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Abstract

Graph Neural Networks (GNNs) are widely applied to graph learning problems
such as node classification. When scaling up the underlying graphs of GNNs to a
larger size, we are forced to either train on the complete graph and keep the full
graph adjacency and node embeddings in memory (which is often infeasible) or
mini-batch sample the graph (which results in exponentially growing computational
complexities with respect to the number of GNN layers). Various sampling-based
and historical-embedding-based methods are proposed to avoid this exponential
growth of complexities. However, none of these solutions eliminates the linear
dependence on graph size. This paper proposes a sketch-based algorithm whose
training time and memory grow sublinearly with respect to graph size by training
GNNs atop a few compact sketches of graph adjacency and node embeddings.
Based on polynomial tensor-sketch (PTS) theory, our framework provides a novel
protocol for sketching non-linear activations and graph convolution matrices in
GNNs, as opposed to existing methods that sketch linear weights or gradients
in neural networks. In addition, we develop a locality sensitive hashing (LSH)
technique that can be trained to improve the quality of sketches. Experiments on
large-graph benchmarks demonstrate the scalability and competitive performance
of our Sketch-GNNs versus their full-size GNN counterparts.

1 Introduction

Graph Neural Networks (GNNs) have achieved state-of-the-art graph learning in numerous applica-
tions, including classification [27], clustering [3], recommendation systems [43], social networks [16]
and more, through representation learning of target nodes using information aggregated from neigh-
borhoods in the graph. The manner in which GNNs utilize graph topology, however, makes it
challenging to scale learning to larger graphs or deeper models with desirable computational and
memory efficiency. Full-batch training that stores the Laplacian of the complete graph suffers from
a memory complexity of O(m + ndL + d2L) on an n-node, m-edge graph with node features of
dimension d when employing an L-layer graph convolutional network (GCN). This linear memory
complexity dependence on n and the limited memory capacity of GPUs make it difficult to train on
large graphs with millions of nodes or more. As an example, the MAG240M-LSC dataset [21] is a
node classification benchmark with over 240 million nodes that takes over 202 GB of GPU memory
when fully loaded.

To address the memory constraints, two major lines of research are proposed: (1) Sampling-based
approaches [18, 11, 12, 14, 45] based on the idea of implementing message passing only between
the neighbors within a sampled mini-batch; (2) Historical-embedding based techniques, such as
GNNAutoScale [17] and VQ-GNN [15]), which maintain the expressive power of GNNs on sampled
subgraphs using historical embeddings. However, all of these methods require the number of mini-
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batches to be proportional to the size of the graph for fixed memory consumption. In other words,
they significantly increase computational time complexity in exchange for memory efficiency when
scaling up to large graphs. For example, training a 4-layer GCN with just 333K parameters (1.3 MB)
for 500 epochs on ogbn-papers100M can take more than 2 days on a powerful AWS p4d.24x large
instance [21].

We seek to achieve efficient training of GNNs with time and memory complexities sublinear in
graph size without significant accuracy degradation. Despite the difficulty of this goal, it should be
achievable given that (1) the number of learnable parameters in GNNs is independent of the graph
size, and (2) training may not require a traversal of all local neighborhoods on a graph but rather
only the most representative ones (thus sublinear in graph size) as some neighborhoods may be
very similar. In addition, commonly-used GNNs are typically small and shallow with limited model
capacity and expressive power, indicating that a modest proportion of data may suffice.

This paper presents Sketch-GNN, a framework for training GNNs with sublinear time and memory
complexity with respect to graph size. Using the idea of sketching, which maps high-dimensional
data structures to a lower dimension through entry hashing, we sketch the n× n adjacency matrix
and the n × d node feature matrix to a few c × c and c × d sketches respectively before training,
where c is the sketch dimension. While most existing literature focuses on sketching linear weights
or gradients, we introduce a method for sketching non-linear activation units using polynomial tensor
sketch theory [19]. This preserves prediction accuracy while avoiding the need to “unsketch” back to
the original high dimensional graph-node space n, thereby eliminating the dependence of training
complexity on the underlying graph size n. Moreover, we propose to learn and update the sketches in
an online manner using learnable locality-sensitive hashing (LSH) [9]. This reduces the performance
loss by adaptively enhancing the sketch quality while incurring minor overhead sublinear in the
graph size. In practice, we find that the sketch-ratio c/n required to maintain “full-graph” model
performance drops as n increases; as a result, our Sketch-GNN enjoys sublinear training scalability.

Sketch-GNN applies sketching techniques to GNNs to achieve training complexity sublinear to the
data size. This is fundamentally different from the few existing works which sketch the weights or
gradients [30, 13, 26, 29, 37] to reduce the memory footprint of the model and speed up optimization.
To the best of our knowledge, Sketch-GNN is the first sub-linear complexity training algorithm for
GNNs, based on LSH and tensor sketching. The sublinear efficiency obtained applies to various
types of GNNs, including GCN [27] and GraphSAGE [18]. Compared to the data compression
approach [22, 23], which compresses the input graph to a smaller one with fewer nodes and edges
before training, our Sketch-GNN is advantageous since it does not suffer from an extremely long
preprocessing time (which renders the training speedups meaningless) and performs much better
across GNN types/architectures.

The remainder of this paper is organized as follows. Section 2 summarizes the notions and prelimi-
naries of GNNs and sketching. Section 3 describes how to approximate the GNN operations on the
full graph topology with sketches. Section 3.3 introduces potential drawbacks of using fixed sketches
and develops algorithms for updating sketches using learnable LSHs. In Section 4, we compare
our approach to the graph compression approach and other GNN scalability methods. In Section 5,
we report the performance and efficiency of Sketch-GNNs as well as several proof-of-concept and
ablation experiments. Finally, Section 6 concludes this paper with a summary of limitations, future
directions, and broader impacts.

2 Preliminaries

Basic Notations. Consider a graph with n nodes andm edges. Connectivity is given by the adjacency
matrix A ∈ {0, 1}n×n and features on nodes are represented by the matrix X ∈ Rn×d, where d is the
number of features. Given a matrix C, let Ci,j , Ci,:, and C:,j denote its (i, j)-th entry, i-th row, and
j-th column, respectively. � denotes the element-wise (Hadamard) product, whereas C�k represents
the k-th order element-wise power. ‖ · ‖F is the symbol for the Frobenius norm. In ∈ Rn×n denotes
the identity matrix, whereas 1n ∈ Rn is the vector whose elements are all ones. Med{·} represents
the element-wise median over a set of matrices. Superscripts are used to indicate multiple instances
of the same kind of variable; for instance, X(l) ∈ Rn×dl are the node representations on layer l.

Unified Framework of GNNs. A Graph Neural Network (GNN) layer receives the node representa-
tion of the preceding layer X(l) ∈ Rn×d as input and outputs a new representation X(l+1) ∈ Rn×d,
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where X = X(0) ∈ Rn×d are the input features. Although GNNs are designed following different
guiding principles, such as neighborhood aggregation (GraphSAGE), spatial convolution (GCN),
self-attention (GAT), and Weisfeiler-Lehman (WL) alignment (GIN [44]), the great majority of
GNNs can be interpreted as performing message passing on node features, followed by feature
transformation and an activation function. The update rule of these GNNs can be summarized as [15]

X(l+1) = σ
(∑

q
C(q)X(l)W (l,q)

)
. (1)

Where C(q) ∈ Rn×n denotes the q-th convolution matrix that defines the message passing operator,
q ∈ Z+ is index of convolution, σ(·) is some choice of nonlinear activation function, and W (l,q) ∈
Rdl×dl+1 denotes the learnable linear weight matrix for the l-th layer and q-th filter. GNNs under this
paradigm differ from each other by their choice of convolution matrices C(q), which can be either
fixed (GCN and GraphSAGE) or learnable (GAT). In Appendix A.1, we re-formulate a number of
well-known GNNs under this framework. Unless otherwise specified, we assume q = 1 and d = dl
for every layer l ∈ [L] for notational convenience.

Count Sketch and Tensor Sketch. (1) Count sketch [7, 41] is an efficient dimensionality re-
duction method that projects an n-dimensional vector u into a smaller c-dimensional space us-
ing a random hash table h : [n] → [c] and a binary Rademacher variable s : [n] → {±1},
where [n] = {1, . . . , n}. Count sketch is defined as CS(u)i =

∑
h(j)=i s(j)uj , which is a

linear transformation of u, i.e., CS(u) = Ru. Here, R ∈ Rc×n denotes the so-called count
sketch matrix, which has exactly one non-zero element per column. (2) Tensor sketch [32] is
proposed as a generalization of count sketch to the tensor product of vectors. Given z ∈ Rn
and an order k, consider a k number of i.i.d. hash tables h(1), . . . , h(k) : [n] → [c] and i.i.d.
binary Rademacher variables s(1), . . . , s(k) : [n] → {±1}. Tensor sketch also projects vector
z ∈ Rn into Rc, and is defined as TSk(z)i =

∑
h(j1,··· ,jk)=i s

(1)(j1) · · · s(k)(jk)zj1 · · · zjk , where
h(j1, · · · , jk) = (h(1)(j1) + · · · + h(k)(jk)) mod c. By definition, a tensor sketch of order k = 1
degenerates to count sketch; TS1(·) = CS(·). (3) We define count sketch of a matrix U ∈ Rd×n as the
count sketch of each row vector individually, i.e., CS(U) ∈ Rd×c where [CS(U)]i,: = CS(Ui,:). The
tensor sketch of a matrix is defined in the same way. Pham and Pagh [32] devise a fast computation
of tensor sketch of U ∈Rd×n (sketch dimension c and order k) using count sketches and the Fast
Fourier Transform (FFT):

TSk(U) = FFT−1

(⊙k

p=1
FFT

(
CS(p)(U)

))
, (2)

where CS(p)(·) is the count sketch with hash function h(p) and Rademacher variable s(p). FFT(·)
and FFT−1(·) are the FFT and its inverse applied to each row of a matrix.

Locality Sensitive Hashing. The definition of count sketch and tensor sketch is based on hash
table(s) that only requires a data independent uniformity, i.e., with high probability the hash-buckets
are of similar size. In contrast, locality sensitive hashing (LSH) is a hashing scheme that uses
locality-sensitive hash function H : Rd → [c] to ensure that nearby vectors are hashed into the
same bucket (out of c buckets in total) with high probability while distant ones are not. SimHash
achieves the locality-sensitive property by employing random projections [8]. Given a random matrix
P ∈ Rc/2×d, SimHash defines a locality-sensitive hash function

H(u) = arg max ([Pu ‖ −Pu]) , (3)

where [· ‖ ·] denotes concatenation of two vectors and arg max returns the index of the largest
element. SimHash is efficient for large batches of vectors [1]. In this paper, we apply a learnable
version of SimHash that is proposed by Chen et al. [9], in which the projection matrix P is updated
using gradient descent; see Section 3.3 for details.

3 Sketch-GNN Framework via Polynomial Tensor Sketch

Problem and Insights. We intend to develop a “sketched counterpart” of GNNs, where training
is based solely on (dimensionality-reduced) compact sketches of the convolution and node feature
matrices, the sizes of which can be set independently of the graph size n. In each layer, Sketch-GNN
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receives some sketches of the convolution matrix C and node representation matrix X(l) and outputs
some sketches of the node representations X(l+1). As a result, the memory and time complexities
are inherently independent of n. The bottleneck of this problem is estimating the nonlinear activated
product σ(CX(l)W (l)), where W (l) is the learnable weight of the l-th layer.

Before considering the nonlinear activation, as a first step, we approximate the linear product
CX(l)W (l), using dimensionality reduction techniques such as random projections and low-rank
decompositions. As a direct corollary of the (distributional) Johnson–Lindenstrauss (JL) lemma [25],
there exists a projection matrix R ∈ Rc×n such that CX(l)W (l) ≈

(
CRT

) (
RX(l)W (l)

)
[15].

Tensor sketch is one of the techniques that can achieve the JL bound [2]; for an error bound, see
Lemma 1 in Appendix B.

Count sketch offers a good estimation of a matrix product, CX(l)W (l) ≈ CS(C)CS((X(l)W (l))T)T.
While tensor sketch can be used to approximate the power of matrix product, i.e., (CX(l)W (l))�k ≈
TSk(C)TSk((X(l)W (l))T)T, where (·)�k is the k-th order element-wise power. If we combine the
estimators of element-wise powers of CX(l)W (l), we can approximate the (element-wise) activation
σ(·) on CX(l)W (l). This technique is known as a polynomial tensor sketch (PTS) and is discussed
in [19]. In this paper, we apply PTS to sketch the message passing of GNNs, including the nonlinear
activations.

3.1 Sketch-GNN: Approximated Update Rules

Polynomial Tensor Sketch. Our goal is to approximate the update rule of GNNs (Eq. (1)) in each
layer. We first expand the element-wise non-linearity σ as a power series, and then approximate the
powers using count/tensor sketch, i.e.,

X(l+1) = σ(CX(l)W (l)) ≈
∑r

k=1
ck
(
CX(l)W (l)

)�k ≈∑r

k=1
ck TSk(C) TSk

(
(X(l)W (l))T

)T
,

(4)

where the k = 0 term always evaluates to zero as σ(0) = 0. In Eq. (4), coefficients ck are
introduced to enable learning or data-driven selection of the weights when combing the terms of
different order k. This allows for the approximation of a variety of nonlinear activation functions,
such as sigmoid and ReLU. The error of this approximation relies on the precise estimation of the
coefficients {ck}rk=1. To identify the coefficients, Han et al. [19] design a coreset-based regression
algorithm, which requires at least O(n) additional time and memory. Since the coefficients {ck}rk=1
that achieve the best performance for the classification tasks do not necessarily approximate a
known activation, we propose learning the coefficients {ck}rk=1 to optimize the classification loss
directly using gradient descent with simple L2 regularization. Experiments indicate that the learned
coefficients can approximate the sigmoid activation with relative errors comparable to those of the
coreset-based method; see Fig. 1a in Section 5.

Approximated Update Rules. The remaining step is to approximate the operations of GNNs using
PTS (Eq. (4)) on sketches of convolution matrix C and node representation matrix X(l). Consider r
pairwise-independent count sketches {CS(k)(·)}rk=1 with sketch dimension c, associated with hash
tables h(1), . . . , h(r) and binary Rademacher variables s(1), . . . , s(r), defined prior to training an
L-layer Sketch-GNN. Using these hash tables and Rademacher variables, we may also construct
tensor sketches {TSk(·)}rk=2 up to the maximum order r.

In Sketch-GNN, sketches of node representations (instead of the O(n) standard representation) are
propagated between layers. To get rid of the dependence on n, we count sketch both sides of Eq. (4)

S
(l+1,k′)
X := CS(k′)

(
(X(l+1))T

)
≈ CS(k′)

(∑r

k=1
c
(l)
k TSk

(
(X(l)W (l))T

)
TSk(C)T

)
=
∑r

k=1
c
(l)
k TSk

(
(X(l)W (l))T

)
CS(k′)

(
TSk(C)T

)
=
∑r

k=1
c
(l)
k FFT−1

(⊙k

p=1
FFT

(
(W (l))TS

(l,p)
X

))
S

(l,k,k′)
C ,

(5)

where S(l+1,k′)
X = CS(k′)((X(l+1))T) ∈ Rd×c is the transpose of column-wise count sketch of

X(l+1), and the superscripts of S(l+1,k′)
X indicate that it is the k′-th count sketch of X(l+1) (i.e.,
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sketched by CS(k)(·)). In the second line of Eq. (5), we can move the matrix, c(l)k TSk((X(l)W (l))T),
multiplied on the left to TSk(C)T out of the count sketch function CS(k′)(·), since the operation of
row-wise count sketch CS(k′)(·) is equivalent to multiplying the associated count sketch matrix R(k′)

on the right, i.e., for any U ∈ Rn×n, CS(k′)(U) = UR(k′). In the third line of Eq. (5), we denote the
“two-sided sketch” of the convolution matrix as S(l,k,k′)

C := CS(k′)(TSk(C)T) ∈ Rc×c and expand
the tensor sketch TSk((X(l)W (l))T) using the FFT-based formula (Eq. (2)).

Eq. (5) is the (recursive) update rule of Sketch-GNN, which approximates the operation of the
original GNN and learns the sketches of representations. Looking at the both ends of Eq. (5), we
obtain a formula that approximates the sketches of X(l+1) using the sketches of X(l) and C, with
learnable weights W (l) ∈ Rd×d and coefficients {c(l)k ∈ R}rk=1. In practice, to mitigate the error
accumulation when propagating through multiple layers, we employ skip-connections across layers
in Sketch-GNNs (Eq. (5) and their full-size GNN counterparts. The forward-pass and backward-
propagation between the input sketches {S(0,k)

X }rk=1 and the sketches of the final layer representations
{S(L,k)}rk=1 take O(c) time and memory (see Section 3.3 for complexity details).

3.2 Error Bound on Estimated Representation

Based on Lemma 1 and the results in [19], we establish an error bound on the estimated final layer
representation X̃(L) for GCN; see Appendix B for the proof and discussions.

Theorem 1. For a Sketch-GNN with L layers, the estimated final layer representation is
X̃(L) = Med{R(k)S

(L,k)
X | k = 1, · · · , r}, where the sketches are recursively computed us-

ing Eq. (5). For Γ(l) = max{5‖X(l)W (l)‖2F , (2 + 3r)
∑
i(
∑
j [X

(l)W (l)]i,j)
r}, it holds that

E(‖X(L) − X̃(L)‖2F )/‖X(L)‖2F ≤
∏L
l=1(1 + 2/(1 + cλ(l)2

/nrΓ(l))) − 1, where λ(l) ≥ 0 is the
smallest singular value of the matrix Z ∈ Rnd×r and Z:,k is the vectorization of (CX(l)W (l))�k.
Moreover, if (c(λ(l))2/nrΓ(l))� 1 holds true for every layer, the relative error is O(L(n/c)), which
is proportional to the depth of the model, and inversely proportional to the sketch ratio (c/n).

Remarks. Despite the fact that in Theorem 1 the error bound grows for smaller sketch ratios c/n,
we observe in experiments that the sketch-ratio required for competitive performance decreases as
n increases; see Section 5. As for the number of independent sketches r, we know from Lemma 1
that the dependence of r on n is r = Ω(3logc n) which is negligible when n is not too small; thus, in
practice r = 3 is used.

The theoretical framework may not completely correspond to reality. Experimentally, the coefficients
{{c(l)k }rk=1}Ll=1 with the highest performance do not necessarily approximate a known activation. We
defer the challenging problem of bounding the error of sketches and coefficients learned by gradients
to future studies. Although the error bound is in expectation, we do not train over different sketches
per iteration due to the instability caused by randomness. Instead, we introduce learnable locality
sensitive hashing (LSH) in the next section to counteract the approximation limitations caused by the
fixed number of sketches.

3.3 A Practical Implementation: Learning Sketches using LSH

Motivations of Learnable Sketches. In Section 3, we apply polynomial tensor sketch (PTS) to
approximate the operations of GNNs on sketches of the convolution and feature matrices. Nonetheless,
the pre-computed sketches are fixed during training, resulting in two major drawbacks: (1) The
performance is limited by the quality of the initial sketches. For example, if the randomly-generated
hash tables {h(k)}rk=1 have unevenly distributed buckets, there will be more hash collisions and
consequently worse sketch representations. The performance will suffer because only sketches are
used in training. (2) More importantly, when multiple Sketch-GNN layers are stacked, the input
representation X(l) changes during training (starting from the second layer). Fixed hash tables are
not tailored to the “changing” hidden representations.

We seek a method for efficiently constructing high-quality hash tables tailored for each hidden
embedding. Locality sensitive hashing (LSH) is a suitable tool since it is data-dependent and
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preserves data similarity by hashing similar vectors into the same bucket. This can significantly
improve the quality of sketches by reducing the errors due to hash collisions.

Combining LSH with Sketching. At the time of sketching, the hash table h(k) : [n] → [c] is
replaced with an LSH function H(k) : Rd → [c], for any k ∈ [r]. Specifically, in the l-th layer of a
Sketch-GNN, we hash the i-th node to the H(k)(X

(l)
i,: )-th bucket for every i ∈ [n], where X(l)

i,: is the
embedding vector of node i. As a result, we define a data-dependent hash table

h(l,k)(i) = H(k)(X
(l)
i,: ) (6)

that can be used for computing the sketches of S(l,k)
X and S(l,k,k′)

C . This LSH-based sketching can
be directly applied to sketch the fixed convolution matrix and the input feature matrix. If SimHash
is used, i.e., H(k)(u) = arg max

([
P (k)u ‖ −P (k)u

])
(Eq. (3)), an additional O(ncr(log c + d))

computational overhead is introduced to hash the n nodes for the r hash tables during preprocessing;
see Appendix F more information. SimHash(es) are implemented as simple matrix multiplications
that are practically very fast.

In order to employ LSH-based hash functions customized to each layer to sketch the hidden repre-
sentations of a Sketch-GNN (i.e., l = 2, . . . , L− 1), we face two major challenges: (1) Unless we
explicitly unsketch in each layer, the estimated hidden representations X̃(l)(l = 2, . . . , L− 1) cannot
be accessed and used to compute the hash tables. However, unsketching any hidden representation,
i.e., X̃(l) = Med{R(k)S

(l,k)
X | k = 1, · · · , r}, requires O(n) memory and time. We need to come

up with an efficient algorithm that updates the hash tables without having to unsketch the complete
representation. (2) It’s unclear how to change the underlying hash table of a sketch across layers
without unsketching to the n-dimensional space, even if we know the most up-to-date hash tables
suited to each layer.

The challenge (2), i.e., changing the underlying hash table of across layers, can be solved by
maintaining a sparse c× c matrix T (l,k) := R(l,k)(R(l+1,k))T for each k ∈ [r], which only requires
O(cr) memory and time overhead; see Appendix C for more information and detailed discussions.
We focus on challenge (1) for the remainder of this section.

Online Learning of Sketches. To learn a hash table tailored for a hidden layer using LSH without
unsketching, we develop an efficient algorithm to update the LSH function using only a size-|B|
subset of the length-n unsketched representations, where B denotes a subset of nodes we select. This
algorithm, which we term online learning of sketches, is made up of two key parts: (Part 1) select a
subset of nodes B ⊆ [n] to effectively update the hash table, and (Part 2) update the LSH function
H(·) with a triplet loss computed using this subset.

(1) Selection of subset B: Because model parameters are updated slowly during neural network
training, the data-dependent LSH hash tables also changes slowly (this behavior was detailed in [9]).
The amount of updates to the hash table drops very fast along with training, empirically verified
in Fig. 1b (left) in Section 5. Based on this insight, we only need to update a small fraction of the
hash table during training. To identify this subset B ∈ [n] of nodes, gradient signals can be used.
Intuitively, a node representation vector hashed into the wrong bucket will be aggregated with distant
vectors and lead to larger errors and subsequently larger gradient signals. Specifically, we propose
finding the candidate set B of nodes by taking the union of the several buckets with the largest
gradients, i.e., B = {i | h(l,k)(i) = arg maxj [S

(l,k)
X ]j,: for some k}. The memory and overhead

required to update the entries in B in the hash table is O(|B|).

(2) Update of LSH function: In order to update the projection matrix P that defines a SimHash
H(k) : Rd → [c] (Eq. (3)), instead of the O(n) full triplet loss introduced by [9], we consider a
sampled version of the triplet loss on the candidate set B with O(|B|) complexity, namely

L(H,P+,P−) = max

{
0,
∑

(u,v)∈P−
cos(H(u), H(v))−

∑
(u,v)∈P+

cos(H(u), H(v)) + α

}
, (7)

where P+ = {(X̃i,:, X̃j,:) | i, j ∈ B, 〈X̃i,:, X̃j,:〉 > t+} and P− = {(X̃:,i, X̃:,j) | i, j ∈
B, 〈X̃:,i, X̃:,j〉 < t−} are the similar and dissimilar node-pairs in the subset B; t+ > t− and
α > 0 are hyper-parameters. This triplet loss L(H,P+,P−) is used to update P using gradient
descent, as described in [9], with a O(c|B|d+ |B|2) overhead. Experimental validation of this LSH
update mechanism can be found in Fig. 1b in Section 5.
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Avoiding O(n) in Loss Evaluation. We can estimate the final layer representation using the r
sketches {S(L,k)}rk=1, i.e., X̃(L) = Med{R(k)S

(L,k)
X | k = 1, · · · , r} and compute the losses of all

nodes for node classification (or some node pairs for link prediction). However, the complexity of
loss evaluation is O(n), proportional to the number of ground-truth labels. In order to avoid O(n)
complexity completely, rather than un-sketching the node representation for all labeled nodes, we
employ the locality sensitive hashing (LSH) technique again for loss calculation so that only a subset
of node losses are evaluated based on a set of hash tables. Specifically, we construct an LSH hash
table for each class in a node classification problem, which indexes all of the labeled nodes of this
class and can be utilized to choose the nodes with poor predictions by leveraging the locality property.
This technique, introduced in [10], is known as sparse forward-pass and back-propagation, and we
defer the descriptions to Appendix C.

One-time Preprocessing. If the convolution matrix C is fixed (GCN, GraphSAGE), the “two-sided
sketch” S(l,k,k′)

C = CS(k′)(TSk(C)T) ∈ Rc×c is the same in each layer and may be denoted as
S

(k,k′)
C . In addition, all of the r2 sketches of C, i.e., {{S(k,k′)

C ∈ Rc×c}rk=1}rk′=1 can be computed
during the preprocessing phase. If the convolution matrix C is sparse (which is true for most GNNs
following Eq. (1) on a sparse graph), we can use the sparse matrix representations for the sketches
{{S(k,k′)

C ∈ Rc×c}rk=1}rk′=1, and the total memory taken by the r2 sketches is O(r2c(m/n)) where
(2m/n) is the average node degree (see Appendix F for details). We also need to compute the r count
sketches of the input node feature matrix X = X(0), i.e., {S(0,k)

X }rk=1 during preprocessing, which
requires O(rcd) memory in total. In this regard, we have substituted the input data with compact
graph-size independent sketches (i.e., O(c) memory). Although the preprocessing time required to
compute these sketches is O(n), it is a one-time cost prior to training, and it is widely known that
sketching is practically very fast.

Complexities of Sketch-GCN. The theoretical complexities of Sketch-GNN is summarized as
follows, where for simplicity we assume bounded maximum node degree, i.e., m = O(n). (1)
Training Complexity: (1a) Forward and backward propagation: O(Lcrd(log(c) + d+m/n)) =
O(c) time and O(Lr(cd + rm/n)) = O(c) memory. (1b) Hash and sketch update: O(Lr(c +
|B|d)) = O(c) time and memory. (2) Preprocessing: O(r(rm + n + c)) = O(n) time and
O(rc(d + rm/n)) = O(c) memory. (3) Inference: O(Ld(m + nd)) = O(n) time and O(m +
Ld(n + d)) = O(n) memory (the same as a standard GCN). We defer a detailed summary of the
theoretical complexities of Sketch-GNN to Appendix F.

We generalize Sketch-GNN to more GNN models in Appendix D and the pseudo-code which outlines
the complete workflow of Sketch-GNN can be find in Appendix E.

4 Related Work

Towards sublinear GNNs. Nearly all existing scalable methods focus on mini-batching the large
graph and resolving the memory bottleneck of GNNs, without reducing the epoch training time.
Few recent work focus on graph compression [22, 24] can also achieve sublinear training time
by coarsening (e.g., using [31]) the graph during preprocessing or condensing the graph with
dataset condensation techniques like gradient-matching [46], so that we can train GNNs on the
coarsened/condensed graph with fewer nodes and edges. Nevertheless, these strategies suffer from
two issues: (1) Although graph coarsening/condensation is a one-time cost, the memory and time
overheads are often worse than O(n) and can be prohibitively large on graphs with over 100K
nodes. Even the fastest graph coarsening algorithm used by [22] takes more than 68 minutes to
process the 233K-node Reddit graph [45]. The long preprocessing time renders any training speedups
meaningless. (2) The test performance of a model trained on the coarsened graph highly depends on
the GNN type. For graph condensation, if we do not carefully choose the GNN architecture used
during condensation, the test performance of downstream GNNs can suffer from a 9.5% accuracy
drop on the Cora graph [23]. For graph coarsening, although the performance of [22] on GCN is
good, significant performance degradations are observed on GraphSAGE and GAT; see Section 5.

Other scalable methods for GNNs can be categorized into four classes, all of them still require
linear training complexities. (A) On a large sparse graph with n nodes and m edges, the “full-graph”
training of a L-layer GCN with d-dimensional (hidden) features per layer requiresO(m+ndL+d2L)
memory and O(mdL+ nd2L) epoch time. (B) Sampling-based methods sample mini-batches from
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the complete graph following three schemes: (1) node-wisely sample a subset of neighbors in
each layer to reduce the neighborhood size; (2) layer-wisely sample a set of nodes independently
in each layer; (3) subgraph-wisely sample a subgraph directly and simply forward-pass and back-
propagate on that subgraph. (B.1) GraphSAGE [18] samples r neighbors for each node while ignoring
messages from other neighbors. O(brL) nodes are sampled in a mini-batch (where b is the mini-batch
size), and the epoch time is O(ndrL); therefore, GraphSAGE is impractical for deep GNNs on a
large graph. FastGCN [12] and LADIES [48] are layer-sampling methods that apply importance
sampling to reduce variance. (B.2) The subgraph-wise scheme has the best performance and is
most prevalent. Cluster-GCN [14] partitions the graph into many densely connected subgraphs and
samples a subset of subgraphs (with edges between subgraphs added back) for training per iteration.
GraphSAINT [45] samples a set of nodes and uses the induced subgraph for mini-batch training.
Both Cluster-GCN and GraphSAINT require O(mdL + nd2L) epoch time, which is the same as
“full-graph” training, although Cluster-GCN also needs O(m) pre-processing time. (C) Apart from
sampling strategies, historical-embedding-based methods propose mitigating sampling errors and
improving performance using some stored embeddings. GNNAutoScale [17] keeps a snapshot of
all embeddings in CPU memory, leading to a large O(ndL) memory overhead. VQ-GNN [15]
maintains a vector quantized data structure for the historical embeddings, whose size is independent
of n. (D) Linearized GNNs [42, 4, 33] replace the message passing operation in each layer with a
one-time message passing during preprocessing. They are practically efficient, but the theoretical
complexities remain O(n). Linearized models usually over-simplify the corresponding GNN and
limit its expressive power.

We defer discussion of more scalable GNN papers and the broad literature of sketching and LHS for
neural networks to Appendix G.

5 Experiments
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Figure 1: Figure 1a Relative errors when applying polynomial tensor sketch (PTS) to the nonlinear unit
σ(CXW ) following Eq. (4). The dataset used is Cora [34]. σ is the sigmoid activation. We set r = 5
and test on a GCN with fixed W = Id ∈ Rd×d. The coefficients {ck}rk=1 can be computed by a coreset
regression [19] (blue), by a Taylor expansion of σ(·) (orange), or learned from gradient descent proposed by us
(green). Figure 1b The left plot shows the Hamming distance changes of the hash table in the 2nd layer during
the training of a 2-layer Sketch-GCN, where the hash table is constructed from the unsketched representation
X̃(1) using SimHash. The right plot shows the Hamming distances between the hash table learned using our
algorithm and the hash table constructed directly from X̃(1).

Table 1: Performance of Sketch-GCN in comparison to Graph
Condensation [23] and Graph Coarsening [22] on Cora and
Citeseer with 2-layer GCNs.

Benchmark Cora Citeseer

GNN Model GCN

“Full-Graph” (oracle) .8119± .0023 .7191± .0018

Sketch-Ratio (c/n). 0.013 0.026 0.009 0.018

Coarsening .3121± .0024 .6518± .0051 .5218± .0049 .5908± .0045
GCond .7971± .0113 .8002± .0075 .7052± .0129 .7059± .0087

Sketch-GNN (ours) .8012± .0104 .8035± .0071 .7091± .0093 .7114± .0059

Table 2: Performance across GNN architectures
in comparison to Graph Condensation [23] on
Cora with sketch ratio c/n = 0.026.

Preprocessing
Architecture

Downstream Architecture

GCN GraphSAGE

“Full-Graph” (oracle) N/A .8119± .0023 .7981± .0053

GCond
GCN .7065± .0367 .6024± .0203

GraphSAGE .7694± .0051 .7618± .0087

Sketch-GNN (ours) N/A .8035± .0071 .7914± .0121

In this section, we evaluate the proposed Sketch-GNN algorithm and compare it with the (oracle)
“full-graph” training baseline, a graph-coarsening based approach (Coarsening [22]) and a dataset
condensation based approach (GCond [23]) which enjoy sublinear training time, and other scalable
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Table 3: Performance of Sketch-GNN in comparison to Graph Coarsening [22] on ogbn-arxiv.

Benchmark ogbn-arxiv

GNN Model GCN GraphSAGE GAT

“Full-Graph” (oracle) .7174± .0029 .7149± .0027 .7233± .0045

Sketch Ratio (c/n) 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

Coarsening .6508± .0091 .6665± .0010 .6892± .0035 .5264± .0251 .5996± .0134 .6609± .0061 .5177± .0028 .5946± .0027 .6307± .0041

Sketch-GNN (ours) .6913± .0154 .7004± .0096 .7028± .0087 .6929± .0194 .6963± .0056 .7048± .0080 .6967± .0067 .6910± .0135 .7053± .0034

Table 4: Performance of Sketch-GNN versus SGC [42], GraphSAINT [45], and VQ-GNN [15].

Benchmark ogbn-arxiv Reddit ogbn-product

SGC .6944± .0005 .9464± .0011 .6683± .0029

GNN Model GCN GraphSAGE GAT GCN GraphSAGE GAT GCN GraphSAGE GAT

“Full-Graph” (oracle) .7174± .0029 .7149± .0027 .7233± .0045 OOM OOM OOM OOM OOM OOM

GraphSAINT .7079± .0057 .6987± .0039 .7117± .0032 .9225± .0057 .9581± .0074 .9431± .0067 .7602± .0021 .7908± .0024 .7971± .0042

VQ-GNN .7055± .0033 .7028± .0047 .7043± .0034 .9399± .0021 .9449± .0024 .9438± .0059 .7524± .0032 .7809± .0019 .7823± .0049

Sketch Ratio (c/n) 0.4 0.3 0.2

Sketch-GNN (ours) .7028± .0087 .7048± .0080 .7053± .0034 .9280± .0034 0.9485± .0061 .9326± .0063 .7553± .0105 .7762± .0093 .7748± .0071

methods including: a sampling-based method (GraphSAINT [45]), a historical-embedding based
method (VQ-GNN [15]), and a linearized GNN (SGC [42]). We test on two small graph benchmarks
including Cora, Citeseer and several large graph benchmarks including ogbn-arxiv (169K nodes,
1.2M edges), Reddit (233K nodes, 11.6M edges), and ogbn-products (2.4M nodes, 61.9M edges)
from [20, 45]. See Appendix H for the implementation details.

Proof-of-Concept Experiments: (1) Errors of gradient-learned PTS coefficients: In Fig. 1a,
we train the PTS coefficients to approximate the sigmoid-activated σ(CXW ) to evaluate its ap-
proximation power to the ground-truth activation. The relative errors are comparable to those of
the coreset-based method. (2) Slow-change phenomenon of LSH hash tables: In Fig. 1b (left),
we count the changes of the hash table constructed from an unsketched hidden representation for
each epoch, characterized by the Hamming distances between consecutive updates. The changes
drop rapidly as training progresses, indicating that apart from the beginning of training, the hash
codes of most nodes do not change at each update. (3) Sampled triplet loss for learnable LSH:
In Fig. 1b (right), we verify the effectiveness of our update mechanism for LSH hash functions as the
learned hash table gradually approaches the “ground truth”, i.e., the hash table constructed from the
unsketched hidden representation.

Performance of Sketch-GNNs. We first compare the performance of Sketch-GNN with the other
sublinear training methods, i.e., graph coarsening [22] and graph condensation [23] under various
sketch ratios to understand how their performance is affected by the memory bottleneck. Since graph
condensation (GCond) requires learning the condensed graph from scratch and cannot be scaled to
large graphs with a large sketch ratio [23], we first compare with GCond and Coarsening on the two
small graphs using a 2-layer GCN in Table 1. We see GCond and Sketch-GNN can outperform graph
coarsening by a large margin and can roughly match the full-graph training performance. However,
GCond suffers from a processing time that is longer than the training time (see below) and generalizes
poorly across GNN architectures. In Table 2, we compare the performance of Sketch-GNN and
GCond across two GNN architectures (GCN and GraphSAGE). While graph condensation (GCond)
relies on a “reference architecture” during condensation, Sketch-GNN does not require preprocessing,
and the sublinear complexity is granted by sketching “on the fly”. In Table 2, we see the performance
of GCond is significantly degraded when generalized across architectures, while Sketch-GNNs’
performance is always close to that of full-graph training.

In Table 3, we report the test accuracy of both approaches on ogbn-arxiv, with a 3-layer GCN,
GraphSAGE, or GAT as the backbone and a sketch ratio of 0.1, 0.2, or 0.4. We see there are
significant performance degradations when applying Coarsening to GraphSAGE and GAT, even under
sketch ratio 0.4, indicating that Coarsening may be compatible only with specific GNNs (GCN and
APPNP as explained in [22]). In contrast, the performance drops of Sketch-GNN are always small
across all architectures, even when the sketch ratio is 0.1. Therefore, our approach generalizes to
more GNN architectures and consistently outperforms the Coarsening method.

We move on to compare Sketch-GNN with linearized GNNs (SGC), sampling-based (GraphSAINT),
and historical-embedding-based (VQ-GNN) methods. In Table 4, we report the performance of
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SGC, the “full-graph” training (oracle), GraphSAINT and VQ-GNN with mini-batch size 50K (their
performance is not affected by the choice of mini-batch size if it is not too small), and Sketch-
GNN with appropriate sketch ratios (0.4 on ogbn-arxiv, 0.3 on Reddit, and 0.2 on ogbn-product).
From Table 4, we confirm that, with an appropriate sketch ratio, the performance of Sketch-GNN
is usually close to the “full-graph” oracle and competitive with the other scalable approaches. The
needed sketch ratio c/n for Sketch-GNN to achieve competitive performance reduces as graph size
grows. This further illustrates that, as previously indicated, the required training complexities (to get
acceptable performance) are sublinear to the graph size.

Efficiency of Sketch-GNNs. For efficiency measures, we are interested in the comparison to
Coarsening and GCond, since these two approaches achieve sublinear training time at the cost of
some preprocessing overheads. Firstly, we want to address that both Coarsening and GCond suffer
from an extremely long preprocessing time. On ogbn-arxiv, Coarsening and GCond require 358 and
494 seconds on average, respectively, to compress the original graph. In contrast, our Sketch-GNN
sketch the input graph “on the fly” and does not suffer from a preprocessing overhead. On ogbn-
arxiv with a learning rate of 0.001, full-graph training of GCN for 300 epochs is more than enough
for convergence, which only takes 96 seconds on average. The preprocessing time of Coarsening
and GCond is much longer than the convergence time of full-graph training, which renders their
training speedups meaningless. However, Sketch-GNN often requires more training memory than
Coarsening and GCond to maintain the copies of sketches and additional data structures, although
these memory overheads are small, e.g., only 16.6 MB more than Coarsening on ogbn-arxiv with
sketch ratio c/n = 0.1. All three sublinear methods (Corasening, GCond, Sketch-GNN) lead to a
denser adjacency/convolution matrix and thus increased memory per node. However, this overhead is
small for Sketch-GNN because although we sketched the adjacency, its sparsity is still preserved to
some extent, as sketching is a linear/multi-linear operation.

Ablation Studies: (1) Dependence of sketch dimension c on graph size n. Although the theoretical
approximation error increases under smaller sketch ratio c/n, we observe competitive experimental
results with smaller c/n, especially on large graphs. In practice, the sketch ratio required to maintain
“full-graph” model performance decreases with n. (2) Learned Sketches versus Fixed Sketches.
We find that learned sketches can improve the performance of all models and on all datasets. Under
sketch-ratio c/n = 0.2, the Sketch-GCN with learned sketches achieves 0.7004± 0.0096 accuracy
on ogbn-arxiv while fixed randomized sketches degrade performance to 0.6649± 0.0106.

6 Conclusion

We present Sketch-GNN, a sketch-based GNN training framework with sublinear training time and
memory complexities. Our main contributions are (1) approximating nonlinear operations in GNNs
using polynomial tensor sketch (PTS) and (2) updating sketches using learnable locality-sensitive
hashing (LSH). Our novel framework has the potential to be applied to other architectures and
applications where the amount of data makes training even simple models impractical. The major
limitation of Sketch-GNN is that the sketched nonlinear activations are less expressive than the
original activation functions, and the accumulated error of sketching makes it challenging to sketch
much deeper GNNs. We expect future research to tackle the above-mentioned issues and apply the
proposed neural network sketching techniques to other types of data and neural networks. Considering
broader impacts, we view our work mainly as a methodological and theoretical contribution, and
there is no obviously foreseeable negative social impact.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix H.
(b) Did you mention the license of the assets? [Yes] See Appendix H.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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