ2-
certification. In Table 5, we report the noise
levels chosen for the different datasets. We dis-
cuss the effect of different noise magnitudes in
App. C.4 and observe that results are generally
quite stable across a wide range of noise magni-
tudes. Unless otherwise stated, we determine the
split position vm via linear search using incre-
ments of size 0.01 and discretize leaf predictions
γ using 100 steps (i.e., ∆ = 100).

Table 6: ROBTREEBOOST parameters.
Parameter Perturbation BREASTCANCER DIABETES

Percentile q
ℓ1 0.60 0.70
ℓ2 0.98 0.95

Additional stumps nb
ℓ1 30 15
ℓ2 40 100

ROBTREEBOOST We initialize ROBTREE-
BOOST with an ensemble of independently
trained stumps and add a further nb stumps as
described in Section 4.2 using the qth percentile
to compute the certifiable predictions. We chose
q and nb as shown in Table 6.
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ROBADABOOST To evaluate ROBADABOOST, we consider ensembles of K = 20 individual stump
ensembles in each of our experiments. We choose the same noise magnitudes as for independently
trained stumps, described in Table 5.

Joint Certification For joint certification, we use ensembles of independently trained decision stumps,
one for each feature. The stump corresponding to categorical features maps a categorical value to
either 0.375 or 0.625 (which are the same distance from the decision threshold 0.5), depending on
whether the majority of the samples with this categorical value have class 0 or 1, respectively. Note
that permitting arbitrary leaf predictions slightly improves clean accuracy, but significantly worsens
worst-case behaviour. Choosing leaf predictions further from the decision threshold gives more
emphasis to categorical variables compared to numerical ones. The stumps for the numerical features
are learned individually, as described in Section 4.1. For ℓ1, we used the noise magnitude λ = 2.0
and for ℓ2-certification σ = 0.25.

B.3 Computational Resources and Experimental Timings

In this section, we describe the computational resources required for our experiments. We run all our
experiments using 24 cores of an Intel Xeon Gold 6242 CPUs and a single NVIDIA RTX 2080Ti and
report timings for the full experiment in App. B.3. We show timings in Table 7.

Table 7: Experimental timings for whole datasets.

Norm Dataset
Independent Boosting

Training Certification Training Certification

ℓ1

BREASTCANCER 2s < 0.1s 14s < 0.1s
DIABETES 2s < 0.1s 2s < 0.1s

MNIST 1 VS. 5 32s 5s 13min 27s
MNIST 2 VS. 6 29s 4s 11min 16s

FMNIST-SHOES 31s 6s 13min 40s

ℓ2

BREASTCANCER 2s < 0.1s 9s < 0.1s
DIABETES 2s < 0.1s 47s < 0.1s

MNIST 1 VS. 5 14s 4s 10min 29s
MNIST 2 VS. 6 14s 3s 9min 26s

FMNIST-SHOES 15s 4s 9min 27s

We observe that all certification is extremely
quick with FMNIST-SHOES taking the longest
at 6s for the whole test set and an ensemble of
independently trained stumps in the ℓ1-setting,
translating to 0.003s per sample. When evaluat-
ing models in single instead of double precision,
we can, e.g., further reduce certification times
from 3s to 1.2s for MNIST 2 VS. 6. The in-
dependently MLE-optimal training is similarly
quick, allowing us to run all core experiments in
less than 5 minutes. Only ROBADABOOST takes more than one minute for an individual experiment,
as it involves training and certifying 20 stump ensembles. For datasets combining categorical and
numerical features, the training and certification for the categorical variables is almost instantaneous
and dominated by that for the numerical features. The latter requires 19.9s and 47.0s for the ℓ1
and ℓ2-experiment, respectively, on ADULT and 1.5s respectively 2.0s on CREDIT. We remark that
computational efficiency was not a main focus of this work and we did not optimize runtimes.

C Additional Experiments

In this section, we extend our experimental evaluation from Section 5. Concretely, in App. C.1, we
provide additional experiments on the joint certification of categorical and numerical variables. In
App. C.2, we compare DRS to RS in more detail while in App. C.3, we continue our investigation
of our MLE optimality criterion. Moreover, in App. C.4, we provide additional experiments on the
effect of the noise magnitudes λ and σ for ℓ1- and ℓ2-certification, respectively. In App. C.5, we
analyze the impact of the discretization granularity and in App. C.6, we evaluate the effect of an
approximate split position optimization. Finally, in App. C.7, we include error bound experiments for
certification of numerical features via 5-fold cross-validation.

C.1 Additional Experiments on Joint Robustness Certificates

In Table 8, we report the mean and standard deviation (over a 5-fold cross-validation) of the balanced
certified accuracies at a range of ℓ2 radii over the numerical features given varying perturbation levels
of the categorical features for all datasets containing both numerical and categorical features. We
report the corresponding imbalanced certified accuracies in Table 9 and similar results for ℓ1 radii in
Tables 10 and 11.

We again observe that models utilizing both categorical and numerical features outperform those
using only either one on clean data. Interestingly, the slower drop in certified accuracy with increasing
perturbation of the numerical features is much more pronounced in the ℓ1-setting, and much higher
certified accuracies are obtained even at large radii. For example, on ADULT, considering only
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Table 8: Balanced certified accuracy (BCA) [%] under joint ℓ0- and ℓ2-perturbations of categorical
and numerical features, respectively, depending on whether model uses categorical and/or numerical
features. The balanced natural accuracy is the BCA at radius r = 0.0. Larger is better.

Dataset Categorical
Features ℓ0 Radius r0

BCA without
Numerical Features

BCA with Numerical Features at ℓ2 Radius r2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ADULT

no - - 74.3± 0.4 65.5± 0.3 42.3± 0.5 26.9± 0.4 13.7± 0.3 7.7± 0.5 4.4± 0.3

yes

0 76.2± 0.6 77.9± 0.4 74.2± 0.7 68.0± 0.6 62.9± 0.6 48.4± 0.4 39.6± 0.7 34.2± 0.4
1 57.0± 0.8 66.2± 0.8 61.5± 0.9 52.8± 0.7 45.9± 0.7 33.1± 0.4 25.0± 0.5 20.5± 0.4
2 32.9± 0.6 50.7± 0.6 45.4± 0.8 36.2± 0.5 27.8± 0.3 19.7± 0.3 15.2± 0.4 11.7± 0.3
3 8.9± 0.2 35.9± 0.5 30.8± 0.6 23.4± 0.4 14.6± 0.4 9.7± 0.4 7.2± 0.3 5.1± 0.2

CREDIT

no - - 59.4± 3.7 51.3± 3.0 39.6± 2.9 27.0± 5.3 19.5± 7.9 13.5± 6.3 6.7± 4.1

yes

0 64.7± 4.2 65.3± 4.3 64.0± 4.9 62.1± 4.6 58.4± 4.0 53.3± 3.8 51.5± 4.6 49.2± 4.7
1 44.7± 3.5 48.2± 3.1 46.1± 3.1 42.1± 3.5 38.6± 3.5 35.4± 4.5 33.2± 5.2 31.1± 5.7
2 26.7± 5.7 29.8± 4.4 27.9± 4.4 24.5± 5.7 21.3± 5.8 18.7± 5.8 16.7± 5.6 15.5± 6.0
3 11.1± 4.3 14.2± 4.5 13.3± 3.8 11.4± 4.5 9.8± 3.6 8.5± 3.9 6.7± 3.7 6.5± 3.8

MAMMO

no - - 61.7± 2.8 61.6± 2.9 51.5± 3.0 13.8± 4.2 9.4± 5.0 8.6± 5.6 6.4± 6.3

yes
0 79.0± 1.2 78.1± 2.6 78.1± 2.6 76.4± 2.0 51.1± 5.8 48.4± 9.5 47.6± 9.1 42.5± 12.0
1 30.8± 3.3 46.7± 6.2 46.6± 6.2 36.5± 6.9 11.3± 3.9 7.7± 4.0 7.1± 4.5 4.9± 5.1
2 0.0± 0.0 12.8± 2.2 12.7± 2.4 2.7± 2.0 2.6± 2.0 2.4± 2.0 2.1± 2.3 0.0± 0.0

BANK

no - - 73.1± 2.2 63.0± 1.4 47.7± 2.1 31.9± 1.4 17.9± 3.8 12.5± 5.0 7.4± 4.7

yes

0 62.8± 1.9 69.9± 1.8 65.4± 1.4 57.0± 0.6 48.8± 0.7 39.6± 1.6 30.4± 1.6 24.0± 1.7
1 42.3± 1.5 53.6± 1.9 47.7± 2.1 40.1± 2.2 30.5± 2.0 21.7± 1.7 14.8± 1.9 9.8± 2.4
2 21.2± 2.3 37.4± 2.5 31.5± 2.1 23.2± 2.0 14.9± 2.0 9.0± 2.3 6.1± 2.2 4.3± 2.5
3 7.2± 2.3 21.8± 2.9 17.5± 2.7 11.0± 2.3 5.6± 1.3 3.0± 1.4 2.2± 1.4 1.0± 0.4

Table 9: Certified accuracy (CA) [%] under joint ℓ0- and ℓ2-perturbations of categorical and numerical
features, respectively, depending on whether model uses categorical and/or numerical features. The
natural accuracy is the CA at radius r = 0.0. Larger is better.

Dataset Categorical
Features ℓ0 Radius r0

CA without
Numerical Features

CA with Numerical Features at ℓ2 Radius r2

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ADULT

no - - 74.2± 0.5 65.7± 0.6 37.5± 1.0 23.2± 0.8 9.6± 0.3 4.0± 0.5 2.1± 0.2

yes

0 69.7± 0.6 70.0± 0.5 65.8± 0.7 58.6± 0.7 53.7± 0.7 34.9± 0.7 24.4± 0.8 19.1± 0.4
1 52.0± 0.8 58.3± 0.9 53.6± 1.0 43.8± 0.8 36.9± 0.8 21.3± 0.5 13.0± 0.6 10.2± 0.3
2 27.5± 0.6 43.1± 0.7 38.3± 0.8 28.2± 0.6 19.4± 0.4 11.0± 0.4 7.5± 0.3 5.7± 0.2
3 6.6± 0.2 28.7± 0.5 24.1± 0.7 16.5± 0.3 8.4± 0.3 4.8± 0.3 3.5± 0.2 2.4± 0.1

CREDIT

no - - 63.7± 3.5 55.3± 3.9 43.5± 4.6 30.7± 6.0 21.7± 9.1 14.0± 7.2 7.7± 5.2

yes

0 58.3± 9.5 59.3± 9.5 57.9± 10.1 55.8± 10.2 52.4± 9.6 48.2± 8.7 45.8± 9.2 43.1± 9.4
1 38.2± 7.4 42.4± 8.5 40.4± 8.5 36.5± 9.0 33.5± 8.2 30.8± 8.0 28.4± 7.8 26.1± 7.2
2 21.7± 5.0 25.0± 6.0 23.0± 5.9 20.4± 5.5 17.7± 5.4 15.3± 4.7 13.6± 5.0 12.3± 4.7
3 8.4± 2.6 11.0± 2.5 10.3± 2.3 8.8± 2.8 7.5± 2.4 6.4± 2.2 5.1± 2.5 4.9± 2.5

MAMMO

no - - 61.7± 3.7 61.6± 3.9 51.6± 3.4 13.8± 4.4 9.6± 5.3 8.8± 6.0 6.6± 6.7

yes
0 79.0± 1.3 77.9± 2.8 77.9± 2.8 76.3± 2.2 51.2± 5.0 48.7± 8.1 47.8± 7.8 42.6± 11.4
1 31.8± 4.5 46.6± 6.2 46.5± 6.2 36.5± 6.9 11.3± 4.0 7.8± 4.3 7.2± 4.8 5.1± 5.5
2 0.0± 0.0 12.8± 2.0 12.6± 2.1 2.6± 1.9 2.5± 1.9 2.4± 1.9 2.0± 2.2 0.0± 0.0

BANK

no - - 68.6± 2.3 56.9± 2.1 41.1± 1.3 21.2± 2.0 5.6± 0.9 3.1± 1.3 1.7± 1.1

yes

0 64.4± 7.5 73.8± 5.8 68.6± 6.3 58.9± 7.2 47.1± 8.0 33.8± 7.4 20.7± 6.0 13.4± 4.2
1 44.4± 7.9 58.8± 6.7 52.4± 6.7 41.7± 7.6 29.3± 7.3 16.9± 5.8 8.1± 2.6 3.8± 0.9
2 23.2± 7.1 41.9± 6.9 35.9± 6.7 24.8± 6.6 13.4± 4.9 6.0± 2.7 2.6± 0.8 1.1± 0.6
3 8.3± 4.7 24.9± 5.7 19.3± 5.2 10.7± 3.7 4.7± 1.9 1.6± 0.6 0.6± 0.3 0.2± 0.1

numerical features leads to a BCA of 62.1%±0.3% at radius r1 = 0.0 dropping to 42.0%±0.3% at
r1 = 1.5. In contrast, when also utilizing categorical features, the BCA at r1 = 0.0 is 76.9%±0.5%,
only dropping to 71.1%±0.6% at r1 = 1.5, when no categorical variable is perturbed (r0 = 0).
Similarly, when at most one categorical variable is perturbed, the BCA at r1 = 0.0 is 59.7%±0.6%

and only drops to 54.4%±0.8% radius r1 = 1.5. This highlights again that, when available, utilizing
categorical features in addition to numerical ones is essential to improve accuracy and make models
more certifiably robust.

While standard deviations are generally moderately low, the sensitivity to different train/test-splits is
particularly small for datasets with many samples like ADULT (nearly 50′000 samples).

DRS is also applicable to data sets involving only categorical features as ca be seen in Table 12,
where we report results on MUSHROOM. As expected, we observe that both balanced and imbalanced
certifiable accuracy decrease as we permit more and more categorical features to be perturbed.
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Table 10: Balanced certified accuracy (BCA) [%] under joint ℓ0- and ℓ1-perturbations of categorical
and numerical features, respectively, depending on whether model uses categorical and/or numerical
features. The balanced natural accuracy is the BCA at radius r = 0.0. Larger is better.

Dataset Categorical
Features ℓ0 Radius r0

BCA without
Numerical Features

BCA with Numerical Features at ℓ1 Radius r1

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ADULT

no - - 62.1± 0.3 58.8± 0.5 54.9± 0.4 51.5± 0.5 47.1± 0.5 44.6± 0.4 42.0± 0.3

yes

0 76.2± 0.6 76.9± 0.5 76.4± 0.5 75.6± 0.5 74.8± 0.6 73.6± 0.6 72.6± 0.6 71.1± 0.6
1 57.0± 0.8 59.7± 0.6 59.1± 0.6 58.4± 0.6 57.6± 0.7 56.8± 0.7 55.8± 0.8 54.4± 0.8
2 32.9± 0.6 38.3± 0.5 37.3± 0.5 36.3± 0.4 35.6± 0.4 34.8± 0.5 34.2± 0.5 33.3± 0.5
3 8.9± 0.2 17.0± 0.3 15.3± 0.3 14.3± 0.2 13.3± 0.3 12.3± 0.3 11.9± 0.3 11.5± 0.2

CREDIT

no - - 58.2± 4.0 54.7± 4.0 51.4± 3.4 48.0± 2.6 43.0± 1.3 33.3± 1.5 26.9± 2.2

yes

0 64.7± 4.2 65.1± 4.4 64.5± 4.1 64.0± 3.8 63.4± 3.5 62.8± 3.6 61.2± 4.6 60.6± 4.9
1 44.7± 3.5 46.1± 3.3 45.4± 2.8 45.2± 3.0 44.5± 3.3 43.9± 2.7 43.3± 2.9 42.2± 3.3
2 26.7± 5.7 28.1± 5.6 27.8± 5.5 27.1± 5.9 26.2± 6.0 26.1± 6.0 25.3± 6.7 24.4± 6.4
3 11.1± 4.3 12.7± 5.1 12.6± 4.9 11.9± 4.8 11.5± 4.8 11.0± 4.2 10.6± 4.3 10.2± 4.1

MAMMO

no - - 51.0± 1.2 49.3± 1.2 48.4± 1.3 48.4± 1.3 48.1± 1.1 45.9± 1.3 45.8± 1.2

yes
0 79.0± 1.2 77.0± 1.9 76.8± 1.8 76.6± 1.9 76.6± 1.9 76.6± 1.9 74.4± 2.4 74.4± 2.4
1 30.8± 3.3 41.0± 3.8 39.5± 3.2 38.9± 3.2 38.9± 3.2 38.6± 3.3 37.2± 3.8 37.0± 4.0
2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

BANK

no - - 69.5± 2.5 64.7± 2.0 61.1± 1.8 56.7± 1.9 52.1± 1.7 47.3± 1.9 41.3± 1.3

yes

0 62.8± 1.9 68.3± 0.6 66.4± 0.7 64.9± 0.7 63.2± 0.9 61.2± 0.5 59.0± 0.9 55.9± 1.7
1 42.3± 1.5 49.1± 1.6 46.9± 1.4 44.8± 1.3 43.3± 1.6 40.6± 1.6 38.9± 1.9 36.3± 1.9
2 21.2± 2.3 30.9± 1.6 29.0± 1.6 27.9± 2.2 25.9± 2.4 23.9± 1.9 22.4± 1.8 20.2± 1.9
3 7.2± 2.3 15.5± 2.6 14.3± 2.9 13.0± 2.8 12.0± 2.8 10.9± 2.5 9.6± 2.5 7.9± 2.0

Table 11: Certified accuracy (CA) [%] under joint ℓ0- and ℓ1-perturbations of categorical and
numerical features, respectively, depending on whether model uses categorical and/or numerical
features. The natural accuracy is the CA at radius r = 0.0. Larger is better.

Dataset Categorical
Features ℓ0 Radius r0

CA without
Numerical Features

CA with Numerical Features at ℓ1 Radius r1

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ADULT

no - - 80.0± 0.3 77.3± 0.4 73.3± 0.4 69.8± 0.5 64.7± 0.6 61.5± 0.6 58.1± 0.7

yes

0 69.7± 0.6 69.8± 0.6 69.2± 0.6 68.3± 0.6 67.4± 0.7 65.8± 0.6 64.7± 0.7 63.3± 0.6
1 52.0± 0.8 53.5± 0.7 52.9± 0.7 52.3± 0.7 51.5± 0.7 50.6± 0.8 49.7± 0.9 48.6± 0.9
2 27.5± 0.6 31.8± 0.5 30.7± 0.5 29.7± 0.4 28.9± 0.4 28.1± 0.5 27.6± 0.4 27.1± 0.5
3 6.6± 0.2 12.1± 0.3 10.8± 0.3 9.9± 0.2 9.1± 0.2 8.3± 0.2 8.0± 0.2 7.8± 0.1

CREDIT

no - - 69.8± 2.2 66.3± 2.0 62.7± 1.8 59.1± 0.9 53.3± 2.0 42.3± 1.6 35.1± 3.5

yes

0 58.3± 9.5 58.0± 9.9 57.6± 9.8 57.0± 9.7 56.4± 9.5 55.8± 9.7 54.2± 10.5 53.6± 10.8
1 38.2± 7.4 39.0± 7.7 38.5± 7.7 38.3± 7.7 37.7± 7.7 37.2± 7.8 36.7± 7.8 35.5± 7.9
2 21.7± 5.0 22.4± 5.3 22.0± 5.0 21.4± 5.4 20.8± 5.7 20.6± 5.7 20.0± 6.0 19.1± 5.8
3 8.4± 2.6 9.5± 2.9 9.4± 2.7 8.9± 2.8 8.6± 2.9 8.3± 2.7 7.8± 2.9 7.5± 2.9

MAMMO

no - - 49.6± 3.7 48.0± 3.2 47.0± 3.3 47.0± 3.3 46.8± 3.1 44.6± 3.1 44.5± 3.1

yes
0 79.0± 1.3 76.6± 1.7 76.5± 1.5 76.3± 1.6 76.3± 1.6 76.3± 1.6 74.2± 2.4 74.2± 2.4
1 31.8± 4.5 40.0± 5.4 38.5± 4.6 37.8± 4.7 37.8± 4.7 37.6± 4.7 36.1± 4.8 36.0± 5.0
2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

BANK

no - - 80.4± 3.5 77.4± 3.0 75.1± 3.2 72.2± 3.1 68.4± 2.5 63.7± 2.2 57.0± 1.1

yes

0 64.4± 7.5 74.0± 5.4 72.6± 5.1 71.6± 5.0 70.2± 5.0 68.3± 5.4 66.3± 5.4 63.2± 5.7
1 44.4± 7.9 56.5± 6.6 55.2± 6.3 53.9± 6.4 52.3± 6.3 50.2± 6.3 48.2± 6.2 44.9± 6.3
2 23.2± 7.1 38.5± 6.9 37.2± 6.5 36.0± 6.2 34.6± 5.9 32.8± 5.8 30.7± 5.7 27.7± 5.4
3 8.3± 4.7 20.2± 6.6 19.4± 6.4 18.4± 6.0 17.2± 5.6 16.0± 5.0 14.6± 4.6 12.3± 4.2

Table 12: Certified accuracy (CA) [%] and balanced certified accuracy (BCA) [%] under ℓ0-
perturbations of categorical features. Larger is better.

Dataset ℓ0 Radius r0 CA BCA

MUSHROOM

0 90.6± 0.7 90.4± 0.9
1 87.1± 1.7 86.9± 1.6
2 81.2± 3.6 81.1± 3.4
3 70.5± 5.7 70.7± 5.5
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Table 13: We compare certifying the same stump ensembles via Deterministic Smoothing (DRS) and
Randomized Smoothing (RS) with respect to the average certified radius (ACR) and the certified
accuracy [%] at numerous radii r on MNIST 1 VS. 5 for ℓ1 (λ = 4.0) and ℓ2 (σ = 0.5) norm
perturbations. Larger is better.

Norm Method ACR
Certified Accuracy at Radius r

0.0 0.50 1.00 1.50 2.00 2.50 3.00 3.50

ℓ1

RS (n = 100) 2.809 93.0 91.2 88.6 86.2 82.9 77.0 68.8 0.0
RS (n = 1000) 3.337 95.6 94.4 92.8 90.6 87.8 84.7 79.5 70.4

RS (n = 10000) 3.430 96.0 95.3 93.7 91.6 89.4 85.8 82.1 73.8
RS (n = 100000) 3.456 96.1 95.5 94.0 91.9 89.9 86.3 82.9 74.6

DRS (ours) 3.467 96.6 95.6 94.1 92.1 89.9 86.5 83.1 75.1

ℓ2

RS (n = 100) 0.680 94.8 90.1 0.0 0.0 0.0 0.0 0.0 0.0
RS (n = 1000) 1.102 95.6 92.5 85.0 0.0 0.0 0.0 0.0 0.0

RS (n = 10000) 1.403 95.9 92.9 86.9 75.0 0.0 0.0 0.0 0.0
RS (n = 100000) 1.627 95.9 93.0 87.3 78.1 0.0 0.0 0.0 0.0

DRS (ours) 2.161 96.0 93.0 87.5 79.0 65.3 40.5 12.3 5.9

C.2 Derandomized vs. Randomized Smoothing

Here, we compare evaluating stump ensembles deterministically via DRS (Section 3) to sampling-
based RS [24]. In Table 13, we provide quantitative results corresponding to Fig. 6, expanded
by an equivalent experiment for ℓ1-norm perturbations. We observe that as sampling-based RS
uses increasingly more samples, it converges towards DRS. This convergence is much faster in
the ℓ1-setting. However, especially in the ℓ2-setting, a notable gap remains even when using as
many as 100 000 samples. This is expected as sampling-based RS computes a lower confidence
bound to the true success probability, which can be computed exactly with DRS. Thus the higher the
desired confidence, the larger this gap will be. Further, if RS were to yield a larger radius than DRS,
this would actually be an error, occurring with probability α, as DRS computes the true maximum
certifiable radius. This highlights another key difference: RS provides probabilistic guarantees that
hold with confidence 1− α, while DRS provides deterministic guarantees. Moreover, for RS, many
samples have to be evaluated (typically n = 100 000), while DRS can efficiently compute the exact
CDF. We note that the much larger improvement in certified radii observed for ℓ2-norm perturbations
is due to the significantly higher sensitivity of the certifiably radius w.r.t. the success probability (see
Table 1).

C.3 MLE Optimality Criterion

In Table 14, we compare our robust MLE optimality criterion (MLE) to applying the standard
entropy criterion to samples drawn from the input randomization scheme (Sampling) or the clean
data (Default). We observe that training approaches accounting for randomness (i.e., Sampling and
MLE) consistently outperform default training. In some cases, default training even suffers from
a mode collapse, always predicting the same class. Amongst the two methods accounting for the
input randomization, our MLE optimality criterion consistently outperforms samplings at all noise
magnitudes and for both perturbation types. This effect is particularly pronounced at large noise
magnitudes, where sampling becomes less effective at capturing the input distribution.
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Table 14: We compare training stump ensembles optimally via MLE-optimal criterion, training them
via noisy sampling (Sampling) and default training (Default) with respect to the average certified
radius (ACR) and the certified accuracy [%] on MNIST 2 VS. 6 at numerous radii r on various
norms for multiple noise magnitudes (λ for ℓ1 and σ for ℓ2). Larger is better.

Norm λ (ℓ1) or σ (ℓ2) Method ACR
Certified Accuracy at Radius r

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

ℓ1

1.0
Default 0.519 51.9 51.9 51.9 0.0 0.0 0.0 0.0 0.0

Sampling 0.928 96.2 93.9 64.8 0.0 0.0 0.0 0.0 0.0
MLE (Ours) 0.931 96.2 94.3 66.2 0.0 0.0 0.0 0.0 0.0

4.0
Default 2.074 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9

Sampling 3.166 96.3 95.0 93.3 90.5 87.3 81.4 72.5 56.0
MLE (Ours) 3.282 96.3 95.4 93.9 91.7 88.7 84.1 76.0 62.8

16.0
Default 8.297 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9

Sampling 6.646 96.4 95.3 94.4 93.4 91.8 90.0 87.8 84.9
MLE (Ours) 8.574 96.2 95.7 95.0 94.1 93.2 91.7 90.6 88.4

ℓ2

0.25
Default 0.967 51.9 51.9 51.8 48.7 0.0 0.0 0.0 0.0

Sampling 1.628 96.3 92.8 85.9 71.7 0.0 0.0 0.0 0.0
MLE (Ours) 1.642 96.3 93.0 86.3 73.0 0.0 0.0 0.0 0.0

1.0
Default 3.436 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9

Sampling 1.594 95.5 89.1 76.5 57.9 33.5 11.7 2.1 0.2
MLE (Ours) 1.724 95.5 90.1 79.2 62.5 40.3 18.7 5.4 1.3

4.0
Default 12.167 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9

Sampling 1.095 89.2 72.9 50.9 32.6 15.8 4.0 0.5 0.0
MLE (Ours) 1.652 95.1 88.7 76.5 59.2 36.6 16.3 4.9 1.5

Table 15: Comparison of average certified radius (ACR) and certified accuracy at various radii r with
respect to the ℓ1 norm for numerous datasets and noise magnitudes λ. Larger is better.

Dataset λ ACR
Certified Accuracy at Radius r

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

FMNIST-SHOES

0.5 0.407 84.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.766 83.5 55.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 1.463 83.7 74.9 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.0 2.780 85.8 80.2 73.3 60.9 21.3 0.0 0.0 0.0 0.0 0.0 0.0
8.0 4.755 83.9 80.0 75.5 70.3 63.9 56.4 46.5 32.6 1.9 0.0 0.0

16.0 7.975 84.3 81.7 77.8 75.0 71.7 67.3 63.2 57.9 52.9 47.0 41.1

MNIST 1 VS. 5

0.5 0.476 96.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.934 96.3 77.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 1.808 96.2 92.1 62.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.0 3.467 96.6 94.1 89.9 83.1 39.1 0.0 0.0 0.0 0.0 0.0 0.0
8.0 6.472 97.0 95.4 93.3 91.0 87.4 82.2 75.1 60.7 4.4 0.0 0.0

16.0 8.957 90.4 88.6 86.6 83.5 80.3 77.4 72.9 67.4 61.9 56.2 49.6

MNIST 2 VS. 6

0.5 0.477 96.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.931 96.2 66.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.0 1.780 96.2 92.2 43.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.0 3.282 96.3 93.9 88.7 76.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0
8.0 5.617 96.5 94.6 91.4 87.4 80.9 71.7 56.6 31.3 0.0 0.0 0.0

16.0 8.574 96.2 95.0 93.2 90.6 86.5 82.7 77.5 70.5 62.7 53.3 41.3

C.4 Effect of Noise Level
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Figure 8: Comparing DRS for various noise
levels σ on MNIST 1 VS. 5.

Here, we provide additional experiments for varying
noise magnitudes, λ for ℓ1-certification, and σ for ℓ2-
certification. In Tables 15 and 16, we provide extensive
experiments for the ℓ1- and ℓ2-setting, respectively, which
we visualize in Figs. 7 and 8.

We observe that, in the ℓ1-setting, the natural accuracy
(certified accuracy at radius 0) is quite insensitive to an
increase in noise magnitude. Consequently, large λ lead to
exceptionally large ACR and certified accuracies even at
large radii, e.g., on MNIST 2 VS. 6, we obtain a certified
accuracy of 82.7% at ℓ1-radius r = 5.0.
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Table 16: Comparison of average certified radius (ACR) and certified accuracy at various radii r with
respect to the ℓ2 norm for numerous datasets and noise magnitudes σ. Larger is better.

Dataset σ ACR
Certified Accuracy at Radius r

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FMNIST-SHOES

0.25 1.361 86.8 79.6 70.0 58.2 0.0 0.0 0.0 0.0
0.5 1.723 86.5 78.9 70.1 56.6 42.2 27.8 17.4 8.4
1.0 1.699 86.2 78.5 69.1 55.7 41.0 25.8 16.9 8.9
2.0 1.681 86.2 78.5 68.8 55.1 40.2 25.6 16.8 8.7
4.0 2.136 57.1 52.2 49.7 47.9 46.0 43.4 39.4 35.0
8.0 1.518 83.7 74.2 64.4 51.0 35.4 21.0 10.4 4.8

MNIST 1 VS. 5

0.25 1.737 95.8 93.6 89.0 82.8 0.0 0.0 0.0 0.0
0.5 2.161 96.0 93.0 87.5 79.0 65.3 40.5 12.3 5.9
1.0 2.044 96.0 92.7 86.1 75.6 57.3 28.4 11.4 6.7
2.0 2.012 95.8 92.7 85.8 74.9 56.2 26.9 10.3 6.0
4.0 1.875 94.8 87.2 71.8 48.1 34.7 29.9 23.8 15.7
8.0 1.808 96.1 90.2 80.3 62.9 36.4 20.4 13.3 7.7

MNIST 2 VS. 6

0.25 1.642 96.3 93.0 86.3 73.0 0.0 0.0 0.0 0.0
0.5 1.824 95.8 91.2 81.9 66.7 46.4 23.4 7.4 1.3
1.0 1.724 95.5 90.1 79.2 62.5 40.3 18.7 5.4 1.3
2.0 1.688 95.4 89.5 78.0 60.9 38.8 17.5 4.9 1.0
4.0 1.652 95.1 88.7 76.5 59.2 36.6 16.3 4.9 1.5
8.0 1.718 74.3 61.0 53.2 49.4 46.6 40.2 30.3 17.4

In the ℓ2-setting, increasing the noise magnitude σ generally leads to a more pronounced drop in
natural and certified accuracy, and thus similar ACRs for various noise magnitudes.
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Figure 9: Comparing counts for values of
vm on MNIST 2 VS. 6 for ℓ1 and ℓ2 norms
with λ = 2.0 and σ = 0.25, respectively.

Thinking Outside the Box Analysing this surprising be-
haviour in the ℓ1-setting, we empirically find that despite
the data being normalized to [0, 1], the MLE optimality
criterion often yields split positions vm outside of [0, 1].
Recall that there, uniformly distributed random noise is
added to the original sample (x′ ∼ Unif([x− λ,x+ λ]d)).
In Fig. 9, we show a histogram of the split positions (vm), il-
lustrating this behaviour. In the ℓ1-setting and using λ = 2,
all split positions are either smaller than −1 or larger than
1.9, which are exactly the borders of uniform distributions
with λ = 2 centered at the extremes of the image domain
([0, 1]). As all splits are outside the hyperbox constituting
the original image domain, we refer to this behaviour as
’thinking outside the box’. Intuitively, each unperturbed
data point is on the same side of vm in this case, but when
the randomization scheme is applied, a split outside of [−1, 2] leads to a probability mass of 0 for
an original feature value of 0 or 1, while for the other, the probability mass can be as high as 1

2λ .
Therefore, such splits allow the smoothed model to still separate these cases well for randomized
inputs.

While we observe this effect on all datasets in the ℓ1-setting given a sufficiently large λ, it does not
appear in the ℓ2-setting. There, vm’s are typically clustered closely around or inside [0, 1], as the
Gaussian randomization applied here has unbounded support and does not permit for such a clean
separation, regardless of the choice of vm.

C.5 Leaf Prediction Discretization

In the main paper, all experiments are conducted with leaf predictions discretized to ∆ = 100
values to enable our efficient CDF computation. In this section, we investigate the effect of this
discretization. Concretely, we report results on MNIST 1 VS. 5 and BREASTCANCER using a
range of discretization-granularities from 2 to 10 000 and 2 to 100 000 in Table 17 and Table 18,
respectively. While using a very coarse discretization can lead to a mode collapse (explaining the
very high ACRs observed for ℓ2 perturbations in Table 18) and generally degraded performance,
we observe that for sufficiently fine discretizations (typically ∆ ≥ 50) the results converge as the
discretization is refined further. As the discretization effect on the ensemble’s output is bounded by
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Table 17: We compare the performance of models for different number of discretization sizes with
respect to average certified radius (ACR) and given certified accuracies (CA) [%] on MNIST 1 VS.
5. We utilize λ = 4.0 for ℓ1 and σ = 0.5 for ℓ2. We report mean and standard deviation over 5-fold
cross-validation. Larger mean is better.

Norm Discretizations ACR
Certified Accuracy [%] at Radius r

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

ℓ1

2 1.860± 0.025 60.2± 1.3 52.9± 1.5 46.6± 1.3 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.3± 0.6
3 2.220± 0.023 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6
5 2.220± 0.023 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6
10 2.191± 0.033 72.6± 1.2 68.1± 1.3 63.8± 1.0 58.6± 1.0 53.7± 0.8 48.6± 0.7 45.1± 0.6 44.3± 0.6
50 3.502± 0.014 97.0± 0.4 96.2± 0.4 94.9± 0.5 93.2± 0.5 90.9± 0.5 88.0± 0.5 83.8± 0.4 76.9± 0.2

100 3.425± 0.015 96.2± 0.4 94.7± 0.5 93.0± 0.5 91.0± 0.5 88.7± 0.5 85.7± 0.3 81.5± 0.4 74.2± 0.5
500 3.375± 0.016 95.1± 0.5 93.6± 0.5 91.8± 0.5 89.8± 0.4 87.4± 0.3 84.4± 0.5 80.0± 0.5 72.5± 0.3

1’000 3.367± 0.016 94.9± 0.6 93.5± 0.6 91.6± 0.5 89.7± 0.5 87.2± 0.3 84.2± 0.5 79.8± 0.6 72.3± 0.3
5’000 3.364± 0.016 94.9± 0.6 93.4± 0.5 91.6± 0.5 89.6± 0.4 87.2± 0.3 84.2± 0.5 79.7± 0.5 72.4± 0.3

10’000 3.364± 0.016 94.9± 0.6 93.4± 0.5 91.6± 0.5 89.6± 0.4 87.2± 0.3 84.2± 0.5 79.7± 0.6 72.3± 0.3

ℓ2

2 1.766± 0.023 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6 44.5± 0.6
3 2.204± 0.023 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6
5 2.204± 0.023 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6 55.5± 0.6
10 2.044± 0.007 95.9± 0.5 92.2± 0.5 85.9± 0.2 75.8± 0.4 56.9± 1.1 27.8± 0.7 14.1± 0.4 7.6± 0.3
50 2.110± 0.006 95.6± 0.5 92.0± 0.6 86.3± 0.3 77.7± 0.4 63.1± 0.6 38.0± 0.9 11.4± 0.3 5.4± 0.3

100 2.120± 0.005 95.3± 0.5 91.8± 0.6 86.2± 0.4 77.7± 0.5 64.0± 0.7 39.8± 0.7 11.4± 0.3 5.0± 0.3
500 2.125± 0.005 95.1± 0.5 91.8± 0.5 86.2± 0.3 77.8± 0.4 64.3± 0.6 40.7± 0.7 11.5± 0.4 4.8± 0.2
1000 2.126± 0.005 95.1± 0.5 91.7± 0.6 86.2± 0.3 77.8± 0.4 64.4± 0.6 40.8± 0.7 11.6± 0.3 4.8± 0.2
5’000 2.126± 0.005 95.1± 0.5 91.7± 0.6 86.2± 0.3 77.8± 0.4 64.3± 0.6 40.8± 0.8 11.6± 0.4 4.8± 0.2

10’000 2.126± 0.005 95.1± 0.5 91.7± 0.6 86.2± 0.3 77.8± 0.4 64.3± 0.6 40.8± 0.8 11.6± 0.3 4.8± 0.2

Table 18: We compare the performance of models for different number of discretization sizes with
respect to average certified radius (ACR) and given certified accuracies (CA) [%] on BREASTCANCER.
We utilize λ = 2.0 for ℓ1 and σ = 4.0 for ℓ2. We report mean and standard deviation over 5-fold
cross-validation. Larger mean is better.

Norm Discretizations ACR
Certified Accuracy [%] at Radius r

0.00 0.10 0.2 0.3 0.4 0.5

ℓ1

2 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8
3 1.298± 0.044 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2
5 1.292± 0.045 67.6± 2.8 66.9± 2.7 66.3± 2.3 65.9± 2.5 65.4± 2.0 65.0± 2.2
10 1.395± 0.038 95.2± 1.4 94.1± 1.4 92.8± 1.2 90.8± 1.8 89.0± 1.9 87.1± 0.8
50 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8

100 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8
500 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8

1’000 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8
5’000 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8
10’000 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8
50’000 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8

100’000 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.7± 1.4 90.6± 1.8 89.0± 1.9 87.1± 0.8

ℓ2

2 20.672± 0.704 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2
3 1.533± 0.080 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2
5 1.533± 0.080 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2
10 20.672± 0.704 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2 65.0± 2.2
50 0.644± 0.158 89.2± 1.2 80.5± 4.7 66.7± 16.8 59.8± 20.1 56.8± 18.2 54.5± 17.2

100 0.653± 0.075 93.3± 5.7 90.6± 7.4 88.3± 8.2 85.2± 8.0 80.6± 7.9 73.8± 5.5
500 0.624± 0.020 95.9± 1.7 93.9± 1.9 92.4± 2.5 89.3± 2.9 83.9± 1.8 77.3± 3.6

1000 0.609± 0.015 96.1± 1.3 94.8± 1.8 92.7± 2.1 90.0± 1.3 85.9± 2.0 77.9± 2.2
5’000 0.597± 0.015 96.7± 1.7 95.0± 1.7 92.8± 1.8 91.1± 1.4 86.3± 2.1 76.6± 3.5
10’000 0.598± 0.017 96.5± 1.8 95.0± 1.4 92.8± 1.8 91.1± 1.4 86.3± 2.7 76.3± 3.1
50’000 0.597± 0.016 96.7± 1.7 94.9± 1.6 92.8± 1.8 91.2± 1.6 86.2± 2.9 76.6± 3.5

100’000 0.597± 0.016 96.7± 1.7 94.9± 1.6 92.8± 1.8 91.2± 1.6 86.2± 2.9 76.6± 3.5
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Table 19: We compare the performance of models for different binning sizes with respect to average
certified radius (ACR) and given certified accuracies (CA) [%] on MNIST 1 VS. 5. We utilize
λ = 4.0 for ℓ1 and σ = 0.5 for ℓ2. Larger is better.

Norm Binning Size ACR
Certified Accuracy [%] at Radius r

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

ℓ1

4.0 3.452 96.2 95.2 93.6 91.7 89.4 86.3 82.7 75.3
2.0 3.452 96.2 95.2 93.6 91.7 89.4 86.3 82.7 75.3
1.0 3.468 96.5 95.6 94.1 92.0 89.9 86.5 83.1 75.2
0.5 3.465 96.6 95.5 94.2 91.9 89.9 86.6 83.1 75.0
0.1 3.462 96.6 95.5 94.2 92.0 89.9 86.4 83.0 74.8

0.05 3.466 96.5 95.6 94.1 91.9 89.9 86.5 83.1 75.1
0.01 3.467 96.6 95.6 94.1 92.1 89.9 86.5 83.1 75.1
0.005 3.467 96.6 95.6 94.1 92.1 89.9 86.5 83.1 75.1
0.001 3.467 96.5 95.6 94.1 92.1 90.0 86.5 83.1 75.1

0.0005 3.466 96.5 95.5 94.1 92.1 90.0 86.5 83.0 75.1
0.0001 3.467 96.5 95.5 94.2 92.1 89.9 86.5 83.1 75.1

ℓ2

4.0 0.584 56.0 55.9 31.5 0.0 0.0 0.0 0.0 0.0
2.0 1.888 95.4 91.3 83.6 73.9 55.7 22.4 4.0 0.8
1.0 1.980 95.7 92.0 84.1 74.0 58.8 35.2 4.8 0.6
0.5 2.119 95.8 93.0 87.2 78.5 62.6 35.7 11.5 6.5
0.1 2.161 96.0 93.1 87.5 79.1 65.2 40.8 12.3 5.9

0.05 2.160 96.0 93.1 87.5 79.1 65.3 41.4 12.4 5.8
0.01 2.161 96.0 93.0 87.5 79.0 65.3 40.5 12.3 5.9
0.005 2.163 96.0 93.1 87.5 79.0 65.3 40.9 12.4 5.9
0.001 2.164 96.0 93.0 87.5 79.0 65.3 41.1 12.5 5.8

0.0005 2.164 96.0 93.0 87.5 79.0 65.3 41.2 12.5 5.8
0.0001 2.163 96.0 93.0 87.5 79.0 65.3 41.1 12.5 5.8

M
2∆ , we conclude that these fine discretizations closely approximate the non-discretized case. We
choose ∆ = 100 such that our discretized smoothed models generally approximately recover the
behavior of the non-discretized models while allowing for fast computations of the ensemble PDF.

While performance improves monotonically with finer discretizations for MNIST 1 VS. 5 in the
ℓ2 setting and for BREASTCANCER in the ℓ1 setting, it seems to peak and then declines again for
MNIST 1 VS. 5 in the ℓ1 setting and for BREASTCANCER in the ℓ2 setting. For BREASTCANCER,
we observe significantly larger standard deviations at coarse discretizations leading to overlapping ±1
standard deviation intervals for all discretization levels not suffering from a mode collapse and thus
statistically insignificant results. For MNIST 1 VS. 5 in the ℓ1, the performance peak at ∆ = 50 is
statistically significant. We hypothesize that the coarser regularizations have a beneficial regularizing
effect in this setting.

C.6 Split Position Search Granularity

In our main paper, all experiments are conducted using a step size of 0.01 to conduct the line search
for the optimal split position vm. In Table 19, we report results for search granularities from 4.0 to
10−4 and observe that a step size of 0.1 is sufficiently fine and reducing it further does not improve
the performance of the obtained models. This suggest that our approximate optimization based on
line search comes very close to the finding the true optimal split position and thus jointly MLE
optimal vm and γ.

C.7 Error Bounds

In Table 20 we report the mean and standard deviation of the certified accuracies at various radii
across a 5-fold cross validation for datasets including only numerical features. We observe, that our
results are very stable with standard deviations of less than 1.0% on the computer vision datasets,
which have large sample sizes. On the tabular datasets, which consist of much fewer samples, the
dependence on the train/test-split is slightly larger with standard deviations reaching around 4.0% in
some settings. Only where a large noise magnitude (σ = 4), very small sample sizes, and large radii
come together (BREASTCANCER for ℓ2 perturbations of r = 1.0) do we observe a large sensitivity
to the train/test-split and thus a high standard deviations of up to 21%.
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Table 20: Average certified accuracy (ACR) Certified accuracy (CA) [%] at various radii with respect
to ℓ1- and ℓ2-norm bounded perturbations on various datasets. Larger is better.

Perturbation Dataset ACR
Radius r

0.00 0.10 0.25 0.50 1.00

ℓ1

BREASTCANCER 1.396± 0.039 95.2± 1.4 94.1± 1.4 92.1± 1.3 87.1± 0.8 72.8± 2.8
DIABETES 0.153± 0.010 73.7± 3.1 58.3± 2.9 30.1± 4.0 0.0± 0.0 0.0± 0.0
SPAMBASE 2.541± 0.042 89.1± 0.5 88.2± 0.4 87.4± 0.6 85.2± 0.8 80.6± 1.2

FMNIST-SHOES 2.731± 0.027 84.4± 0.8 83.8± 0.8 83.1± 0.8 81.7± 0.8 79.1± 0.7
MNIST 1 VS. 5 3.425± 0.015 96.2± 0.4 95.9± 0.5 95.4± 0.5 94.7± 0.5 93.0± 0.5
MNIST 2 VS. 6 3.243± 0.008 95.7± 0.3 95.5± 0.3 95.1± 0.3 94.5± 0.3 92.8± 0.3

ℓ2

BREASTCANCER 0.653± 0.075 93.3± 5.7 90.6± 7.4 87.3± 8.6 73.8± 5.5 15.5± 21.5
DIABETES 0.124± 0.005 72.7± 3.5 53.0± 3.4 15.6± 2.6 0.0± 0.0 0.0± 0.0
SPAMBASE 0.884± 0.006 89.7± 1.0 87.4± 1.2 83.7± 1.1 73.6± 1.0 40.9± 0.8

FMNIST-SHOES 1.334± 0.012 85.0± 0.8 83.7± 0.9 81.5± 0.7 78.1± 0.5 68.6± 0.7
MNIST 1 VS. 5 1.720± 0.006 95.3± 0.4 94.8± 0.4 94.0± 0.5 92.3± 0.6 87.9± 0.3
MNIST 2 VS. 6 1.613± 0.007 95.5± 0.2 94.9± 0.3 93.9± 0.2 91.7± 0.2 84.9± 0.7

D (De-)Randomized Smoothing for Decision Tree Ensembles

While we focus on decision stump ensembles in the main paper and in particular in Section 3, our
approach can easily be extended to ensembles of decision trees with arbitrary depths which do not
use the same features in distinct decision trees. In particular, our approach can be easily extended to
arbitrary individual decision trees.

Recall that the key idea of our approach is to group individual decision stumps into independent
meta-stumps, allowing us to represent the output of the overall smoothed ensemble as the sum of
independent terms. We can apply the same idea here by constructing meta-stumps over all features
used in an individual tree. As we do not permit features to be reused in multiple trees, every tree is
independent of all others.

For every leaf j of a decision tree m with prediction γm,j , we can accumulate the constraints along
the path from the root to the leaf of that tree as

ψj(x) =
∧
i

xi > v−j,i ∧ xi ≤ v+j,i. (11)

Note that if xi is not constrained (in one direction) on the path to leaf j, we can simply set the
corresponding threshold v{+,−} to ±∞. This allows us to formally define a smoothed decision tree
as

gm(x) =
∑
j

γm,j

∏
i

Px′
i∼ϕ(xi)[v

−
j,i < x′i ≤ v+j,i]. (12)

As all features are perturbed independently under the randomization scheme ϕ, we can compute the
probability of a perturbed sample satisfying ψj and thus landing in leaf j by factorization as

Px′∼ϕ(x)[ψj(x
′)] =

∏
i

Px′∼ϕ(x)[x
′
i > v−j,i ∧ x′i ≤ v+j,i]︸ ︷︷ ︸

pj,i

(13)

=
∏
i

Px′∼ϕ(x)[x
′
i ≤ v+j,i]− Px′∼ϕ(x)[x

′
i ≤ v−j,i]. (14)

For many common randomization schemes where the (dimension-wise) CDF is available, this
expression can be evaluated efficiently in closed form, e.g., when using a Gaussian distribution as the
randomization scheme ϕ(x) = N (x, σI), typically used for ℓ2-norm certificates (see Table 1), and
given the inverse Gaussian CDF Φ−1, we obtain

Px′∼ϕ(x)[ψj(x
′)] =

∏
i

Φ−1

(
v+j,i − xi

σ

)
− Φ−1

(
v−j,i − xi

σ

)
. (15)

We can now construct a meta-stump equivalent per decision tree, where the piece-wise constant
regions with output γm,j are now simply defined over multiple variables instead of over a single
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Figure 10: Illustration of a meta-stump on a decision tree with feature re-use.

variable. We illustrate this in Fig. 10, where we show a decision tree (Fig. 10a)) on features x1 and
x2 (partially truncating depth to avoid clutter) and the corresponding output landscape (Fig. 10b)).
We can now compute the probability of x′ ∼ ϕ(0) falling into the blue region as the product of the
probabilities of x′1 lying in [0.5, 1), pj,1, and x′2 lying in [0.5,∞), pj,2. Proceeding similarly for
the other regions, we can instantiate Algorithm 1, as for regular meta-stumps, only replacing the
probability computation as discussed above.

This allows us to adapt Algorithm 1 to iterate over the ensembled decision trees instead of over
features.
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