
Approximation with CNNs in Sobolev Space:
with Applications to Classification

Guohao Shen∗

Department of Applied Mathematics, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong SAR, China

guohao.shen@polyu.edu.hk

Yuling Jiao∗

School of Mathematics and Statistics
and Hubei Key Laboratory of Computational Science

Wuhan University, Wuhan 430072, China
yulingjiaomath@whu.edu.cn

Yuanyuan Lin†

Department of Statistics, The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong SAR, China

ylin@sta.cuhk.edu.hk

Jian Huang†
Department of Applied Mathematics, The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong SAR, China
j.huang@polyu.edu.hk

Abstract

We derive a novel approximation error bound with an explicit prefactor for Sobolev-
regular functions using deep convolutional neural networks (CNNs). The bound is
non-asymptotic in terms of the network depth and filter lengths, in a rather flexible
way. For Sobolev-regular functions which can be embedded into the Hölder space,
the prefactor of our error bound depends on the ambient dimension polynomially
instead of exponentially as in most existing results, which is of independent interest.
We also establish a new approximation result when the target function is supported
on an approximate lower-dimensional manifold. We apply our results to establish
non-asymptotic excess risk bounds for classification using CNNs with convex
surrogate losses, including the cross-entropy loss, the hinge loss, the logistic loss,
the exponential loss and the least squares loss. We show that the classification
methods with CNNs can circumvent the curse of dimensionality if input data is
supported on a neighborhood of a low-dimensional manifold.

1 Introduction

Classification methods with hypothesis spaces specified through deep neural networks have achieved
remarkable successes in a variety of machine learning tasks [36]. In particular, convolutional neural
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networks (CNNs) have demonstrated outstanding performance in many applications, including
computer vision [35], natural language processing [57], and sequence analysis in bioinformatics [1,
65]. However, to the best of our knowledge, there have only been limited studies on the approximation
properties with CNNs and non-asymptotic excess risk bounds for various classification methods using
CNNs.

1.1 Related work

There has been much effort devoted to understanding the approximation properties of deep neural
networks in recent years. Many interesting results have been obtained concerning the approximation
power of deep neural networks for multivariate functions; some examples of important recent works
include [59, 60, 40, 49, 53, 54, 44, 13, 28]. These works focused on the approximation power for
ReLU activated feedforward neural networks (FNNs) on different kinds of smooth functions.

The approximation power of CNNs has been studied in limited works. [2] studied the approximation
power of the composited CNNs, where the network consists of fully-connected CNNs followed by a
fully-connected layer. They proved that under suitable conditions, convolution neural networks can
inherit the universal approximation property of its last fully connected layers. [48] showed that for
translation equivariant functions, all upper and lower approximation bounds are equivalent between
FNNs and CNNs with the same order of network length and size. [47] showed that ResNet-type
CNNs, a special CNN architecture with skip-layer connections (or identity connections between
inconsecutive layers), can replicate the learning ability of FNNs having block-sparse structures. The
ResNet-type CNN in [47], as claimed, can be dense, and its width, channel size, and filter size are
constant with respect to sample size rather than the diverging one in [48].

In addition, a series of papers studied the approximation power of deep CNNs with Toeplitz type
convolutional matrices [66, 64, 63]. The universality of such CNNs was established in [64] for target
functions restricted to the Sobolev space W β,2(Rd) with β ≥ d/2+ 2. The approximation error is of
the order O(L−1/2−1/d) (up to a logarithmic factor), where L is the number of layers of such CNNs.
But the CNN defined in [64] has width increasing linearly with respect to depth. To overcome the
difficulty in theoretical analysis of such CNNs, [63] introduced a downsampling operator to reduce
the widths and the approximation power of downsampled CNNs for a special class of functions
(β-Hölder continuous ridge function) was studied. The approximate rate is shown to be O(N−β) by
downsampled CNNs with a uniform filter length s = O(4N + 6) and width W = O(N) for positive
integer N . Further, it was shown that a downsampled CNN can compute the same function as a FNN
does, with the total number of free parameters of downsampled CNN being at most 8 times of that
of FNN. For the CNNs considered by [66, 16, 63] and [64], each convolutional layer has only one
filter with size s and the weight matrix is of a special Toeplitz type with shape (din + s)× din and
no fully-connected layer is allowed in hidden layers. Approximation properties of convolutional
architectures for target functions defined on infinite time domains tailored to temporal sequence data
were studied in [27].

To mitigate the curse of dimensionality and show the advantages of CNNs in classification problems,
several works studied the approximation as well as the statistical learning theories under some
low-dimensional assumptions on the target function or the data distribution. In [32, 33], the posterior
probability function is assumed to be Hölder smooth satisfying hierarchical max-pooling model.
In [34], the target function is assumed to be spatially rotation invariant. In [18] and [38], input
data is assumed to be supported on spheres and manifolds, respectively. Under different structural
assumptions on the target function, similar results have also been proved for FNNs [7, 51, 52]. If
data is assumed to be supported on low-dimensional manifolds, the curse of dimensionality can also
be mitigated for FNNs [50, 44, 12, 28].

1.2 Our contributions

We study the approximation power of CNNs for functions in Sobolev spaces, including the special
case of Hölder class and apply our new approximation results to establish non-asymptotic error
bounds for several important classification methods using CNNs. Our main contributions are as
follows.

(i) We derive a novel error bound for approximating Sobolev-regular functions using deep CNNs,
with the error bound explicitly expressed in terms the network parameters and model parameters.
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The error bound depends on the network depth and filter lengths in a rather flexible way. For
functions which can be embedded into Hölder space, the prefactor of our error bound depends
on the ambient dimension polynomially instead of exponentially as in existing results. We also
establish a novel approximation result when the target function is supported on an approximate
lower-dimensional manifold, which shows that CNNs are capable of mitigating the curse of
dimensionality under such a distributional condition.

(ii) As an application of our CNN approximation results, we establish non-asymptotic bounds for
the stochastic and approximation errors of classification methods with a general class of convex
surrogate losses in Sobolev space using CNNs. Our main results are also applicable to other
problems that use CNNs approximations.

(iii) We apply our general results to establish the non-asymptotic excess risk bounds for classification
using CNNs with convex surrogate losses in Sobolev space, including the cross-entropy loss,
the hinge loss (SVM), the logistic loss, the exponential loss, and the least squares loss. We show
that classification methods with CNNs can circumvent the curse of dimensionality if the input
data is supported on a neighborhood of a low-dimensional manifold embedded in the ambient
space.

Table 1: A comparison of some recent convolutional neural network approximation results.

Network Target function Flexible filter length Explicit prefactor Low-dimensional Result

[48] CNN FNN % % %

[47] ConvResNet FNN ! % %

[64] CNN Sobolev ! % %

[33] CNN Hölder % % !

[38] ConvResNet Besov ! % !

This paper CNN Sobolev and Hölder ! ! !

In Table 1, we summarize and compare some recent and most related work on CNN approximation
results for various function spaces.

The statistical convergence properties of the excess risk of the empirical risk minimizer (ERM) for
the misclassification 0-1 loss have been studied extensively under various conditions. Different types
of hypothesis spaces have been used in these approaches, including the linear space, the reproducing
kernel Hilbert space and the class of tree-based models, see, for example, [9, 55, 42, 6, 29, 8] and
[62]. However, there are limited studies worked on deep binary classifications by FNNs [46, 25, 30],
ResNet [26, 45] and CNNs [32, 33, 38].

2 Approximation power of CNNs

2.1 Convolutional neural networks

Convolutional networks are a special type of structured sparse feedforward neural network (FNN) that
use convolution in place of general matrix multiplication in at least one of their layers [21]. There are
different formulations of CNNs in the literature [2, 66, 47, 37, 63, 64, 33, 32, 38]. In this paper, we
consider ReLU activated downsampled CNNs with bias vectors in the convolutional layers defined in
[63]. We do not require the norm of network parameters (weight and bias) to be uniformly bounded.

We consider a general CNN function fCNN : X → R, where X ⊂ Rd. For simplicity, we take
X = (0, 1)d. Suppose fCNN has L number of hidden layers, then it can be expressed as

fCNN(x) = AL+1 ◦AL ◦ · · · ◦A2 ◦A1(x), x ∈ X , (1)

where ◦ denotes the functional composition. The Ai’s are either convolutional operators or down-
sampling operators. For convolutional layers, Ai(x) = σ(W c

i x+ bci ), where W c
i ∈ Rdi×di−1 is the

structured sparse Toeplitz type weight matrix induced by the convolutional filter {w(i)
j }s(i)j=0 with filter

length s(i) ∈ N+, and bci ∈ Rdi is a bias vector, and σ is the rectified linear unit (ReLU) activation
function applying to each component of the input vector.
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For downsampling layers, for any x ∈ Rdi−1 , Ai(x) = Di(x) = (xjmi
)
⌊di−1/mi⌋
j=1 , where Di :

Rdi×di−1 is the downsampling operator with scaling parameter mi ≤ di−1 in the i-th layer. We
introduce the convolutional operation and downsampling operation [63] in details in Appendix ??.

We focus on the function class consisting of deep CNNs, denoted by FCNN which is defined as

FCNN ={fCNN defined in (1) over all possible choice of Ai, i = 1, . . . ,L + 1}. (2)

For a general function class F and any f ∈ F , define the ∥ · ∥∞ metric on F by supx∈X ∥f(x)∥∞.
Then let B := supf∈FCNN

∥f∥∞ denote the bound of the functions in FCNN. Let L be the number of
hidden layers and S be the total number of parameters for networks in FCNN and let smin and smax

be the minimum and maximum filter length over convolutional layers respectively.

2.2 Approximation in Sobolev space

We use the Sobolev and Hölder classes for the target functions in our approximation results since
they are well-established formulations for describing smooth functions in the literature. Indeed,
earlier works on approximation theory of neural networks have been developed for Sobolev functions
[59, 64, 24] and for Hölder functions [33, 51].

Let N0 be the set of non-negative integers and β ∈ N0. The Sobolev class of functions W β,p(X )
with X = (0, 1)d is defined as

W β,p(X ) =
{
f ∈ Lp(X ) : Dαf ∈ Lp(X ) for all α ∈ Nd

0 with ∥α∥1 ≤ β
}
, (3)

where 1 ≤ p ≤ ∞, Dα = ∂α1 · · · ∂αd with α = (α1, . . . , αd)
⊤ ∈ Nd

0, and
∥α∥1 =

∑d
i=1 αi. For f ∈ W β,p(X ) and 0 ≤ m ≤ β, we define the norm

∥f∥Wm,p(X ) :=
(∑

0≤∥α∥1≤m ∥Dαf∥pLp(X )

)1/p
for 1 ≤ p < ∞, and define ∥f∥Wm,∞(X ) :=

max0≤∥α∥1≤m ∥Dαf∥L∞(X ).

In the remainder of the paper, for any positive integers M,N ∈ N+, let FCNN be the class of CNNs
defined in (2) with depth L, size S and filter length specified as follows:

L ≤ 42(⌊β⌋+ 1)2M⌈log2(8M)⌉⌈ W − 1

smin − 1
⌉, (4)

2 ≤ smin ≤ smax ≤ W, (5)
S ≤ 8WL, (6)

where

W = 382(⌊β⌋+ 1)4d2⌊β⌋+2N2⌈log2(8N)⌉2, (7)

denotes the maximum incremental width (number of neurons) for consecutive layers in the network
and ⌈a⌉ denotes the smallest integer no less than a.

Theorem 2.1. Assume that f ∈W β,p(X ) with 1 ≤ β ∈ N0, 1 ≤ p ≤ ∞ and ∥f∥Wβ,p(X ) ≤ B0 for
B0 > 0. For any M,N ∈ N+, there exists a function fCNN ∈ FCNN defined in (2) with depth L and
filter lengths and size S specified in (4), (5) and (6), such that for m = 0, 1,

∥f − fCNN∥Wm,p(X ) ≤ C0(d, β, p)(NM)−2(β−m)/d,

where C0(d, β, p) = 37 · 22β+2d/pB2
0(β + 1)3 × {π−d/2Γ(d/2 + 1)}2/p+1(1 + 2

√
d)dd4β . Here

Γ(·) is the gamma function.

Our result is new for approximating Sobolev-regular functions in W β,p(X ) for a positive integer
β ∈ N+ with respect to the Sobolev norms ∥ · ∥Wm,p(X ) for m = 0, 1 in terms of explicitly defined
approximation error prefactor, clearly defined and flexible network parameters, as well as an fast
approximation rate comparable with [22]. A toy example is provided in Appendix D to illustrate the
approximation power of CNNs and examine how the approximation error varies according to the
filter size and depth of the networks.

In [24], an approximation result on β-smooth functions by networks with squared ReLU activation
function is also provided under the norm ∥ · ∥Wm,p(X ) for positive integer m < β. In [22], the
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approximation rates of ReLU DNN for Sobolev-regular functions with respect to the weaker Sobolev
norms ∥ · ∥W s,p(X ) for s ∈ [0, 1] were analyzed, which can be seen as a generalization of the result
in [59]. Approximation results on Sobolev-regular functions W β,p(X ) by networks with general
activation functions are derived in [23], where the error is with respect to ∥ · ∥Wm,p(X ) for some
integer m < β.

By the general Sobolev inequality, see Theorem 6 in Chapter 5 of [15], W k,p(X ) with kp > d can be
embedded into a Hölder class Hβ(X , B0) (with β = k − ⌊d/p⌋ − 1) defined as

Hβ(X , B0) =
{
f : X → R, max

∥α∥1≤⌊β⌋
∥Dαf∥∞ ≤ B0 and max

∥α∥1=s
sup
x ̸=y

|Dαf −Dαf(x)|
∥x− y∥r2

≤ B0

}
.

(8)

where β > 0 and ⌊β⌋ ∈ N0 denotes the largest integer strictly smaller than β. Because of the extra
regularity on the Hölder class, a much improved prefactor C0 in the error bound of Theorem 2.1 can
be obtained.
Theorem 2.2. Let f ∈ Hβ(X , B0) be defined in (8) and let X ∈ Rd be a random vector whose
probability distribution is supported on X = (0, 1)d and absolutely continuous with respect to the
Lebesgue measure. For any M,N ∈ N+, there exists a function fCNN ∈ FCNN defined in (2) with
depth L and filter lengths and size S specified in (4), (5) and (6), such that

E|f(X)− fCNN(X)| ≤ C0(d, β)(NM)−2β/d,

where C0(d, β) = 18B0(β + 1)2dβ+(β∨1)/2. Here a ∨ b := max{a, b} for a, b ∈ R.

The convergence rate (NM)−2β/d in Theorems 2.1 and 2.2 with respect to the network depth and
filter lengths specified by M and N , is in line with the nearly optimal rate of ReLU FNNs on smooth
functions under Sobolev norm in [24] and on Hölder smooth functions under L∞ norm in [28]. The
prefactor 18B0(β+1)2dβ+(β∨1)/2 of approximation error depends on the dimension d polynomially,
different from the exponential dependence in many existing neural network approximation results
mentioned in Section 1.1.

2.3 Approximation with a lower-dimensional support

In many modern machine learning problems, the ambient dimension d of the input data could be
very large, which results in an extremely slow convergence rate. This fact is known as the curse
of dimensionality. Fortunately, many types of data have a low-dimensional latent structure, that is,
although the ambient dimension d is large, the distribution of the data is approximately supported on
a low-dimensional subset of Rd, in which case the approximation error bound can be substantially
improved. We establish an approximation result for CNNs in Sobolev spaces under a low-dimensional
support assumption.
Assumption 2.3. The distribution of X is supported on Mρ, a ρ-neighborhood of M ⊂ X , where
M is a compact dM-dimensional Riemannian submanifold and Mρ = {x ∈ X : inf{∥x − y∥2 :
y ∈ M} ≤ ρ} for ρ ∈ (0, 1).

In real-world applications, data are hardly observed to locate on an exact manifold, instead they could
be more realistically viewed as consisting of a latent part supported on a low-dimensional manifold
M plus noises. Therefore, Assumption 2.3 is more realistic than the exact manifold assumption
[50, 12, 38].

Define

dε = O(dMε−2 log(d/ε)), ε ∈ (0, 1), (9)

ρε = C2(NM)−2β/dε(β + 1)2d1/2d3β/2ε × [(d/dε)
1/2 + 1− ε]−1(1− ε)1−β . (10)

In our error bound results below, it is the dε that will affect the convergence rate. Since it is often the
case that dM ≪ d and therefore dε ≪ d, the manifold assumption will lead to a better convergence
rate than those in Theorems 2.1 and 2.2. In addition, we require ρ ≤ ρε.
Theorem 2.4. Suppose that Assumption 2.3 holds, f ∈ Hβ(X , B0) and the distribution of X
is absolutely continuous with respect to the Lebesgue measure. Let dε and ρε be defined in (9)
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and (10), respectively. Assume that ρ ≤ ρε. Then, for any M,N ∈ N+, there exists a CNN
function fCNN ∈ FCNN with depth L and filter lengths and size S specified in (4), (5) and (6) with
W = 382(⌊β⌋+ 1)4d

2⌊β⌋+2
ε N2⌈log2(8N)⌉2 such that

E|f(X)− fCNN(X)| ≤ C(d, β)(NM)−2β/dε ,

where C(d, β) = (18 + C2)B0(1− ε)−β(β + 1)2d1/2d
3β/2
ε .

Since the intrinsic dimension dε can be much smaller than the ambient dimension d, the rate
(NM)−2β/dε in Theorem 2.4 is greatly improved compared with the rate (NM)−2β/d in Theorem
2.2 and the curse of dimensionality is mitigated. The result here is of independent interest and can be
useful in other problems that involve the use of CNNs.

3 Excess risk in classification

In this section, we present the application of the approximation results Theorems 2.1 and 2.4 to the
error analysis of classification with CNNs.

Consider a binary classification problem with a predictor X ∈ X ⊂ Rd and its binary label
Y ∈ {1,−1}. We are interested in learning a classifier h : X → {1,−1} from a class of functions,
or a hypothesis space, denoted by H. Let the joint distribution of (X,Y ) be P. The goal is to find a
classifier that minimizes the misclassification error or the 0-1 risk: R∗(h) = P

{
h(X) ̸= Y

}
, h ∈ H.

Denote the misclassification risk minimizer at the population level by h0 = argminh measurable R∗(h).
For any h ∈ H, the excess risk of h is R∗(h)−R∗(h0), the difference between the misclassification
errors of h and h0.

Since the probability measure P is unknown in practice, the classifier h will be learned based on a
random sample S = {(Xi, Yi)}ni=1 from P, where n is the sample size. The empirical risk minimizer
(ERM) is defined by

ĥn ∈ argmin
h∈H

1

n

n∑
i=1

1(h(Xi) ̸= Yi). (11)

However, the empirical risk function based on the 0-1 loss is non-continuous and non-convex, thus
this minimization problem is typically computationally intractable.

Rather than minimizing the non-smooth 0-1 loss, many popular methods adopt a proper convex
loss function to train classifiers with computational efficiency that can be done in polynomial time.
Moreover, proper surrogate convex loss functions have been shown to be consistent with the 0-1 loss
function for binary classification problems [61, 5].

3.1 Convex surrogate loss functions

Let ϕ be a given convex univariate loss function ϕ : R → [0,∞). We consider the risk function with
respect to the loss ϕ

R(f) ≡ Rϕ(f) = E{ϕ(Y f(X))}, (12)

where for simplicity of notation and without causing confusion we omit the superscript ϕ in R,
similarly for f̂n and f0 defined below. For a given random sample S = {(Xi, Yi)}ni=1, we denote
the ERM over FCNN with a given loss ϕ by

f̂n ∈ arg min
f∈FCNN

1

n

n∑
i=1

ϕ(Y f(Xi)). (13)

Based on the ERM f̂n, a classifier ĥn(x) := sign(f̂n(x)) for x ∈ X can be defined. As shown in
[61, 5], for a properly chosen ϕ, f̂n can help reduce the excess risk R∗(ĥn)−R∗(h0). Specifically,
define the measurable minimizer of R in (12) as

f0 = argmin
f measurable

E{ϕ(Y f(X))}, (14)
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and the corresponding minimal ϕ-risk as R0 = R(f0). Then for a proper ϕ, we have ψ(R∗(ĥn)−
R∗(h0)) ≤ R(f̂n) − R(f0), where ψ : [−1, 1] → [0,∞) is a nonnegative continuous function,
invertible on [0, 1], and achieves its minimum at 0 with ψ(0) = 0. A variety of classification
methods are based on this tactic. Generally, classification-calibrated ϕ considered in this paper is
non-increasing and convex; details are given in the Supplementary Materials.

Define the conditional probability

η(x) = P(Y = 1 | X = x), x ∈ X . (15)

Let the conditional ϕ-risk of f given X = x be denoted by Rf (x) := E{ϕ(Y f(X)) | X = x}.
SVM and cross entropy, two important examples of ϕ, and the corresponding f0, R(f0), ψ and its
inverse on [0, 1] in Table 2 in the appendix. For the form of ψ, Theorem 34 in [11] shows that if ϕ is
convex, ϕ′′(0) > 0 exists and ϕ′ < 0, then ψ(u) = u2.

Table 2: Minimizer and minimal conditional risk under SVM and cross entropy loss functions ϕ.
Bound ϕB of ϕ, Lipschitz constant Bϕ and ∆ϕ(T ) for the truncated f0 under SVM hinge loss
function restricted to [−B,B] for 1 ≤ T ≤ B and cross entropy loss function restricted to [−B,B]
for T ≤ B < 0.5.

SVM Cross entropy

ϕ(a) max{1− a, 0} − log{0.5 + a}
f0(x) sign(2η − 1) η − 0.5
Rf0(x) 1− |2η − 1| −η log(η)− (1− η) log(1− η)
ψ(θ) |θ| θ2

ϕB B + 1 − log{0.5− B}
Bϕ ** 1/(0.5− B)

∆ϕ(T ) 0 − log{1 + (T − 0.5)}

Note: The conditional probability η(x) defined in (15) is written as η for notational simplicity. "**"
stands for "does not exist"

4 Non-asymptotic error bounds

For the ERM f̂n defined in (13), we first state a basic inequality for bounding the excess risk of f̂n.
Lemma 4.1. For any loss ϕ and any random sample S = {(Xi, Yi)}ni=1, the excess ϕ-risk of the
ERM f̂n satisfies R(f̂n)−R(f0) ≤ StoErr + AppErr, where

StoErr = 2 sup
f∈F

|R(f)−Rn(f)|, AppErr = inf
f∈F

R(f)−R(f0). (16)

Therefore, the excess risk of f̂n is bounded by the sum of two terms: the stochastic error and the
approximation error. For a given loss function ϕ, the upper bound no longer depends on the ERM
f̂n, but the function class F and the random sample S. The stochastic error in (16) depends on the
complexity of F and the approximation error in (16) depends on the approximation power of the
class F for f0.

4.1 Stochastic error

We bound the stochastic error in terms of the pseudo-dimension of the downsampled CNNs defined in
(2); particularly, we further bound its pseudo-dimension and express the bound in terms of quantities
related to CNNs.
Theorem 4.2. [Stochastic error bound] Suppose that ϕ is convex and non-increasing. For any
M,N ∈ N+, let FCNN be the class of CNNs defined in (2) with B ≥ 0, depth L and size S and let
ϕB := sup|a|≤B ϕ(a). Then, for any δ ∈ (0, 1), with probability at least 1− δ, the stochastic error
in (16) satisfies

StoErr ≤ 2ϕB√
n

(
C0

√
SL log(S) log(n) +

√
log(1/δ)

)
,

where C0 > 0 is a universal constant.
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The quantity ϕB for common loss functions are presented in Table 2. It worth noting that the error
bound here does not require the norm of the CNN parameters (of weight and bias) to be uniformly
bounded. In comparison, those stochastic error bounds based on the covering number generally
assume an uniformly bounded norm on CNN parameters, which may hinder the approximation power
of network since most approximation results need the norm of network parameters to tend to infinity
as the approximation error tends to zero.

4.2 Approximation error

We derive an upper bound of the approximation error by relating inff∈FCNN R(f) − R(f0) to
inff∈FCNN ∥f − f0∥ under proper conditions on ϕ and η, where R is defined in (12). The tar-
get function f0 may be non-smooth or unbounded, which poses extra difficulty. Most of the existing
studies on the approximation properties of networks assume smooth and bounded target functions. As
shown in Table 2, the target function f0 for SVM is non-continuous; for the cross entropy loss, the loss
is unbounded on [−0.5, 0.5]. For logistic loss and exponential loss, we have f0(x) ∈ {+∞,−∞}
once η(x) ∈ {0, 1}. We overcome these difficulties by imposing mild conditions on the conditional
probability η and the loss function ϕ, and use the truncation technique to analyze the approximation.

Assumption 4.3. (a) The conditional probability η(x) = P{Y = 1 | X = x} is continuous on the
support of X and the probability measure of X is absolutely continuous with respect to the Lebesgue
measure. (b) The loss function ϕ : R → [0,∞) is classification-calibrated, convex, non-increasing
and continuously differentiable on its support.

Assumption 4.3 (a) and (b) are regular conditions ensuring that the target function f0 is continu-
ous and the loss ϕ is Lipschitz on bounded intervals. The absolute continuity assumption of the
probability measure of X with respect to the Lebesgue measure is reasonable for the approximate
low-dimensional manifold case but incompatible with the exact low-dimensional manifold condition.
This assumption is for deriving better Lp approximation error bound, without which the error bound
in term of the L∞ norm can still be established, but at the price of a wider neural network and a larger
prefactor. It can be verified that commonly used loss functions, such as the cross entropy, the logistic
and the exponential loss functions, satisfy Assumption 4.3 (b).

To deal with the approximation of unbounded target function, we truncate the target f0 by a constant
T , where T may depend on n. Let f0,T be the truncated version of f0 defined as

f0,T (x) =

{
f0(x), if |f0(x)| ≤ T,

T sign(f0(x)), if |f0(x)| > T.

Denote the error of the loss function ϕ due to truncation by

∆ϕ(T ) := inf
|a|≤T

ϕ(a)− inf
a∈Ran(f0)

ϕ(a), (17)

where Ran(f0) is the range of the target function f0. This error decreases as T increases. Then, the
approximation error can be decomposed into two terms that are easier to deal with.

Lemma 4.4. [ϕ-approximation error] Suppose that Assumption 4.3 holds and T ≤ B. Then, the
ϕ-approximation error inff∈FCNN R(f)−R(f0) with respect to the loss function ϕ satisfies

inf
f∈FCNN

R(f)−R(f0) ≤Bϕ inf
f∈FCNN

E|f(X)− f0,T (X)|+∆ϕ(T ).

where Bϕ is defined as the Lipschitz constant of ϕ on the interval [−B,B].

We list Bϕ and ∆ϕ(T ) for hinge and cross entropy loss functions in Table 2. A detailed table
including other loss functions are given in the appendix.

Theorem 4.5. [Approximation error bound] Suppose that Assumption 4.3 holds and f0 ∈
Hβ([0, 1]d, B0). For any M,N ∈ N+, let FCNN be the class of CNNs defined in (2) with T ≤ B,
depth L and filter lengths specified in (4) and (5). Then, the approximation error defined in (16)
satisfies AppErr ≤ C(d, β)(NM)−2β/d +∆ϕ(T ), where C(d, β) = 18BϕB0(β + 1)2dβ+(β∨1)/2.

There is a trade-off since T ≤ B and ∆ϕ(T ) deceases in T but C(d, β) increases in Bϕ (or B).
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4.3 Non-asymptotic excess risk bound

Combining Theorems 4.2 and 4.5, we obtain the excess error bound.
Theorem 4.6. [Non-asymptotic excess ϕ-risk bound] Suppose that Assumption 4.3 holds and f0 ∈
Hβ([0, 1]d, B0). For any M,N ∈ N+, let FCNN be the class of CNNs defined in (2) with T ≤ B,
depth L and filter lengths specified in (4) and (5). Then, for any δ ∈ (0, 1), with probability at least
1− δ, the ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤StoErr + AppErr, (18)

with

StoErr =
2ϕB√
n

(
C0

√
SL log(S) log(n) +

√
log(1/δ)

)
, AppErr = C(d, β)(NM)−2β/d +∆ϕ(T ),

where C(d, β) = 18BϕB0(β + 1)2dβ+(β∨1)/2 and C0 > 0 is a universal constant.

The upper bound of the excess ϕ-risk R(f̂n)−R(f0) in Theorem 4.6 is a sum of two error terms, the
stochastic error and the approximation error. To achieve the optimal error rate, we need to balance
the trade-off between them. On one hand, the bound for the stochastic error StoError increases with
the size and the depth of FCNN. On the other hand, the bound for the approximation error AppError
decreases with the depth and the upper bound of filter lengths of FCNN.

4.4 Circumventing the curse of dimensionality

We state a theorem that provides a non-asymptotic excess risk bound under the approximate low-
dimensional manifold assumption.
Theorem 4.7 (Circumventing the curse of dimensionality). Suppose that Assumptions 2.3, 4.3
hold, and f0 ∈ Hβ([0, 1]d, B0). For any M,N ∈ N+, let FCNN be the class of CNNs defined
in (2) with T ≤ B, depth L and filter lengths and size S specified in (4), (5) and (6) with W =
382(β + 1)4d2β+2

ε N2⌈log2(8N)⌉2. Suppose ρ in Assumption 2.3 satisfies ρ ≤ ρε,, where ρε is
defined in (10). Then for any δ ∈ (0, 1), with probability at least 1− δ, the ERM f̂n defined in (13)
satisfies

R(f̂n)−R(f0) ≤StoErr∗ + AppErr∗, (19)

with

StoErr∗ =
2ϕB√
n

(
C1

√
SL log(S) log(n) +

√
log(1/δ)

)
,

AppErr∗ =
(
(18 + C2)

BϕB0

(1− ε)β
(β + 1)2d1/2d3β/2ε

)
× (NM)−2β/dε +∆ϕ(T ),

where C1, C2 > 0 are universal constants.

For a high-dimensional input X with a large d, dε satisfies dM≤ dε < d for ε ∈ (0, 1). For the
stochastic error StoErr∗, comparing with the bound (18) in Theorem 4.6, we see that StoErr∗ =
StoErr, that is, the stochastic error does not change under the approximate low-dimensional manifold
assumption. For the approximation error AppErr∗, we see that the convergence rate (NM)−2β/dε

only depends on dε, which leads to a much faster convergence rate.

5 Examples

In this section, we illustrate the applications of Theorems 4.6 and 4.7 to obtaining non-asymptotic
error bounds for the excess risk in classification. We apply the general excess risk bounds established
in these theorems to several important classification methods with CNNs when a specific form of ϕ is
given. We present the results for the cross entropy loss below. The non-asymptotic error bounds for
the hinge, the logistic, the exponential and the least squares losses are given in Appendix ??.

For the cross entropy loss ϕ(a) = − log(0.5 + a), the Lipschitz constant Bϕ on [−0.5, 0.5] is not
bounded. As the minimizer of ϕ-risk η− 0.5 is bounded, we can choose T = B = 0.5−nβ/(2d+4β).
Then ∆ϕ(T ) ≤ n−β/(2d+4β) and Bϕ = nβ/(2d+4β).
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Denote ξn = nd/(2d+4β). Take N = 1 in (7) and M = ⌊ξ⌋ in (4) and let FCNN be the class
of CNNs in (2) with depth L ≤ 378 · 382(⌊β⌋ + 1)6d2⌊β⌋+2⌊ξn⌋⌈log2(8⌊ξn⌋)⌉/(smin − 1), filter
lengths 2 ≤ smin ≤ smax ≤ 9 × 382(⌊β⌋ + 1)4d2⌊β⌋+2 and size S ≤ 8WL ≤ 42 ∗ 8 ∗ 92 ∗
384(⌊β⌋+ 1)10d4⌊β⌋+4⌊ξn⌋⌈log2(8⌊ξn⌋)⌉/(smin − 1). Theorem 4.6 implies that, with probability
at least 1− exp(−ξ2n), the excess ϕ-risk of the ERM f̂n defined in (13) satisfies

R(f̂n)−R(f0) ≤Cn−β/(2d+4β)(log n)2,

where C = O(B0(β + 1)8d3β+3/(smin − 1)) is a constant independent of n.

Let T = B = 0.5 − (log n)−1. Using a modified cross entropy loss ϕ(a) = max{− log(0.5 +

a), τ} with τ = − log(1 − (log n)−1), the excess ϕ-risk of the ERM f̂n can be improved to
O(n−β/(d+2β)(log n)2).

If the approximate low-dimensional manifold Assumption 2.3 holds and for any ε ∈ (0, 1), the radius
of the neighborhood ρ in Assumption 2.3 satisfies ρ ≤ ρε, where ρε is defined in (10), then Theorem
4.7 implies that the rate of convergence can be improved:

R(f̂n)−R(f0) ≤ Cn−β/(2dε+4β)(log n)2,

where C is a constant independent of n.

The above discussion shows that deep binary classifications with CNNs are adaptive to the low
dimensional structure of the data and the smoothness of the target. Moreover, the prefactor C
depends on the ambient dimension d polynomially, which improves the prefactors depending on d
exponentially in the existing excess risk bounds [46, 25, 30, 26, 45, 32, 33, 38]. Moreover, the filter
lengths here are more flexible comparing with those requiring certain filter lengths in [32, 33, 48].

6 Conclusion

In this work, we derive new approximation error bounds with explicit prefactor in terms of network
parameters for Sobolev-regular functions and Hölder smooth functions using deep convolutional
networks. New approximation result when the target function is supported on an approximate
lower-dimensional manifold is established. Different from existing results, the prefactor of our error
bound depends on the ambient dimension polynomially instead of exponentially for Hölder smooth
functions. The new approximation results are applied to establish non-asymptotic excess risk bounds
for a class of classification methods using CNNs.

An important limitation of our work is that we only considered binary classification problems in
applying our approximation results using deep convolutional networks. It would be interesting to
apply the results in this work to other settings involving CNN approximation, such as the multiclass
classification and regression problems. In addition, our work only partially explains the empirical
successes of CNNs in practice. For image data, the assumption of approximate lower-dimensional
support does not capture all the structural information. For example, spatial invariance is likely to be
expected in some problems such as image classification. We believe that if such properties are taken
into account, the theoretical bounds can be further improved. We hope to study this in the future.
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