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Abstract

Labeling articulated objects in unconstrained settings has a wide variety of applica-
tions including entertainment, neuroscience, psychology, ethology, and many fields
of medicine. Large offline labeled datasets do not exist for all but the most common
articulated object categories (e.g., humans). Hand labeling these landmarks within
a video sequence is a laborious task. Learned landmark detectors can help, but
can be error-prone when trained from only a few examples. Multi-camera systems
that train fine-grained detectors have shown significant promise in detecting such
errors, allowing for self-supervised solutions that only need a small percentage
of the video sequence to be hand-labeled. The approach, however, is based on
calibrated cameras and rigid geometry, making it expensive, difficult to manage,
and impractical in real-world scenarios. In this paper, we address these bottlenecks
by combining a non-rigid 3D neural prior with deep flow to obtain high-fidelity
landmark estimates from videos with only two or three uncalibrated, handheld
cameras. With just a few annotations (representing 1-2% of the frames), we are
able to produce 2D results comparable to state-of-the-art fully supervised methods,
along with 3D reconstructions that are impossible with other existing approaches.
Our Multi-view Bootstrapping in the Wild (MBW) approach demonstrates impres-
sive results on standard human datasets, as well as tigers, cheetahs, fish, colobus
monkeys, chimpanzees, and flamingos from videos captured casually in a zoo. We
release the codebase for MBW as well as this challenging zoo dataset| consisting of
image frames of tail-end distribution categories with their corresponding 2D and
3D labels generated from minimal human intervention.

1 Introduction

Hand labeling landmarks of articulated objects within video is an arduous and expensive task.
Landmark detectors [29, 20, 132] can be employed to automate the process. However, they require the
ingestion of large amounts of labeled training data to be reliable — an infeasible requirement for all
but the most common of articulated objects (e.g. people, hands). Semi-supervision can help [28],
where a small portion of frames within the video are hand labeled. Candidate labels can be generated
from the noisy landmark detectors — trained from the seed hand labeled examples — inliers are then
determined through calibrated rigid multi-view geometry. These inliers are treated as labels and used
to train the next round of landmark detectors. This semi-supervised process is iterated to increase the
number of inlier estimates, with additional human annotation being added judiciously to ensure the
full sequence is labeled. Such strategies have been instrumental for obtaining reliable ground-truth —
most notably the Multi-view Bootstrapping (MB) approach of Simon et al. [28]]. Human annotators
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Figure 1: Overview of our MBW approach. Top: Provided an unconstrained Multi-view uncalibrated
video with very few 2D labels ( 1 2% or 15 labels), our method recovers the 3D structure in a
canonical frame, along with camera poses and corresponding 2D landmarks for the complete video
sequence. Bottom: Diverse reconstructions and data labeling for videos captured in the wild. This
dataset is released as part of the paper.

are only required to hand label a subset of the dataset, with the rest just requiring visual inspection to
validate the accuracy of the inferred labels.

Although significantly cutting down on human labor, Multi-view Bootstrapping [28] is still expensive
and cumbersome, requiring a static multi-camera rig which usually consists of tens or even
sometimes hundreds of calibrated cameras [[11]]. The number of cameras can be reduced, but with a
trade-off in decreasing robustness of outlier rejection and increasing human interventions (see Fig. ).
This makes it less feasible for capturing objects outside laboratories. In this paper, we advocate for
a significant advancement by enabling its application to data captured by a few (2 to 4) handheld
cameras with only a handful of annotated frames (about 10-15 frames per several minutes of video).
We refer to our approach herein as Multi-view Bootstrapping in the Wild (MBW). The cameras need
not be calibrated, and fields of view need only overlap the articulated object, not the backgrounds.

Our innovations come from (i) utilizing Multi-View Non-Rigid Structure from Motion (MV-
NRSfM) [2] to more reliably estimate camera poses and 3D landmark positions from noisy 2D
inputs with few cameras. Compared to performing SfM / triangulation independently for each frame
as in prior works [11} [T}, MV-NRS{M leverages the redundancy in shape variations among different
frames, thus it is less sensitive to the variations of input views, more capable of detecting outliers and
denoising inlier 2D landmark estimates. (ii) We leverage recent advances in deep optical flow as
an alternative strategy for creating landmark label candidates — something especially useful in the
early iterations of the semi-supervision process.

As aresult our approach can be effectively applied to less studied articulated object categories. We
show results on tigers, fish, colobus monkeys, gorillas, chimpanzees, and flamingos from a zoo dataset
(captured by the authors, who hereby release it under a CC-BY-NC license). We also quantitatively
evaluate the proposed pipeline on common motion capture datasets (e.g. Human3.6 Million [9])). The
accuracy of the learned landmark detector is competitive to state-of-the-art fully supervised method.
A graphical depiction of our approach can be found in Figure|I]

2 Related Works

Panoptic Studio [T1]] paved the way for collecting data for deformable objects such as the human
body. Subsequent efforts on humans [9} 24} 36]], hands [38] 39, [19], monkeys [1], canines [14]], chee-



Table 1: Related efforts trying to achieve a similar application as the proposed approach.

Method Flow Calibration 3D labels Wild setup % annotated ( )
Giinel et al. 3] No Required Yes No 30%
Mathis et al. No N/A No No 5%

Dong et al. [3]) Yes  Required No No N/A (Unknown)
Zhang and Park Yes Required No No 4%
Pereira et al. No N/A No No 5%
Simon et al. [28] No Required Yes No 30%
MBW (Ours) Yes No Yes Yes 2%
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Figure 2: (Dotted lines) The MV-NRSfM neural shape prior is initially trained with labels for 1-2%
of the frames (shown as green images). A pre-trained optical flow network then propagates the
initial labels through the video to generate additional 2D candidates. Candidates that result in high
reprojection error from the 3D lifting network are rejected as outliers (red). (Solid line) From here
on, the label set is updated with inliers from the previous iteration, and is then used both to retrain
the MV-NRSfM and to train a 2D detector. Dotted line is executed only once while solid lines are
repeated for K iterations.

tahs , rats [[16], and insects [3]] have followed. Multi-view Boostrapping [28] has demonstrated
how these calibrated multi-camera datasets can be labeled efficiently through a semi-supervised
learning paradigm and a small number of hand annotations. A fundamental drawback to multi-view
bootstrapping however is that it requires a large number of views and accurate camera calibration.

Recent works have explored alternate paradigms for semi-supervised landmark labeling that do not
require such exotic calibrated multi-camera setups. Mathis et al. [18]], Pereira et al. [22]], and Yu et al.
tackle this problem from a single view, but largely ignore the use of multi-view geometry. Gunel
et al. 3] have explored an approach that utilizes a small number of camera views, and only requires
an approximate estimate of the camera extrinsics. They use pictorial structures [4] to automatically
detect and correct labeling errors, and use active learning to iteratively improve landmark detection
performance. Although this approach is useful in lab settings where there are static cameras and the
object is anchored to a fixed location (e.g. tethered flies are positioned over a spherical treadmill [3]]),
it is non-trivial to generalize such performance to more complex environments and across significant
individual variations due to e.g. patterned skins in animals or demographics and clothing in humans.
In contrast, our approach accepts image frames from moving cameras and requires only a handful of
hand annotated labels. Further, it does not require any camera information, and can easily be applied
to a broad set of articulated objects such as humans, hands, and animals. Thus, the strength of our
method is its generalizability. Since the provided implementation of DeepFly3D was specific for
Drosophila, it was not readily applicable to our in-the-wild datasets. An overview highlighting major
differences between our proposed approach and related works trying to achieve a similar application
is shown in Tab.[Il



Figure 3: Sample sequences composited from our Zoo data collection — situations where traditional
SLAM pipelines fail to recover reasonable camera matrices due to lack of reliable matching features.

3 Approach

3.1 Problem Setup

Our goal is to learn 2D landmarks of articulated objects from multi-view synchronized videos
captured in the wild. Unlike other work&1, 5, [3,/37] developed for laboratory settings, we focus on
thein the wild setting,i.e. data is captured using a small number (2 or 3) of camerasunikthown
extrinsics, and only a small portion (1 t&a of the data is manually labeled.

More speci cally, our training se$ consists oV synchronized videos, each with frames. Each

view indices. Initially only a subset of framés; v) 2 Sg are given with 2D landmark annotations

W (nv) 2 RP 2 of P points. Each row ofV (., ) corresponds to the 2D location of a landmaetg(

the left knee of amingo, see Fif] 3). To simplify explanations, we assume that only a single object
of interest is visible in each frame. For multiple non-overlapping objects, our algorithm is able to
estimate bounding boxes to reduce the problem into a single object case (see Appendix D). Finally,
the goal is to (i) infer the missing 2D landmark annotations in the training set as a self-labeling task;
(ii) train a 2D landmark detector for unseen objects of the same category.

3.2 Learnable geometric supervised self-training

We employ a self-training approach which iteratively assigns pseudo labels and retrains a 2D landmark
detector. At each iteration, the 2D pseudo labels generated by a landmark detector are veri ed using
geometric constraints. Samples which fail the veri cation are dropped, and the remaining pseudo
labels are denoised before feeding them back as labels to retrain the landmark detector. Such geometric
supervised self-training strategy has been widely used in learning landmark detef&tibhsl] 28],

what differentiates our work is that we model the geometric constraintteasraablefunction, which

is learned together with the landmark detector. We abstract this function as:

g: W Wo it Wy byasyas iy 1)

whereW , 2 RP 2 represents detected 2D landmarks-#i view, andy, is the measured uncertainty

for outlier rejection. We derivg from performing multi-view non-rigid structure from motion (MV-
NRSfM) as described in S€c. 8.3. The remaining details of the self-training pipeline is given as
follows.

Initialization In the initial step, we require human labelers to annotate the 2D landmark positions
of the same target object for a small portion of captured video frames. We then train our geometric
constraint functiorg using these initial labels. Since the initial labels only cover a limited range of
shape variations, the learngds aggressive in detecting outliers at the beginning stage of the training.
It will be improved as it sees more shape variation in each iteration.

Label propagation through tracking We nd that directly training a 2D landmark detector such

as HRNet[29] using very few labeled samples yields unstable results. To increase the number of
training samples, we propagate the annotated 2D landmark labels to the rest of unlabeled frames
through tracking. We use an off-the-shelf optical ow netwd8]to track the landmarks frame to
frame. Other tracking method24, [6] can also be utilized. We employ standard forward&backward

ow consistency check to detect tracking failures. Since the optical ow network tends to make
consistent wrong estimations when swapping the input frames, such consistency check alone is not
enough to exclude all tracking failures. Therefore, we further employ the learned geometric constraint
functiong to aggressively remove any likely outliers if the predicted uncertaingyabove a certain
threshold. We then add the remaining tracked points (inliers) to the labeled set. This new set is



then used both to re-tram and to train the rst iteration of the 2D landmark detector used in the
subsequent stages.

Self-training iterations At each iteratiort, we de ne a “labeled” se§; ; which includes all
frames that are either manually annotated, or are labeled by the landmark détegtor the
previous stage and passes outlier rejection uging. We then re-train the landmark detector and the
geometric constraint function on the labeled Set;, which leads to a new detectbyr as well as

0:. Once trained, inference is run with this detector netwigrver all the captured frames. This
produces new pseudo lab&s],, for all theN frames and/ views. We then apply the geometric
constraint functiong to evaluate the uncertainty scofg, for each pseudo label. Finally we de ne

a new labeled se; which includes all sample®; v) that satisfyyy,., is below a certain threshold.

The above process is repeated for a number of iterations. In principle frames that are still not annotated
(rejected byg:) can be actively labeled by humans, however in practice we have found this situation
is rare, unless the distance between the captured views is extremely small, making it dif cult to learn
a reasonable 3D shape prior.

3.3 Outlier detection using multi-view NRSfM network

Uncertainty score. Our geometric constraint functianis built upon measuring the discrepancy
between detected 2D landmarks and the 3D reconstruction by a multi-view NRSfM method. This

is in the same spirit as using the reprojection error of triangulation to measure uncertainties as in
prior works. The idea is if the detected 2D landmarks at different views are all correct, we should
be able to recover accurate camera poses and 3D structures, and consequently the reprojection of
recovered 3D landmarks matches the 2D landmarks. On the other hand, if the reprojection error is
high, it means there exists errors in the 2D landmarks which prevents perfect 3D reconstructions.
This leads to the following formulation of our uncertainty score,

Y(nv) = k\N(n;v) proj(T(n;v)Sn)kF (2)

whereT (), Sy are the estimated camera extrinsics and 3D landmark positions in the world

coordinateW (. ) is 2D landmarks estimated by the landmark detector,paofs the projection
function. The effectiveness of the uncertainty score de ned by Eq. 2 depends on the reliability of
estimatingT (), Sn. However, due to the low number of synchronized views as well as noise

inW (), simply performing SfM and triangulation gives poor result as shown in Fig. 4a. This
motivates the following use of MV-NRSfM.

Unsupervised learned MV-NRSfM.Our solution to reliably estimaf€ ., ), S, is to marry both

the multi-view geometric constraints and the temporal redundancies across frames, which leads
to the adaption of the MV-NRSfM metho@][ Limited by space, we refer interested reader to
their paper for detailed treatment. Here we brie y discuss its usage in our problem. In a nutshell,
MV-NRSfM [ 2] assumes that 3D shapes (concatenation of 3D landmark positions) can be compressed
into low-dimensional latent codes if they are properly aligned to a canonical view. MV-NRSfM is
then trained to learn adecodey :' 2 RK | S2 RP 3 which maps a low-dimensional code to

an aligned 3D shape, as well as an encoder netiorkW 1; W ,;::;; Wy | ' which estimates a

single shape code from 2D landmark$V , 2 RP 2 captured from a number of different views

(see Appendix C for the network architecture). Bbthandh, are learned through minimizing the
reprojection error:x

. mit?d-h KW (hv)  Prof(T (nvy(ha  he)(W (n; 1) W (205 55 W v ) DKe - (3)
(nv ) e
(n;v)2S

whereS refers to the training set, anddenotes function composition. Thanks to the constraint from
low dimensional codes as well as the convolution structule afispired from factorization-based
NRSfM methods15], the learned networkisy he are able to infer reasonable 3D landmark positions
from noisy 2D landmark inputs. We provide the network architecture of MV-NRSfM in Appendix C.

In our task, we rely on the robustness of MV-NRSfM not only to learn the 3D reconstruction of the
labeled training set, but also to detect outliers on the unlabeled set using Eq. 2.tAhtiteration of
our self-training, we traim!,, h, given the current labeled st ; from the previous iteration. We

then teshl, h! on the detected 2D landmarks from the unlabeled set to proiuesed in Eq. 2.



Camera extrinsic¥ (., ) are then estimated simply through either an orthographic-N-point (OnP) or
perspective-N-point (PnP) solver depending on the choice of camera projection model. In our data,
we nd that assuming a weak perspective camera and use OnP already gives high delity results.

Finally, We note that the unsupervised learned MV-NRSfM netwoek$y  he is likely not able to
estimate correct 3D landmarks if its 2D inputs are signi cantly different than its training set. Instead,
it tends to output a plausible 3D structure but does not fully match the 2D inputs. This is actually a
desirable behavior for our task, since it serves the purpose of out-of-distribution (OOD) detection —
detecting any shapes that differ signi cantly to the current labeled set. We expect the MV-NRSfM
to cover full shape variations in the input sequences as the “labeled” set expands while the training
progresses and give a detailed analysis in Appendix A.

4 Experiments

Our experiments aim to answer the following questiqiisis MBW able to generate reliable 2D and

3D landmark predictions from limited views (as few as two) given only a few (as few as 1-2%) human
labels?(Il) : Is MBW able to reject outliers and learn a meaningful shape distribution from these few
input labels(11) How important is the number of views in our pipelind¥) Can MBW re ne
(denoise) the 2D candidate inlier§?) Is our pipeline able to compete with leading benchmarks
despite using a fraction of input 2D labels? Before diving into our experiments, we discuss the details
of our pipeline.

Datasets. Datasets with multi-view videos of non-human subjects are rare, so we collect our
own dataset of animals. The collecteab datasetconsists of ve animal categories, each with 2
synchronized videos. The videos contain viewpoint and dynamic appearance changes as well as
common imaging artifacts such as re ection of water or blurred frames (see Fig. 3). For this data we
manually annotated part of the sequences for evaluation. In addition, we used the benchmark dataset
of Human3.6M [9] (H36M) to perform quantitative evaluations of our approach.

Implementation Details We train our approach chNVIDIA RTX 3090GPU with24 GB memory.

A learning rate 00:001is used for all networks. We train each network from scratch. A pre-trained
RAFT network B(] is used with ow iterations oR0. Bottleneck size 08 is used for MV-NRSfM ]

for all categories. We use HRNe&&q] as the backbone 2D detector, and the same con guration is
used for all object categories.

Question I: Limited amount of labels and views We use just two camera views from Directions-1
sequence of Subject #1 from H36M data$t Fach camera view consists b883frames per-view,
amounting t®2766frames in total. Of these, we provide hand labels for only 20 frames (10 frames
per view amounting td0:8% of the total frames) through uniform sampling. Our task is to generate
2D landmark predictions of the remaining frames of this sequence ( 99.2% unlabeled).

We evaluate the accuracy of 2D landmark predictions using the commonly used evaluation metric
of PCK by Andriluka et al. 33]. We report area under the curve of PCK at different thresholds to
understand the nature of 2D prediction errors over all the frames. For consistency, the 2D landmark
error is normalized using head bone length before evaluation. As baseline, we keep the complete
architecture of MBW, but replace MV-NRSfM with multi-view triangulation using groundtruth
calibrated cameras to reject outliers and denoise inliers [28]. We denote this baseline as Trng.

2D landmark prediction performance over all the frames is shown in Fig. 4c. The guantitative results
are shown in Tab. 2 where we we report PCK AUC values to evaluate 2D landmark prediction
accuracy. We evaluate the 3D structure accuracy using Procrustes-Aligned Mean Per Joint Position
Error (PA-MPJPE) 27]. This metric evaluates 3D joint localization accuracy in mm and represents
theL 2 distance between the groundtruth and predicted joint locations after aligning the 3D structures
using a rigid transformation. Table 2 shows that our approach is able to generate high- delity 2D
landmark prediction as well as accurate 3D structure despite starting from ®18%ref 2-View

data. In contrast, the competing baseline fails since it cannot reconstruct good 3D structure from
just2 views and extremely noisy landmark predictions. This experiment helps us answer Question
(1): Yes MBW with MV-NRSfM is able to predict reasonable 2D and 3D landmark prediction using
small amount of labels and views.

Question II: Outlier rejection The proposed pipeline requires bad 2D landmark candidates
(outliers) to be rejected so they are not incorporated into subsequent training iterations as (inlier)
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