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A Ablation study - Iterations in MBW

In this section, we conduct an ablation study analyzing the effects of iterations in our proposed
approach. In other words, we discuss the improvements in 2D and 3D landmark predictions as well
as the implications of iterations in our proposed approach. We conduct our ablation study on the
publicly available human benchmark dataset [4]. We initialise our pipeline (MBW) with 5% 2D input
labels and 4 views from “Directions-1” sequence of “Subject-1” [4].

Improvement in 2D and 3D landmark predictions: As shown in Fig. 2a, we see that the major
improvement in 2D landmark predictions could be observed between Iteration 0 and Iteration 1.
Moreover, we see that as the iterations progress, the 2D landmark prediction error continues to
reduce as seen in Fig. 2a. Furthermore, we notice that as the iterations progress, our pipeline
continues to further denoise and improve the 2D landmark predictions as well as continues to generate
accurate pseudo-labels as visible in Fig. 2b. Similarly, we see that as the iterations progress, the 3D
reconstruction error (in PA-MPJPE) continues to decrease as visible in Tab. 1.

We also graphically visualize the effects of MBW at each stage in Fig. 3. With a learned MV-NRSfM
over given data, we visualize the first two dimensions of the bottleneck. The initial two dimensions of
the bottleneck show the overall spread of the given data. The red dots in this plot represents the initial
set of 2D input labels. We color code this scatter plot based on 2D reprojection error. Specifically, the
colors in Fig. 3 represent the error calculated from Eq. (2). As the iterations progress, we observe the
reprojection error to continue to decrease as better 3D structures as well as 2D landmark predictions
are learned iteratively.

Handling occlusions with geometry: Analyzing further, we investigate the type of improvement
over different iterations. We notice that the main benefit of using learnable geometric self-supervision
(see Sec. 3.2) is its capability to handle occlusions. Figure 1 shows that MBW, in conjunction with
MV-NRSfM is able to denoise the 2D landmark predictions as seen in the Iter. 2 columns. Compared
to Iter. 1, we observe that MV-NRSfM was able to denoise and then feed the pseudo-label to our
iterative pipeline which resulted in correct annotations for cases with severe occlusions. Owing to the
above observations, we show improvement of 2D landmark predictions over iterations, specifically in
cases where the landmarks are occluded. Quantitative improvement is shown in Fig. 2a while the
qualitative improvement is shown in Fig. 1 that shows improvements during Iter. 2, and Fig. 2b that
shows improvement during Iter. 3 – where we observe the benefit of using the multi-view constraint
of MV-NRSfM.

Denoising and its limitations: Since MV-NRSfM leverages the redundancy in shape variations
among different frames, it is less sensitive to the variations of input views, and more capable of
detecting outliers and denoising inlier 2D landmark estimates. More specifically, it has the capability
of denoising the 2D inputs and providing a 3D structure based on its learned distribution. For the
cases shown in Fig. 1 and Fig. 2b, we showcase the denoising capabilities of MV-NRSfM. However,
we should note that MV-NRSfM is only able to denoise and refine the inlier estimates if the amount
of noise in 2D input labels is small enough. There are two reasons: (i) Inaccurate camera matrix:
If the 2D input is extremely noisy in one of the views, even if MV-NRSfM would degenerate to an
accurate 3D structure, it would not be able to reliable project the generated 3D structure over the
extremely noisy view because of inaccurate camera matrix calculated from OnP or PnP. (ii) Inaccurate
3D structure: If most of the views are noisy or if the baseline between cameras is not wide enough,
MV-NRSfM cannot learn to enforce multi-view shape consistency thereby generating an inaccurate
3D structure.
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Figure 1: Improvements in 2D landmark predictions as the iterations progress. Specifically, MBW is
able to show improvements in cases where the landmarks are occluded. MBW leverages multi-view
shape consistency from MV-NRSfM to denoise the inliers from Iter. 1 and use them as pseudo-labels
for the next iteration. The red box in G.T. shows where the location of occlusion as well as groundtruth
landmark locations. The red glow boxes show the noisy inliers. The green glow boxes show accurate
2D landmark predictions. This figure shows improvements during Iter. 1

(a) Mean-Per-Joint-Position-Error in pixels (2D error). (b) Improvements in 2D landmark pre-
diction during Iter. 3

Figure 2: (a) 2D landmark predictions show improvement as the iterations progress. We plot absolute
errors in 2D,i.e. we calculate Mean-Per-Joint-Position-Error in pixels for each iteration. (b) Similar
to Fig. 1, we show improvements in cases with occlusion using the proposed pipeline. This figure
shows improvements during Iter. 2

B Initial input labels and Active learning

For the inital set of 2D input labels, we sample uniformly across time and views (unlike Pereira et al.
[8] that uses PCA to decide which frames to label). Although we pick labels from each view initially,
we carry this action in the initial iteration to learn a good 3D shape prior that enforces multi-view
consistency. For the subsequent iterations, we do not necessarily require to pseudo labels for all the
views of an instance.
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