
APPENDIX
A Transformations Details

We build IQ tasks with geometric transformation of 3 categories: affine, non-linear and syntactic
transformations.

Affine transformations

We consider 5 types of affine transformations: translation, rotation, reflection, shear, and scaling.

• Translation: with translation vector (i, j), where i, j ∈ {−9,−6,−3, 0, 3, 6, 9}.
• Rotation: with rotation angle α ∈ {k · 15◦ : k ∈ {0, 1, . . . , 23}}.
• Reflection: horizontal or vertical reflection.
• Shear: with shear angles (α, β) where α, β ∈
{−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦}.

• Scaling: with scale coefficient s ∈ {0.5, 0.75, 1, 1.25}.

Non-linear transformations

We consider 2 types of non-linear transformations: fisheye and horizontal wave.

• Fisheye: given pixel (x, y), the transformed pixel (T (x), T (y)) is given by T (x) = x+(x−
cx) · d ·

√
(x− cx)2 + (y − cy)2 and T (y) = y + (y − cy) · d ·

√
(x− cx)2 + (y − cy)2,

where (cx, cy) is the transformation center and d is the distortion factor.
• Horizontal wave: given pixel (x, y), the transformed pixel (T (x), T (y)) is given by T (x) =
x and T (y) = y+a cos(fy), where a is the amplitude of cosine wave and f is the frequency.

Syntactic transformations

We consider 2 types of syntactic transformations: black-white and swap.

• Black-white: the image is horizontally or vertically splitted into 2 subimages (not necessarily
of equal size). One subimage is kept fixed, while the other one will be transformed x 7→ 1−x,
where x is the pixel value.

• Swap: the image is splitted into 4 equal subimages, which are then permuted to achive the
transformed image.

B Principles for Designing the Hypothesis Space F and the Function
Composer φ

We aim to determine general principles for designing F and φ. Suppose µ : X × Y → C0(X ,Y),
where C0(X ,Y) is the space of all continuous functions from X to Y , be the mapping that maps each
input-output pair (x, y) to the correct function transforming x to y. We further define a norm ‖.‖C0
on C0(X ,Y) determined by ‖f‖C0 = sup

x∈X
‖f(x)‖Y , where ‖.‖Y is an arbitrary norm on Y . Our goal

is to find φ as the solution of the optimization problem:

Minimize
∑
(x,y)

‖µx,y − φx,y‖C0 . (1)

We hypothesize that the cardinality of the range R(µ) of µ is much less than the number of data
points (i.e. the number of relations within the dataset is limited), and further supppose R(µ) =
{µ1, µ2, . . . , µk}, where µi’s are functions in C0(X ,Y). The optimization problem in Eq. ((1)) can
be rewritten as:

Minimize
k∑
i=1

∑
(x,y):µi(x)=y

‖µi − φx,y‖C0 . (2)

The optimization problem in Eq. ((2)) can be deduced to multiple optimization subproblems:

1



Minimize
∑

(x,y):µi(x)=y

‖µi − φx,y‖C0 , ∀i = 1, 2, . . . , k. (3)

For each i = 1, 2, . . . , k, let φ∗i ∈ F be the function that best approximates µi. By the triangle
inequality, we obtain

‖µi − φx,y‖C0 ≤ ‖µi − φ∗i ‖C0 + ‖φ∗i − φx,y‖C0 , ∀i = 1, 2, . . . , k.

Solving optimization problem Eq. ((3)) might be difficult, so we instead consider an alternative
optimization problem

Minimize
∑

(x,y):µi(x)=y

(‖µi − φ∗i ‖C0 + ‖φ∗i − φx,y‖C0), ∀i = 1, 2, . . . , k. (4)

We deduce following analysis after observing Eq. ((4)):

• The term ‖φ∗i −φx,y‖C0 suggestsR(φ) (the range of φ) should not be too small or too large,
otherwise there may exist some (x, y) such that φx,y is far away from φ∗i .

• SinceR(φ) is contrained, so should be F . If F is too small, ‖µi − φ∗i ‖C0 may be large for
some i; if F is too large, φ∗i may be far away fromR(φ), which leads to large ‖φ∗i −φx,y‖C0 .

With the above arguments, we suggest the following principles for designing F and φ:

1. F should be constrained by some prior knowledge of µ. For example, if we know µ is
invertible, then F should also contain invertible functions only.

2. φ should be determined on the fly in a meta-learning fashion (associated with each input-
output pair (x, y)) so that we can control its complexity.

C Training setup

For ESBN, Transformer, RelationNet and PrediNet, we follow the same settings as ?, where all given
images (including examples and answer candidates) are treated as a sequence and passed through
a context normalization layer before being fed to the model. For HyperNetwork, we also use the
NICE backbone for fair comparisons and maintain the key memories (but not the value memories) to
compute the weights; at each layer of the backbone, the attention weights are computed as the output
of an LSTM cell, where the input for LSTM is the concatenation of the input and (pseudo-)output of
current layer, and the hidden states are taken from the LSTM cell of previous layer. For FINE with
NICE backbone, we use 4 NICE layers while using 2-layer MLP for FINE with MLP backbone. We
use 8-32 basis weight matrices in the experiments.

We use the Adam optimizer with no weight decay along with gradient clipping with threshold 10 in
all experiments. All tasks are trained with 200-300 epochs. The training and testing batch sizes are
32 and 100, respectively. Feature vectors of images are of size 128.

D More Results

Table 1 reports the full result table with mean & std on Omniglot dataset of single-transformation and
multi-affine-transformation task.

Single-transformation
Multi

affine
Affine Non-linear Syntactic

Trans. Rot. Refl. Shear Scale Fish. H.Wave B&W Swap

RelationNet 27.1±0.4 26.2±0.3 25.5±0.4 27±0.5 27.5±0.4 26.1±0.7 30.2±6.9 49.7±29.1 26.0±2.2 25.3±0.2

PrediNet 68.5±4.0 43.9±6.8 32.9±1.9 62.4±3.7 65.7±2.8 36.2±2.4 46.1±7.9 60.5±8.0 57.5±3.6 34.9±1.1

HyperNet 88.9±1.0 62.0±2.9 94.0±1.9 74.5±1.4 81.8±1.1 63.2±2.0 80.4±1.0 88.6±1.4 90.1±1.0 54.0±4.1

Transformer 89.5±1.0 64.8±1.5 44.3±0.9 86.3±4.1 84±0.9 41.4±11.6 91.0±11.8 97.6±0.4 49.9±18.5 59.4±6.0

ESBN 79.8±0.6 58.6±1.0 50.1±0.3 83.4±1.6 84.5±1.2 67.1±0.8 86.4±1.0 90.5±4.1 71.6±2.7 63.1±0.5

FINE 94.3±0.4 77.6±0.7 95.1±1.0 87.2±0.3 86.6±0.4 78.5±0.7 95.9±0.4 98.4±0.3 96.2±0.2 69.1±0.6

Table 1: Test accuracy (mean & std) (%) on Omniglot dataset.

Table 2 reports the full result table with mean & std on CIFAR100 dataset of single-transformation
tasks.

2



Affine Non-linear Syntactic

Trans. Rot. Refl. Shear Scale Fish. H.Wave B&W Swap

RelationNet 59.9±11.2 49.6±5.8 29.9±1.0 45.3±5.1 66.2±1.3 28.7±1.0 39.5±6.9 26.2±1.4 29.7±0.9

PrediNet 72.4±4.6 65.6±5.0 40.6±2.0 74.3±4.8 76.1±3.6 37.1±1.2 53.9±8.1 32.7±1.8 39.6±1.3

HyperNet 94.8±1.1 86.8±1.3 46.6±0.5 91.3±0.9 85.2±1.2 46.8±0.7 80.5±4.6 47.8±0.9 46±0.8

Transformer 98.4±1.1 86.3±3.8 47.5±1.1 95.4±1.4 84.9±1.2 47.2±1.0 95.1±1.8 51.6±14.3 47.6±0.8

ESBN 96.6±0.7 81.9±1.1 50.6±0.4 90.1±0.7 81.5±0.9 57.7±1.3 95.7±0.7 68.8±6.0 50.5±0.5

FINE 99.2±0.1 91.3±0.2 80.6±14.5 95.6±0.5 87±0.2 76.8±1.3 98.3±0.4 89.1±0.7 51.6±1.7
Table 2: Test accuracy (%) on CIFAR100 dataset of single-transformation tasks.

E Codes
We use codes from the public repository https://github.com/taylorwwebb/emergent_symbols for
baseline models, including RelationNet, PrediNet, Transformer and ESBN.

3

https://github.com/taylorwwebb/emergent_symbols

	 Transformations Details
	 Principles for Designing the Hypothesis Space F and the Function Composer 
	 Training setup
	 More Results
	Codes

