
A Proof of Theorem 1

The proof of Theorem 1 goes by two steps. As a first step, we connect the noise stability to another
measure of complexity for classes of functions called cross predictability (CP). As a second step, we
use the negative result from [AS20], that lower bounds the generalization error of learning a class of
functions in terms of its cross predictability.

A.1 From noise stability to cross predictability

We redefine here the cross predictability (CP), for completeness.
Definition 6 (Cross Predictability [AS20]). Let X be the input space and let F be a class of functions.
Let PX and PF be two distributions supported on X and F respectively. Their cross-predictability is
defined as

CP(PF , PX ) = EF,F 0⇠PF [EX⇠PX [F (X) · F 0(X)]2]. (11)

Before diving into the proof we give few definitions that will be useful. Given a target function f ,
we define the “orbit” of f (orb(f)) as the class of all functions generated by composing f with a
permutation of the input space:
Definition 7 (Orbit). For f : Rn ! R and a permutation ⇡ 2 Sn, we let (f � ⇡)(x) =
f(x⇡(1), ..., x⇡(n)). Then, the orbit of f is defined as

orb(f) := {f � ⇡ : ⇡ 2 Sn}. (12)

GD (or SGD) on a neural network with initialization that is target agnostic has equivalent behaviour
when learning any target function in orb(f). We believe that one could extend the result to other
invariances, beyond permutations.

Recall from Definition 5 that we introduced an augmented input space, to guarantee that the high-
degree Fourier coefficients of the target function are sparse enough. Thus, let f̄ : {±1}2n ! {±1}
be the 2n�extension of f , defined as f̄(x1, ..., xn, xn+1, ..., x2n) = f(x1, ..., xn). For brevity we
make use of the following notation:

CP(orb(f̄)) := CP(Uorb(f̄),UF2n
2
), (13)

where Uorb(f̄),UF2n
2

denote the uniform distribution over orb(f̄) and over F2n
2 (i.e., the 2n-

dimensional Boolean hypercube), respectively.

Furthermore, recall that every Boolean function f can be written in terms of its Fourier-Walsh
expansion f(x) =

P
S f̂(S)�S(x), where �S(x) =

Q
i2S xi are the standard Fourier basis elements

and f̂(S) are the Fourier coefficients of f . We further denote by

W
k(f) =

X

S:|S|=k

f̂(S)2 and W
k(f) =

X

S:|S|k

f̂(S)2, (14)

the total weight of the Fourier coefficients of f at degree k and up to degree k, respectively.
Let f̂ be the Fourier coefficients of the original function f , and let ĥ be the coefficients of the
augmented function f̄ , that are:

ĥ(T ) = f̂(T ) if T ✓ [n] (15)

ĥ(T ) = 0 otherwise. (16)

We make use of the following Lemma, that relates the cross-predictability of orb(f̄) to the Stability
of f .
Lemma 2. There exists � such that for any �

0
< �

CP(orb(f̄))  Stab�0(f). (17)

Remark 4 (Noise Stability). We remark the following two properties of Stab�[f ]:
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1. One can show (see e.g., Theorem 2.49 in [O’D14]) that

Stab�(f) =
nX

k=1

(1� 2�)kW k[f ], (18)

where W
k[f ] is the Boolean weight at degree k of f ;

2. For all � 2 [0, 1/2], Stab�(f) = Stab�(f̄). This follows directly from the previous point
and (15)-(16).

Proof of Lemma 2. We denote by ⇡ a random permutation of 2n elements. We can bound the
CP(orb(f̄)) by the following:

CP(orb(f̄)) = E⇡

h
EX

⇥
f̄(X)f̄(⇡(X))

⇤2i (19)

= E⇡

0

@
X

T✓[2n]

ĥ(T )ĥ(⇡(T ))

1

A
2

(20)

= E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T )) · 1 (⇡(T ) ✓ [n])

1

A
2

(21)

C.S
 E⇡

0

@
X

S✓[n]

f̂(⇡(S))2

1

A ·

0

@
X

T✓[n]

f̂(T )21 (⇡(T ) ✓ [n])

1

A (22)

=
X

T✓[n]

f̂(T )2 · P⇡ (⇡(T ) ✓ [n]) (23)

=
nX

k=1

W
k[f ] · P⇡ (⇡(T ) ✓ [n] | |T | = k) , (24)

where (20) is the scalar product in the Fourier basis, (21) follows by applying the formulas of the ĥ

given in (15)-(16), (22) holds by Cauchy-Schwarz inequality, (23) holds since f is Boolean-valued
and for each ⇡ by Parseval identity,

P
S✓[n] f̂(⇡(S))

2 = EX [f(X)2] = 1, and (24) holds since the
second term is invariant for all sets of a given cardinality.
Recalling ⇡ is a random permutation over the augmented input space of dimension 2n, for each
k 2 [n] we can further bound the second term by

P⇡ (⇡(T ) ✓ [n] | |T | = k) =

�n
k

�
�2n
k

� ⇠ 1

2k
 (1� 2�0)k, for all �0  1/4. (25)

Thus, for all �0  1/4,

CP(orb(f̄)) 
nX

k=1

(1� 2�0)kW k[f ] = Stab�0 [f ]. (26)

Remark 5. Note that the value of � in Lemma 2 depends on the size of the input extension that we
use. In this paper, we defined an input extension of size 2n (input doubling), which gives � = 1/4,
however we could have chosen e.g. a 3n-extension and obtain � = 1/3, and so on.

A.2 From cross predictability to hardness of learning

For the second step, we make use of Theorem 3 and Corollary 1 in [AS20], that prove a lower bound
of learning a class of function in terms of its cross predictability. The lower bound holds for the noisy
GD algorithm ([AS20, AKM+21]), of which we give a formal definition here.
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Definition 8 (Noisy GD with batches). Consider a neural network of size E, with a differentiable
non-linearity and initialization of the weights W (0). Given a differentiable loss function, the updates
of the noisy GD algorithm with learning rate �t and gradient precision A are defined by

W
(t) = W

(t�1) � �tEX⇠S(t) [rL(f(X), f (t)
NN )]A + Z

(t)
, t = 1, ..., T, (27)

where for all t, Z(t) are i.i.d. N (0,�2), for some �, and they are independent from other variables,
S
(t) = (X(t)

1 , ..., X
(t)
m ) has independent components drawn from the input distribution PX and

independent from other time steps, and f is the target function, from which the labels are generated,
and by [.]A we mean that whenever the argument is exceeding A (resp. �A) it is rounded to A (resp.
�A).

Theorem 3 and Corollary 1 in [AS20] imply that for any distribution over the Boolean hypercube PX
and Boolean functions PF , it holds that

P
X,F⇠PF ,f(T )

NN
(F (X) 6= f

(T )
NN (X)) � 1/2� �T

p
EA

�
(1/m+CP(PF , PX ))1/4 , (28)

where �, E,A,�,m have the same meaning as in Definition 8. As observed by them, in our case
since the initialization is invariant under permutations of the input, then learning the orbit of f̄ under
uniform distribution is equivalent to learning f̄ , thus the following bound holds:

P
X,f(T )

NN
(f̄(X) 6= f

(T )
NN (X)) � 1/2� �T

p
EA

�

�
1/m+CP(orb(f̄))

�1/4
. (29)

B Removing the input doubling

One can prove a similar result to the one of Theorem 1, without using the input extension technique.
However, we need some additional assumptions on f . To introduce them, let us first fix some notation.
In the following, we say that a sequence an is noticeable if there exists c 2 N such that an = ⌦(n�c).
On the other hand, we say that f is negligible if limn!1 n

c
an = 0 for every c 2 N (which we also

write an = n
�!(1)).

Assumption 1 (Non-dense and non-extremal function).

a) We say that f is “non-dense” if there exists c such that W{T : f̂(T )2  n
�c} = n

�!(1),
i.e., the negligible Fourier coefficients do not bring a noticeable contribution if taken all
together;

b) We say f is “non-extremal” if for any positive constant D, W�n�D[f ] = n
�!(1), i.e., f

does not have noticeable Fourier weight on terms of degree n�O(1).

With such additional assumptions, we can conclude the following.

Proposition 1. Let f : {±1}n ! {±1} be a balanced target function, let Stab�(f) be its noise
stability and let f (t)

NN be the output of GD with gradient precision A after t time steps, trained on a
neural network of size E with initialization that is target agnostic. Assume f satisfies Assumption 1.
Then, there exist c, C > 0 and D > 0 such that if � < D/n

gen(f, f (t)
NN ) � 1/2� C · t ·

p
E ·
⇣
n
c · Stab�(f) + n

�!(1)
⌘1/4

. (30)

The proof of Proposition 1 resembles the proof of Theorem 1. The only modification required is in
Lemma 2, which is replaced by the following Lemma.

Lemma 3. Let f be a Boolean function that satisfies Assumption 1. There exists c,D > 0 such that
for � < D/n,

CP(orb(f))  2 · nc · Stab�(f) + n
�!(1)

. (31)
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Proof of Lemma 3. Let c > 0 be such that W{T : f̂(T )2  n
�c} = n

�!(1). This c exists because
of Assumption 1a.

CP(orb(f)) = (32)

= E⇡

h
EX [f(X)f(⇡(X))]2

i
(33)

= E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T ))

1

A
2

(34)

= E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T )) ·
⇣
1
⇣
f̂(⇡(T ))2  n

�c
⌘
+ 1

⇣
f̂(⇡(T ))2 > n

�c
⌘⌘
1

A
2

(35)

 2E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T ))1
⇣
f̂(⇡(T ))2  n

�c
⌘
1

A
2

+ (36)

+ 2E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T ))1
⇣
f̂(⇡(T ))2 > n

�c
⌘
1

A
2

, (37)

where in the last inequality we used (a+ b)2  2(a2 + b
2). Let us first focus on the second term on

the right.

E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T ))1
⇣
f̂(⇡(T ))2 > n

�c
⌘
1

A
2

(38)

C.S
 E⇡

0

@
X

S✓[n]

f̂(⇡(S))2

1

A ·

0

@
X

T✓[n]

f̂(T )21
⇣
f̂(⇡(T ))2 > n

�c
⌘
1

A (39)


X

T✓[n]

f̂(T )2 · P⇡

⇣
f̂(⇡(T ))2 > n

�c
⌘

(40)

=
nX

k=1

W
k[f ] · P⇡

⇣
f̂(⇡(T ))2 > n

�c | |T | = k

⌘
(41)

=
n�DX

k=1

W
k[f ] · P⇡

⇣
f̂(⇡(T ))2 > n

�c | |T | = k

⌘
+ (42)

+
nX

k=n�D+1

W
k[f ] · P⇡

⇣
f̂(⇡(T ))2 > n

�c | |T | = k

⌘


n�DX

k=1

W
k[f ] · P⇡

⇣
f̂(⇡(T ))2 > n

�c | |T | = k

⌘
+W

�n�D+1[f ]. (43)

where D is an arbitrary positive constant. Because of Assumption 1b, W�n�D+1[f ] = n
�!(1). On

the other hand, since f is a Boolean valued function,

X

T

f̂(T )2 = EX [f(X)2] = 1, (44)
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which implies that there are at most nc sets T such that f̂(T )2 > n
�c. Thus, recalling ⇡ is a random

permutation over the input space of dimension n, we get

P⇡

⇣
f̂(⇡(T ))2 > n

�c | |T | = k

⌘
 n

c

�n
k

� (45)

 n
c

✓
k

n

◆k

(46)

 n
c

✓
n�D

n

◆k

(47)

 n
c (1� 2�)k if �  D

2n
, (48)

where in (46) we used that
�n
k

�
� (nk )

k for all k � 1. Going back to the first term in (37) we get

E⇡

0

@
X

T✓[n]

f̂(T )f̂(⇡(T ))1
⇣
f̂(⇡(T ))2  n

�c
⌘
1

A
2

(49)

C.S
 E⇡

0

@
X

S✓[n]

f̂(S)2

1

A ·

0

@
X

T✓[n]

f̂(⇡(T ))21
⇣
f̂(⇡(T ))2 > n

�c
⌘
1

A (50)


X

T✓[n]

f̂(⇡(T ))21
⇣
f̂(⇡(T ))2 > n

�c
⌘

(51)

= n
�!(1)

, (52)
by Assumption 1a. Hence overall,

CP(orb(f))  2nc
n�DX

k=1

W
k[f ](1� 2�)k + n

�!(1) (53)

 2nc Stab�(f) + n
�!(1)

. (54)

C Proof for Lemma 1 and Theorem 2

In this section, we present proofs for results mentioned in Section 3, namely, Lemma 1 and Theorem 2.

C.1 Proof of Lemma 1

Proof of Lemma 1. Let f(x) =
P

T✓[n] f̂(T )�T (x) be the Fourier expansion of the function where
�T (x) =

Q
i2T xi. Therefore, the Fourier expansion of the frozen function will become

f�k(x) =
X

T✓[n]\k

(f̂(T ) + f̂(T [ k))�T (x). (55)

Thus, the difference between functions is equal to

(f � f�k)(x) =
X

T✓[n]:k2T

f̂(T )�T (x)�
X

T✓[n]\k

f̂(T [ k)�T (x). (56)

Hence, using Parseval’s Theorem we have the following:

EUn(f � f�k)
2
2 =

X

T✓[n]:k2T

f̂(T )2 +
X

T✓[n]\k

f̂(T [ k)2 = 2
X

T✓[n]:k2T

f̂(T )2. (57)

Therefore,
EUn

1

2
(f � f�k)

2
2 =

X

T✓[n]:k2T

f̂(T )2 = Infk(f), (58)

and the lemma is proved.
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C.2 Proof of Theorem 2

Proof of Theorem 2. Assume f̃
(t)
�k(x,⇥

(t)) := x
T
W

(t) + b
(t) to be our linear model where ⇥(t) =

(W (t)
, b

(t)) are the model parameters at time t. In the following, the super-script t and T denote
the time-step and transpose respectively. Also, we use Ex�k to denote the expectation of x taken
uniformly on the Boolean hypercube while xk = 1. Using the square loss, we have

L(⇥(t)
, x, f) = (xT

W
(t) + b

(t) � f(x))2, (59)
and the gradients will be

rWL(⇥(t)
, x, f) = 2x

⇣
x
T
W

(t) + b
(t) � f(x)

⌘
, (60)

@bL(⇥
(t)
, x, f) = 2

⇣
x
T
W

(t) + b
(t) � f(x)

⌘
. (61)

The GD update rule will then become

W
(t+1) = W

(t) � 2�
⇣
Ex�k

⇥
xx

T
⇤
W

(t) + Ex�k [x]b
(t) � Ex�k [xf(x)]

⌘
, (62)

b
(t+1) = b

(t) � 2�
⇣
Ex�k [x

T ]W (t) + b
(t) � Ex�k [f(x)]

⌘
. (63)

Note that Ex�k

⇥
xx

T
⇤
= In, Ex�k [x] = ~ek. So we have

8j 6= k : W
(t+1)
j = W

(t)
j (1� 2�) + 2�Ex�k [xj · f(x)], (64)

W
(t+1)
k = W

(t)
k � 2�(W (t)

k + b
(t)) + 2�Ex�k [f(x)], (65)

b
(t+1) = b

(t) � 2�(W (t)
k + b

(t)) + 2�Ex�k [f(x)]. (66)
Using above equations, we have

W
(t+1)
k � b

(t+1) = W
(t)
k � b

(t) = W
(0)
k � b

(0)
, (67)

W
(t+1)
k + b

(t+1) = (1� 4�)(W (t)
k + b

(t)) + 4�Ex�k [f(x)]. (68)

Assume � <
1
4 and define 0 < c = � log(1� 2�) < � log(1� 4�), then we have

W
(t)
k + b

(t) = (1� 4�)t(W (0)
k + b

(0) � Ex�k [f(x)]) + Ex�k [f(x)]

= O((1� 4�)t) + Ex�k [f(x)] = O(e�ct) + Ex�k [f(x)]

= O(e�ct) + f̂(;) + f̂({k}), (69)

8j 6= k : W
(t)
j = (1� 2�)t(W (0)

j � Ex�k [xj · f(x)]) + Ex�k [xj · f(x)]
= O((1� 2�)t) + Ex�k [xj · f(x)] = O(e�ct) + Ex�k [xj · f(x)]
= O(e�ct) + f̂({j}). (70)

So the learned function is

f̃�k(x;⇥
(t)) =

b
(0) �W

(0)
k + f̂(;) + f̂({k})

2
+

W
(0)
k � b

(0) + f̂(;) + f̂({k})
2

xk

+
X

j 6=k

f̂({j}) · xj +O(e�ct) (71)

and the generalization error can be computed using Parseval Theorem:

gen(f, f̃ (t)
�k) =

1

2
Ex⇠Un

⇣
f(x)� f̃

(t)
�k(x;⇥

1)
⌘2�

(72)

=
1

2

 
(b(0) �W

(0)
k � f̂(;) + f̂({k}))2 + (W (0)

k � b
(0) + f̂(;)� f̂({k}))2

4

!
+O(e�ct) (73)

=
(b(0) �W

(0)
k � f̂(;) + f̂({k}))2

4
+O(e�ct) (74)

=
(b(0) �W

(0)
k )2

4
+

(f̂(;)� f̂({k}))2

4
� 2

(b(0) �W
(0)
k )(f̂(;)� f̂({k})

4
+O(e�ct). (75)
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Therefore, the expected generalization loss over different initializations is given by

E⇥0 [gen(f, f̃ (t)
�k)] = E⇥0

"
(b(0) �W

(0)
k )2 + (f̂(;)� f̂({k}))2

4

#
+O(e�ct) (76)

=
(f̂(;)� f̂({k}))2

4
+

�
2

2
+O(e�ct). (77)

Particularly, if the frozen function is unbiased, i.e., f̂(;) + f̂({k}) = 0, we have

E⇥0 [gen(f, f̃ (t)
�k)] =

(2f̂({k}))2

4
+

�
2

2
+O(e�ct)

= f̂({k})2 + �
2

2
+O(e�ct) = Infk(f) +

�
2

2
+O(e�ct). (78)

D Further details on noise stability

D.1 Noise stability of PVR functions

As mentioned above, a PVR function consists of a pointer (the first bits of the input) and an aggregation
function that acts on a specific window indicated by the pointer. We denote by p the number of
bits that define the pointer, and by w the size of each window. For simplicity, we consider a slight
variation of Boolean PVR task with non-overlapping windows, defined as follows:

• PVR with non-overlapping windows: the 2p windows pointed by the pointer bits are non-
overlapping, i.e., the first window is formed by bits xp+1, ..., xp+w, the second window is
formed by bits xp+w+1, ..., xp+2w, and so forth.

The input size is thus given by n := p+2pw and p = O(log(n)). We denote by g : {±1}w ! {±1}
the aggregation function, which we assume to be balanced (i.e., EX [g(X)] = 0). One can verify (see
details below) that the noise stability of the PVR function f is given by

Stab�[f ] = (1� �)p+w + (1� �)p(1� (1� �)w) · Stab�[g]. (79)

We notice that the Stab�[f ] is given by two terms: the first one depends on the window size and the
second one on the stability of the aggregation function. For large enough window size, the second
term in (79) is the dominant one, and Stab�[f ] depends on the stability of g. Thus from Theorem 1,
f is not learned by GD (in the extended input space) in poly(n) time if the stability of the aggregation
function is n

�!(1). On the other hand, for small window size (specifically for w = O(log(n))),
the Stab�(f) is ‘noticeable’ (as defined in Appendix B) for every aggregation function, since the
function value itself depends on a limited number of input bits. Thus, noise unstable aggregation
functions (e.g. parities) can form a PVR function with ‘noticeable’ stability, if the window size is
O(log(n)). As examples, we consider the specific cases of pairty and majority vote as aggregation
functions.

• Parity: If we choose g(x1, ..., xw) =
Qw

i=1 xi, one can observe that Stab�(g) = (1� 2�)w.
Then, eq. (79) becomes Stab�(f) = (1� �)w+p[1� (1� 2�)w] + (1� �)p, and Stab�(f)
is decreasing with w.

• Majority: If we choose g to be g(x1, ..., xw) = sgn(
Pw

i=1 xi), then, for w large, Stab�(g) ⇠
1� 2/⇡ · arccos(1� 2�) (see e.g. [O’D14]). Plugging this in eq. (79), one can observe that
also for majority vote Stab�(f) is decreasing with w.

Computation of (79). We compute the expression in (79) with the following:

Stab�[f ] = 1� 2NS�[f ], (80)

where NS�[f ] := P(f(X) 6= f(Y )) is the Noise sensitivity of f , defined as the probability that
perturbing each input bit independently with probability � changes the output of f and where we
denoted by Y the vector obtained from X by flipping each component with prob. � independently. To
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compute NS�[f ], we can first distinguish depending on whether the perturbation affects the pointer
bit:

NS�[f ] : = P(f(X) 6= f(Y ))

= (1� �)p · P(f(X) 6= f(Y ) | Xp = Y
p) + (1� (1� �)p)P(f(X) 6= f(Y ) | Xp 6= Y

p)

= (1� �)p · P(f(X) 6= f(Y ) | Xp = Y
p) + (1� (1� �)p)

1

2
,

where the last inequality holds since we are using non-overlapping windows and we assumed g to be
balanced. To compute the first term, we can condition on whether any bit in the window pointed by
X and Y is changed:

P(f(X) 6=f(Y ) | Xp = Y
p)

= (1� �)w · P(f(X) 6= f(Y ) | Xp = Y
p
, XP (Xp) = YP (Y p))+

+ (1� (1� �)w) · P(f(X) 6= f(Y ) | Xp = Y
p
, XP (Xp) 6= YP (Y p))

= (1� (1� �)w) · P(f(X) 6= f(Y ) | Xp = Y
p
, XP (Xp) 6= YP (Y p))

= (1� (1� �)w) ·NS�[g],

where the last inequality holds because g is unbalanced. By replacing NS�[g] =
1
2 � 1

2 Stab�[g] and
rearranging terms one can obtain (79).

D.2 Noise stability and initial alignment [ACHM22]

[ACHM22] introduced the notion of Initial Alignment (INAL) between a target function f : X ! Y
and a neural network NN : X ! Y with random initialization ⇥0 and neuron set VNN . The INAL
is defined as

INAL(f,NN) := max
v2VNN

E⇥0EX

h
f(X) ·NN(v)

⇥0 (X)
i2

, (81)

where NN(v)
⇥0 denotes the output of neuron v of the network at initialization. In [ACHM22], it is

shown that GD cannot learn functions that have negligible initial alignment with a fully connected
architectures with i.i.d. Gaussian initialization (with rescaled variance) and ReLU activation. Here,
we show how the INAL can be related to the noise sensitivity of the target function. We remark that
both noise sensitivity and INAL are related by the cross-predictability (CP). Let us first give two
definitions. Recall that for f : {±1}n ! {±1}, NS�[f ] =

1
2 � 1

2 Stab�[f ].
Definition 9 (High-Degree.). We say that a family of functions fn : {±1}n ! R is “high-degree” if
for any fixed k, Wk(fn) is negligible.
Definition 10 (Noise sensitive function). We say that a family of functions fn : {±1}n ! {±1} is
noise sensitive if for any � 2 (0, 1/2], NS�[fn] = 1/2� on(1).

Definition 11 (Strongly noise sensitive function). We say that a family on functions fn : {±1}n !
{±1} is strongly noise sensitive if for any � 2 (0, 1/2], NS�[fn] = 1/2� n

�!(1)
.

Then we can prove the following.
Proposition 2. Let NNn : Rn ! R be a fully connected neural network with Gaussian i.i.d.
initialization and expressive activation (as in Theorem 2.7 in [ACHM22]). If INAL(NNn, fn) =
n
�!(1), then fn is noise sensitive.

Proof. We need to show that for any � 2 [0, 1/2],
Pn

k=0(1� 2�)kW k(fn) = on(1), or analogously
that for any ✏ > 0 and for n large enough

Pn
k=0(1� 2�)kW k(fn) < ✏. Fix � and let ✏ > 0. Let k0

be such that (1� 2�)k0 < ✏/2. Then,
nX

k=0

(1� 2�)kW k(fn) =
k0X

k=0

(1� 2�)kW k(fn) +
nX

k=k0+1

(1� 2�)kW k(fn) (82)

 W
k0(fn) + (1� 2�)k0+1

nX

k=k0+1

W
k(fn). (83)
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By Proposition 4.3 and Corollary 4.4 in [ACHM22], if INAL(fn,�) = n
�!(1) then fn is high

degree. Thus, Wk0(fn) = n
�!(1), and clearly for n large enough W

k0(fn) < ✏/2. On the other
hand,

Pn
k=k0+1 W

k(fn) < 1, since f is Boolean-valued. Thus,
Pn

k=0(1� 2�)kW k(fn) < ✏, and
the Proposition is proven.

Proposition 3. If fn is strongly noise sensitive, then fn is high degree.

Proof. We need to show that if
Pn

k=0(1 � 2�)kW k(fn) = n
�!(1) then for any constant k,

W
k(fn) = n

�!(1). Take k0 2 N, then

n
�!(1) =

nX

k=0

(1� 2�)kW k(fn) �
k0X

k=0

(1� 2�)kW k(fn) � (1� 2�)k0W
k0(fn). (84)

Clearly this implies that Wk0(fn) = n
�!(1), and the proof is concluded.

E Computation of the Boolean influence for PVR functions

In this section, we compute the Boolean influence for PVR functions. Here, we consider PVR
functions with sliding windows and cyclic indices (i.e., xn+1 = xp+1). The Boolean influence for
PVR tasks with truncated windows or non-overlapping windows can be calculated in a similar manner.
Also note that we never freeze pointer bits in this paper as done in [ZRKB21]; therefore, we skip the
calculation of the Boolean influence for pointer bits. Consider a bit at k-th position (k > p). Note
that this bit appears in w windows. We denote by U

n the uniform distribution over the n-dimensional
hypercube. Using Lemma 1, we have:

Infk(f) = Ex⇠Un
1

2
(f (x)� f�k (x))

2 (85)

= Ex⇠Un
1

2

 
w�1X

i=0

1(P (xp) = k � i)
⇣
g (xk�i, . . . , xk, . . . , xk�i+w�1) (86)

� g (xk�i, . . . , 1, . . . , xk�i+w�1)
⌘!2

= Ex⇠Un
1

2

 
w�1X

i=0

1(P (xp) = k � i)
⇣
g (xk�i, . . . , xk, . . . , xk�i+w�1) (87)

� g (xk�i, . . . , 1, . . . , xk�i+w�1)
⌘2
!

=
1

2p

wX

i=1

Infi(g). (88)

Note that the expression
Pw

i=1 Infi(g) in Equation (88) is known as the total influence of the
aggregation function g [O’D14]. Below follows the value of the Boolean influence of the PVR task
f , depending on different aggregation functions:

• Parity. If we choose g to be the parity function, i.e., g(x1, . . . , xw) = x1x2 · · ·xw then
Infi(g) = P(g(x) 6= g(x+ ei)) = 1. Therefore, Infk(f) = w

2p .
• Median/Majority vote. We define the majority vote function as g(x1, . . . , xw) =
sign(x1 + · · · + xw) where the sign function outputs +1, �1, and 0. First assume
w is odd. In this case, flipping the i-th bit matters only in the case where exactly
w�1
2 other bits have the same sign as the i-th bit. Therefore, Infi(g) = P(g(x) 6=

g(x + ei)) = 2�(w�1)
�w�1

w�1
2

�
. Similarly, if w is even, flipping the i-th bit only mat-

ters if there are exactly w
2 or w

2 � 1 other bits with the same sign. Using Lemma 1,

Infi(g) = Ex⇠Uw
1
2 (g (x)� g�i (x))

2 = 2�(w+1)
⇣�w�1

w
2

�
+
�w�1

w
2 �1

�⌘
= 2�w

�w�1
w
2

�
.

Therefore, for odd w, Infk(f) = w
2(p+w�1)

�w�1
w�1

2

�
and for even w, Infk(f) = w

2(w+p)

�w�1
w
2

�
.
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• Min/Max. Here we consider the min function, g(x1, . . . , xw) = min(x1, . . . , xw). By
symmetry, the Boolean influence values are the same for the max function. In this case,
flipping the i-th bit only matters if all bits other than xi are equal to +1. Thus, the Boolean
influence is given by Infi(g) = 2�(w�1) and hence, Infk(f) = w

2(p+w�1) .

One can see how different parameters of the Boolean PVR functions, such as p, w, and g affect the
Boolean influence. Assuming fixed window size, w, each bit is less likely to appear in a window if
the number of pointer bits, p, is increased. Hence for fixed w and g, an increase in p results in smaller
influence for all the bits. On the other hand a change of w has a two-fold effect. First, since each bit
appears in w windows, the increase of w makes each bit more likely to appear in a window. On the
other hand, for some functions such as majority-vote and min/max, the increase of w reduces the
Boolean influence of the aggregation function for all bits. Thus, the increase of w can result in either
an increase of the Boolean influence (for example, if parity is used) or a decrease of the Boolean
influence (for instance, if min/max aggregation is used). We refer to Appendix F for experiments on
PVR tasks with varying window size.

F Experiment Details and Additional Experiments

In this section, we describe the experiments in more detail. Furthermore, we demonstrate more
experiments on the comparison of the out-of-distribution generalization error and the Boolean
influence.

F.1 Architectures and Procedure

We first explain the general experimentation setup for PVR tasks and other functions. Afterward, we
describe the procedure used for linear neural networks and results presented in Section 3.3.

Architectures. Three architectures have been used for the main experiments of this paper: MLP, the
Transformer [VSP+17], and MLP-Mixer [THK+21]. Below, we describe each of these architectures:

• MLP. The MLP model consists of 4 fully connected hidden layers of sizes 512, 1024, 512,
and 64. We used ReLU as the activation function for all layers except the last layer.

• Transformer. We follow the standard decoder-only Transformer architectures [RSR+19]
that are commonly used for language modeling, and are also the backbone of Vision
Transformers (ViTs) [DBK+20]. Specifically, an embedding layer is used to embed the
binary +1 and �1 values into 256 dimensional vectors, and a shared embedding layer is
used for all the binary tokens in the input sequence. Then, the embedded input is passed
through 12 transformer layers [VSP+17]. In each transformer layer, the hidden dimension
of MLP block is also 256. Moreover, 6 heads are used for each self-attention block. At the
end, a linear layer is used to compute the output of the model.

• MLP-Mixer. Similar to the Transformer based model, first we embed +1 and �1 tokens
into a 256 dimensional vector using a shared embedding layer for all the binary input
tokens. Then, the embedded input is passed through a standard 12-layer MLP-Mixer
model [THK+21]. Finally, a linear layer is used to compute the output. The MLP-Mixer
architectures are similar to the decoder-only Transformers, except that “mixer layers” based
on MLPs are used instead of the attention mechanism. Please see [THK+21] for details.

Procedure. To perform each of the experiments, we first fix a dimension to be frozen during the
training. Afterward, we train the model on the frozen training set to make the model learn the frozen
function. Finally, we evaluate the trained model uniformly on the Boolean hypercube ({±1}n) to
compute the out-of-distribution generalization error.

Now, we explain the hyperparameters used for the experiments. Note that the experiments are
aimed to exhibit an implicit bias towards low degree monomials and consequently to show that the
generalization error is close to the Boolean influence. Therefore, the experiments are not focused on
the learning of the frozen function itself and the in-distribution generalization error. In other words,
we are interested in the setting that the frozen function is learned during the training, and then we
want to examine the out-of-distribution generalization. Due to this reason, we have always used a
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relatively large number of training samples. Moreover, we have not used a learning rate scheduler and
we have not done extensive hyperparameter tuning. Generally, we have considered two optimizers
for the training of the models: mini-batch SGD and Adam [KB14]. We describe the setting used for
each of them below:

• SGD. When using SGD, we tried using 0 and 0.9 momentum. We observed that the use of
momentum remarkably accelerates the training process, and hence we continued with 0.9
momentum. Nonetheless, we also performed experiments using SGD without momentum,
and we did not notice any difference in their preference towards low degree monomials and
therefore the out-of-distribution generalization error. For learning rate of SGD, we tried
values in {10�3

, 5⇥ 10�4
, 2.5⇥ 10�4

, 10�4} and selected the learning rate dependent on
the model and task (more on this below). Additionally, we always used the mini-batch size
of 64 with SGD.

• Adam. In our experiments with Adam, we used default values of the optimizer and only
changed the learning rate. For learning rate, we tried values in {10�4

, 5⇥ 10�5
, 10�5} and

finally selected 5⇥ 10�4. While employing Adam, we used mini-batch size of 64 for PVR
tasks with 3 pointer bits (11 bits in total) and mini-batch size of 1024 for PVR tasks with 4
pointer bits (20 bits in total).

We selected the learning rate (and in general, hyperparameters) based on the speed of the convergence
and its stability. Note that we set the number of epochs for each task to a value to ensure the training
loss and in-distribution generalization error are small enough.10

Finally, we note that all of our experiments are implemented using PyTorch framework [PGM+19],
and the training has been done on NVIDIA A100 GPUs. The experiments presented in this paper
took approximately 250 GPU hours. Note that we have repeated PVR experiments with 3 pointer bits
40 times and the rest of the experiments 20 times, and have reported the averaged results and 95%
confidence interval. Please refer to the code for more details on the experiments.

Linear neural networks. For the experiments on linear models, we considered fully connected
linear neural networks with fixed hidden layer size of 256. As presented in Figure 4, we varied the
initialization and depth of these networks. For optimizing linear neural networks, we used mini-batch
SGD with 64 and 10�5 as the batch size and learning rate respectively. Note that we trained linear
models on CPU and stopped the training when the loss became less than 10�8.

F.2 Additional Results

More PVR tasks. First, we compare the generalization error and the Boolean influence for more
PVR functions. In the additional experiments, we consider the cyclic version of the PVR (i.e.,
xn+1 = xp+1), and due to the symmetry, we only freeze one dimension of the input. Also, we
use Adam to optimize the models (instead of SGD) due to faster convergence. As a first example,
we consider PVR tasks with 3 pointer bits (11 bits in total) and varying window sizes. We use
majority-vote and parity as the aggregation functions (see Appendix E for computation of the Boolean
influence for such functions). In Figure 5, the window size of the aforementioned PVR tasks is varied
in the x-axis and the averaged generalization error over 40 experiments is shown. Figure 5 (top)
corresponds to the case where majority-vote is used as the aggregation function whereas Figure 5
(bottom) shows the results when parity is the aggregation function. It can be seen that in this setting,
the generalization error of all models follow the Boolean influence closely. Note that learning parity
function becomes increasingly difficult as the window size is increased. Even for w = 4, the MLP
and MLP-Mixer models could not learn the frozen function completely and their in-distribution
generalization loss was between 0.05 and 0.10.

Furthermore, we experimented on PVR tasks of larger scales. To this end, we consider PVR tasks
with 4 pointer bits (20 bits in total) and different window sizes and aggregation functions. For these
experiments, we also used Adam optimizer with batch-size of 1024. We repeated each experiment 20
times. The generalization error and Boolean influence for these functions are given in Table 1. It
can be observed that for these experiments, the generalization errors of MLP and Transformer are
well approximated by the Boolean influence; while MLP-Mixer has higher generalization error. The

10This is problem dependent; nonetheless, we generally refer to errors of order of magnitude 10�2 or less.
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Figure 5: PVR tasks with 3 pointer bits and varying window sizes where the aggregation function
is majority-vote (top) and parity (bottom). X-axis represents the window size of the PVR task, and
y-axis shows the value of the generalization error and the Boolean influence.

results of Figure 5 and Table 1 indicate that the implicit bias towards low-degree monomials also
exists when Adam is used as the optimizer and therefore is not limited to SGD.

Table 1: Generalization error for PVR tasks with 4 pointer bits

PVR task Generalization error

Aggregation Window size Boolean
influence MLP Transformer MLP-Mixer

Min 2 0.0625 0.062± 0.004 0.068± 0.006 0.118± 0.016
Parity 3 0.1875 0.206± 0.004 0.198± 0.015 0.329± 0.017

Majority 3 0.09375 0.099± 0.004 0.095± 0.001 0.194± 0.022
Majority 4 0.046875 0.051± 0.004 0.049± 0.002 0.094± 0.019
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Figure 6: Comparison between the Boolean Influence and generalization error for f1(x1, . . . , x11) =
x1x2 + 2x2x3 + 3x3x4 + · · ·+ 10x10x11. Frozen coordinates are represented by the x-axis; while
the y-axis represents the value of generalization error and the Boolean influence.

Figure 7: Comparison between the generalization loss in the canonical distribution shift setting and
the Boolean Influence for f2(x1, x2, . . . , x14) = x1 + x1x2 + x1x2x3 + · · ·+ x1x2x3 · · ·x14.

Non-PVR examples. We also experimented on non-PVR functions. As the first example, we
consider the target function f1(x1, . . . , x11) = x1x2 + 2x2x3 + 3x3x4 + 4x4x5 + · · ·+ 10x10x11

which is a sum of second degree monomials. For each of the architectures, we freeze a coordinate
(ranging from 1 to 11), train the model on the frozen samples using mini-batch SGD and evaluate
the generalization loss. The relation between the Boolean influence and the averaged generalization
error over 20 runs for f1 is demonstrated in Figure 6. It can be seen that the generalization errors
of the MLP and the Transformer model are again well approximated by the Boolean influence.
However, the generalization error of the MLP-Mixer follows the trend of Boolean influence with
an offset. This implies that the MLP and Transformer have a stronger preference for low-degree
monomials than the MLP-Mixer in this case. As the last example, we consider the vanilla staircase
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(a) MLP (b) Transformer

(c) MLP-Mixer

Figure 8: The coefficients of different monomials learned by the MLP, Transformer, and MLP-
Mixer when learning the staircase function, with x8 = 1 frozen during the training. Note that
�T (x) =

Q
i2T xi, e.g., �[8] = x1x2 · · ·x8. Generally, monomials of lower degrees are learned

faster by the models. Consequently, the models prefer to learn the monomials which exclude the
frozen index.

function for 14 bits, i.e., f2(x1, x2, . . . , x14) = x1 + x1x2 + x1x2x3 + · · · + x1x2x3 · · ·x14 (see
[ABAB+21, ABAM22] for theoretical results on such staircase functions). We train models for
this function using mini-batch SGD. In Figure 7, we report the generalization errors of the MLP,
Transformer, and MLP-mixer models for each frozen coordinate of f2, as well as the values of the
Boolean influence of the corresponding index. Note that the generalization errors have been averaged
over 20 runs. It can be observed that the generalization loss of MLP is very close to the Boolean
influence in this case as well. However, the generalization errors of the Transformer and MLP-Mixer
follow the Boolean influence with an offset. It is worth noting that the previous two functions are
quite different than the PVR function: the PVR function has strong ‘symmetries’ given by the fact
that each window is treated similarly with the aggregation function, and thus one may expect that
certain architectures would exploit such symmetries. Thus, the PVR function is still a staircase
function [ABAM22], of leap 2 in the example of Section 1.2, but it is a staircase function with the
related symmetries. Instead, the two functions considered here are staircase functions that do not
have any such symmetries.

Figure 7 shows that in some cases the Boolean influence may not always give a tight characterization
of the generalization error. However, it appears that in such cases the offset still maintains the general
trend of the influence. As an attempt to better understand this offset, recall the relation between the

28



Boolean influence and the generalization error in terms of the implicit low-degree bias: the stronger
the preference for low-degree monomials is, the closer the generalization error is to the Boolean
influence. We thus plot the coefficient of different monomials for f2 and these three models while
x8 = 1 is frozen during the training in Figure 8. One can observe that for this staircase function,
the bias towards low-degree monomials is stronger for MLP and it is weaker for Transformer and
MLP-mixer. This well explains the relation between the Boolean influence and the generalization
error of different models depicted in Figure 7, where the generalization error of MLP is significantly
closer to the Boolean influence, compared to the generalization error of Transformer and MLP-Mixer.

G Intuition on the linear neural networks

At last, we provide heuristic justifications for the effect of depth and initialization on the general-
ization error and its closeness to the Boolean influence in the case of linear neural networks. Let
fNN (x;⇥) = w

T
L(W

T
L�1(· · · (WT

1 x+ b1) · · · ) + bL�1) + bL be a linear neural network with depth
L, after training in the canonical holdout setting where the k-th bit is frozen to 1. Assume the target
function to be linear. After training, the neural network learns the frozen function f�k(x) = f(x�k).
Note that the bias of the frozen function is f̂({;}) + f̂({k}) (where with f̂ we denote the Fourier
coefficients of the target function f ), that is expressed by the neural network by the following:

B := (wT
LW

T
L�1 · · ·WT

2 b1 + w
T
LW

T
L�1 · · ·WT

3 b2 + · · ·+ w
T
LbL�1 + bL) + w

T
LW

T
L�1 · · ·WT

2 w
T
1,k

(89)

where by w1,k we indicate the weights in the first layer of the frozen dimension k. Assuming the
neural network has learned the function, we have

f̂NN ({i}) = f̂({i}) for all i 6= k, (90)

f̂NN ({;}) + f̂NN ({k}) = B = f̂({;}) + f̂({k}), (91)

where we denoted by f̂NN the Fourier coefficients of fNN . Therefore, applying Parseval identity we
find that the generalization error equals

gen(f, fNN ) =
1

2
EX(f(X)� f̂NN (X))2 (92)

=
1

2

⇣
f̂({;})� f̂NN ({;})

⌘2
+

1

2

⇣
f̂({k})� f̂NN ({k})

⌘2
(93)

=
1

2

⇣
f̂({;})� (wT

L · · ·WT
2 b1 + · · ·+ bL)

⌘2
+

1

2

⇣
f̂({k})� w

T
L · · ·WT

2 w
T
1,k

⌘2

(94)

= (f̂({k})� w
T
L · · ·WT

2 w
T
1,k)

2
. (95)

Therefore, the amount of bias captured by w
T
LW

T
L�1 · · ·WT

2 w
T
1,k determines the generalization error.

Particularly, if wT
L · · ·WT

2 w
T
1,k goes to zero, the generalization error will become equal to the Boolean

influence. Note that xk = 1 during the training, therefore w1,k has the same training dynamics as the
bias of the first layer b1.

Effect of depth. From (89), we note that there are L + 1 terms that contribute to B, and one of
them is indeed w

T
L · · ·WT

2 w
T
1,k. Therefore as the depth L increases, if those terms are appropriately

aligned, one can expect that the contribution of each term, including w
T
L · · ·WT

2 w
T
1,k, decreases; thus,

the generalization error becomes closer to the Boolean influence.

Effect of initialization. The gradients of the parameters for a sample x are given by

rbLL(⇥, x, f) = (fNN (x;⇥)(x)� f�k(x)),

rbL�1L(⇥, x, f) = (fNN (x;⇥)(x)� f�k(x))wL,

...
rb1L(⇥, x, f) = (fNN (x;⇥)(x)� f�k(x))W2W3 · · ·wL.
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Now, consider the first update of the parameters. As we decrease the scale of initialization, the ratio
of rbL

rbL�1
, · · · , rb2

rb1
increases which implies that b1 would have the smallest update and bL will have

the largest update. Since the dynamics of w1,k and b1 are the same, the frozen dimension would
contribute the least to the bias after the first iteration. Our experiments on decreasing the scale of
initialization suggest that this argument is not limited to the first iteration. In other words, using small
enough initialization the bias will be mostly captured by the bias terms in other layers, which results
in generalization error being close to the Boolean influence.
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