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Abstract

This paper considers the Pointer Value Retrieval (PVR) benchmark introduced
in [ZRKB21], where a ‘reasoning’ function acts on a string of digits to produce
the label. More generally, the paper considers the learning of logical functions
with gradient descent (GD) on neural networks. It is first shown that in order
to learn logical functions with gradient descent on symmetric neural networks,
the generalization error can be lower-bounded in terms of the noise-stability of
the target function, supporting a conjecture made in [ZRKB21]. It is then shown
that in the distribution shift setting, when the data withholding corresponds to
freezing a single feature (referred to as canonical holdout), the generalization
error of gradient descent admits a tight characterization in terms of the Boolean
influence for several relevant architectures. This is shown on linear models and
supported experimentally on other models such as MLPs and Transformers. In
particular, this puts forward the hypothesis that for such architectures and for
learning logical functions such as PVR functions, GD tends to have an implicit
bias towards low-degree representations, which in turn gives the Boolean influence
for the generalization error under quadratic loss.

1 Introduction

Recently [ZRKB21] introduced the pointer value retrieval (PVR) benchmark. This benchmark
consists of a supervised learning task on MNIST [LCB10] digits with a ‘logical’ or ‘reasoning’
component in the label generation. More specifically, the functions to be learned are defined on
MNIST digits organized either sequentially or on a grid, and the label is generated by applying some
‘reasoning’ on these digits, with a specific digit acting as a pointer on a subset of other digits from
which a logical/Boolean function is computed to generate the label.

For instance, consider the PVR setting for binary digits in the string format, where a string of MNIST
digits is used as input. Consider in particular the case where only 0 and 1 digits are used, such as
in the example of Figure 1. The label of this string is defined as follows: the first 3 bits 101 define
the pointer in binary expansion, and the pointer points to a window of a given length, say 2 in this
example. Specifically, the pointer points at the first bit of the window. To generate the label, one has
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Figure 1: An example of a PVR function with a window size of 2. The first 3 bits are the pointer,
which points to a window in the subsequent bits. Specifically, the number indicated by the pointer
bits in binary expansion gives the position of the first bit of the window. The label is then produced
by applying some fixed aggregation function to the window bits (e.g., parity, majority-vote, etc.).

to thus look the 6th window2 of length 2 given by 11, and there the label is produced by applying
some fixed function, such as the parity (so the label would be 0 in this example). In [ZRKB21], the
PVR benchmark is also defined for matrices of digits rather than strings; we focus here on the string
version that captures all the purposes of the PVR study. This benchmark is introduced to understand
the limits of deep learning on tasks that go beyond classical image recognition, investigating in
particular the trade-off between memorization and reasoning by acting with a particular distribution
shift at testing (see further details below).

In order to learn such PVR functions, one has to first learn the digit identification and then the logical
component on these digits. Handling both tasks successfully at once is naturally more demanding than
succeeding at the latter assuming the first is successful. Here, we focus on the ‘logical component’ as
a necessary component to learn, and this corresponds to learning a Boolean function. The overall
function that maps the pixels of an image to its label in the PVR is of course also a Boolean function
(like any computer-encoded function), but the structural properties of such meta-functions are more
challenging to describe, and left for future work. In any case, to understand the limits of deep learning
on such benchmarks, we focus on investigating first the limits of deep learning on the logical/Boolean
component.

We next re-state formally one of the PVR benchmarks from [ZRKB21], focusing on binary digits
for simplicity. We will use the alphabet {0, 1} to describe the benchmark to connect to the MNIST
dataset, but will later switch to the alphabet {+1,�1} for the problem of learning Boolean functions
with neural networks. Recall for d 2 N, Fd

2 = {0, 1}d.
Definition 1 (Boolean PVR with sliding windows). The input x consists of n bits and the label is
generated as

f(x1, . . . , xn) = g(xP (xp), . . . , xP (xp)+w�1). (1)

where p is the number of bits in the pointer, w is the window size, g : Fw
2 ! R is the aggregation

function, P : Fp
2 ! [p+1 : n] is the pointer map, xj denotes the bit in position j and xp = (x1, ..., xp)

denotes the pointer bits. We often set n = p+ 2p, and hence the last window starts at the last digit.

In words, the first p bits give a pointer to the beginning of a window of w consecutive bits, and the
label is produced by applying a Boolean function g on these w bits.
Remark 1. If w > 1, for some values of the pointer, P (xp) + w � 1 would exceed the dimension of
input n. This issue can be solved by using cyclic indices or by using non-overlapping windows as
defined in Appendix D. However, in the experiments of this paper, we mainly truncate windows (if
necessary) in order to capture the underlying asymmetries (e.g., the last windows have smaller sizes).

In this paper we consider the problem of learning in the holdout setting, i.e., when some data are
withheld (or ‘unseen’) during training. We focus on a specific type of holdout setting, that we call
‘canonical holdout’, which we define here. Extensions to other types of holdout are also of interest,
and left for future work.
Definition 2 (Canonical holdout). Let F be the class of Boolean functions on n bits and let f be
a specific function in that class. For k 2 [n], consider the problem of learning F from samples
(X�k, f(X�k)), where the X�k’s are independently drawn from the distribution that freezes com-
ponent k to 1 and that draws the other components i.i.d. Bernoulli(1/2). Let f̃�k be the function

2pointer 000 points at the first window, pointer 001 at the second window, and so on. Thus pointer 101, that
is equal to 5 in binary expansion, points at the 6th window.
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learned under this training distribution. We are interested in the generalization error with square
loss when the k-th bit is not frozen at testing, i.e.,

gen(F , f̃�k) =
1

2
EX⇠UFn

2 ,f⇠UF (f(X)� f̃�k(X))2, (2)

where by X ⇠U Fn
2 we mean that X is chosen uniformly at random from Fn

2 , and similarly for
f ⇠U F . We denote by f̃ the function learned in the case where the k-th component is not frozen at
training, i.e., when the train and test distributions are both uniform on the Boolean hypercube, and
use the following notation for the corresponding generalization error:

gen(F , f̃) =
1

2
EX⇠UFn

2 ,f⇠UF (f(X)� f̃(X))2. (3)

The ‘canonical’ holdout is thus a special case of holdout where a single feature/bit is frozen at training.
In [ZRKB21], different types of holdout are allowed where a given string is absent from the windows
rather than a given bit as in the canonical version. We believe that the canonical holdout still captures
the essence of the PVR benchmark: other windows will get to see the strings that are withheld due to
the bit freezing, and thus the goal is still to investigate whether neural networks trained by GD will
manage to patch together the different pieces.

Finally, we will often consider neural network architectures that have invariances on the input, such
as permutation invariance. In the PVR setting, this means that we do not assume that the learner has
knowledge of which bits are in the window. In such cases, instead of learning a class of function F ,
one can equivalently talk about learning a single function f (with the implicit F defined as the orbit
of f through the permutation group), and define

gen(f, f̃�k) =
1

2
EX⇠UFn

2
(f(X)� f̃�k(X))2 and gen(f, f̃) =

1

2
EX⇠UFn

2
(f(X)� f̃(X))2.

1.1 Contributions of this paper

The contributions of this paper are:

1. In the matched setting (i.e., train and test distributions are matching), we prove a lower-
bound (Theorem 1) on the generalization error for gradient descent3 (GD), that degrades for
functions having large noise-sensitivity (or low noise-stability), supporting thereby with a
formal result a conjecture put forward in [ZRKB21].

2. In the mismatched setting, specifically in the canonical holdout where a single feature
is frozen at training and released to be uniformly distributed at testing, we hypothesize
that (S)GD on the square loss4 and on certain network architectures such as MLPs and
Transformers has an implicit bias towards low-degree representations when learning logical
functions such as Boolean PVR functions. This gives a new insight into the implicit bias
study of GD on neural networks for the case of logical functions.
We then show (Lemma 1) that under this hypothesis, the generalization error in the canonical
holdout setting is given by the Boolean influence, a central notion in Boolean Fourier
analysis.

3. We provide experiments supporting this hypothesis for various target functions and architec-
tures such as MLPs and the Transformers [VSP+17] in Section 3.2 and Appendix F. These
rely on mini-batch stochastic gradient descent (see Section 3.2 for more details).

4. We establish formally the hypothesis for GD and linear regression models in Section 3.3,
and conduct experiments to support it on multi-layer neural networks of large depths and
small initialization scales in Section 3.3 (with further arguments in Appendix G).

1.2 The low-degree bias hypothesis: illustration

We now discuss the hypothesis put forward in this paper that “GD on certain architectures such as
MLPs and Transformers has an implicit bias towards lower-degree representations when learning

3This part relies on population gradients with polynomial gradient precision as in [AS20, AKM+21]
4We do not expect the square loss to be critical, but it makes the connection to the influence more explicit.
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PVR and, more generally, logical functions.” Before starting our illustration let us recall some
basic notions from Boolean analysis (we refer to [O’D14] for details). Any Boolean function
f : {±1}n ! R can be written in terms of its Fourier-Walsh transform: f(x) =

P
T✓[n] f̂(T )�T (x),

where �T (x) =
Q

i2T xi and f̂(T ) = 2�n
P

x2{±1}n f(x)�T (x) are respectively the basis elements
and the coefficients of the Fourier-Walsh transform of f .

Definition 3 (Boolean influence [O’D14]). Let f : {±1}n ! R be a Boolean function and let f̂ be
its Fourier-Walsh transform. The Boolean influence of variable k 2 [n] on f is defined by Infk(f) :=P

T✓[n]:k2T f̂(T )2. In particular, if f : {±1}n ! {±1}, Infk(f) = P(f(X) 6= f(X + ek)), where
X + ek corresponds to the vector obtained by flipping the k-th component of X .

Consider the following example of a PVR function with a 1-bit pointer, 2 overlapping windows of
length 2, and parity for the aggregation function. We consider f : {±1}n ! {±1} (i.e., with ±1
variables instead of 0, 1, to simplify the expressions), with f given by

f(x1, x2, x3, x4) =
1 + x1

2
x2x3 +

1� x1

2
x3x4. (4)

We can rewrite f in terms of its Fourier-Walsh expansion (i.e., pulling out all the multivariate
monomials appearing in the function, see Section 3.1 for more details), which gives

f(x1, x2, x3, x4) =
1

2
x2x3 +

1

2
x3x4 +

1

2
x1x2x3 �

1

2
x1x3x4. (5)

Consider now training a neural network such as a Transformer as in Section 3.2 on this function,
with quadratic loss, and a canonical holdout corresponding to freezing x2 = 1 at training. Under this
holdout, and under the ‘low-degree implicit bias’ hypothesis, the low-degree monomials are learned
first (see experiments in Section 3.2), resulting in the following function being learned at training:

f�2(x1, x2, x3, x4) =
1

2
x3 +

1

2
x3x4 +

1

2
x1x3 �

1

2
x1x3x4 =

1 + x1

2
x3 +

1� x1

2
x3x4. (6)

Thus, according to Lemma 1 proved in Appendix C, the generalization error is given by

1

2
E(f(X)� f�2(X))2 = P(f(X) 6= f(X + e2)) =

1

2
, (7)

which is the probability that flipping the frozen coordinate changes the value of the target function,
i.e., the Boolean influence (where we denoted by X + e2 the vector obtained by flipping the second
entry in X). As shown in this paper, neural networks tend to follow this trend quite closely, and we
can prove this hypothesis on simple linear models. Notice that an ERM-minimizing function could
have taken a more general form than a degree minimizing function, i.e.,

f
ERM
�2 (x) :=

1 + x2

2
f�2(x) +

1� x2

2
r(x) (8)

for any choice of r : {±1}4 ! {±1}. In the special case of r = 0, fERM
�2 corresponds to f�2 (the

low-degree representation). For instance, among such ERM-minimizers, one can check that the
minimum `2-norm interpolating solution would be given by

f
`2
�2(x) :=

1

4
(x3+x2x3)+

1

4
(x3x4+x2x3x4)+

1

4
(x1x3+x1x2x3)�

1

4
(x1x3x4+x1x2x3x4). (9)

This gives a generalization error of 1
2E(f(X)� f

`2
�2(X))2 = 4( 14 )

2 = 1
4 , i.e., half the error of f�2,

yet still bounded away from 0.

In order to improve on this, under the same canonical holdout with x2 = 1, one would like to rely on
a type of minimum description length bias, since describing f may be more efficient than f�2 due to
the stronger symmetries of f . Namely, f corresponds to taking the parity on the middle two bits if
x1 = 1, and on the last two bits otherwise. On the other hand, f�2 requires changing the function
depending on x1 = 1 or x1 = �1, since it is once the function x3 and once the function x3x4. So
an implicit bias that would exploit such symmetries, featuring in PVR tasks, would give a different
solution than the low-degree implicit bias, and could result in lower generalization error. We leave to
future work to investigate this ‘symmetry compensation’ procedure.
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1.3 Related literature

GD lower bounds. Several works have investigated the difficulties of learning a class of functions
with descent algorithms and identified measures for the complexity in this setting. In particu-
lar, [BFJ+94, Kea98] prove that the larger the statistical dimension of a function class is, the more
difficult it is for an statistical query (SQ) algorithm to learn. We refer to [AKM+21, DGKP19]
for further references on SQ-like lower bounds. For GD with mini-batch and polynomial gradient
precision, [AS20] uses the m-Cross-Predictability (CP) of a class of functions to show that classes
sufficiently small CP and large batch-size are not efficiently learnable. This is further generalized in
[AKM+21] to a broader range of batch size and gradient precision. In [AGNZ18], the noise-stability
for deep neural networks is defined as the stability of each layer’s computation to noise injected at
lower layers, and is used to show correctness of a compression framework. However, no bounds on
the generalization error of GD depending on the noise stability of the target function is derived in this
work. The noise-stability, the statistical dimension and the cross-predictability are measures for some
given function or function class. One can obtain measures that are defined for a dataset and a network
architecture. For that purpose, [ACHM22] introduced the “Initial Alignment” (INAL) between the
target function and the neural network at initialization and proves that for fully connected networks
with Gaussian i.i.d. initialization, if the INAL is negligible, then GD will not learn efficiently. We
remark that the problem of approximating and learning Boolean functions appear in other areas as
well. For instance, [HPV19] considered the problem of approximating Boolean functions, using
functions coming from restricted classes (namely k-juntas and linear Boolean functions); [JSR+19]
proposes two algorithms to learn sparse Boolean formulae; and [Udo21] proposes techniques for
modeling Boolean functions by mixed-integer linear inequalities.

Implicit bias. The implicit bias of neural networks trained with gradient descent has been ex-
tensively studied in recent years [NTS14, NBMS17, MGW+20, JT19, GLSS18a]. In particular,
[SHN+17] proved that gradient descent on linearly-separable binary classification problems con-
verges to the maximum `2-margin direction. Several subsequent works studied the implicit bias in
classification tasks on various networks architectures, e.g., homogeneous networks [LL19], two layers
networks in the mean field regime [CB20], linear and ReLU fully connected networks [VSS21], and
convolutional linear networks [GLSS18b]. Among regression tasks, the problem of implicit bias has
been analysed for matrix factorization tasks [GWB+17, RC20, ACHL19], and also gradient flow on
diagonal networks [PPVF21]. However, all these works consider functions with real inputs, instead
of logical functions which are the focus of this work. On the other hand, as discussed in Section 1.2,
the Boolean influence generalization characterization reflects the implicit bias of GD on neural
networks to learn low-degree representations. Similar types of phenomena can implicitly be found
in [XZX18, XZL+19, RBA+19], in particular as the “spectral bias” in the context of real valued
functions decomposed in the classical Fourier basis (where the notion of lower degree is replaced by
low frequencies). In [ABAB+21, ABAM22], the case of Boolean functions is considered as in this
paper, and it is established that for various ‘regular’ architectures (having some symmetry in their
layers), gradient descent can learn target functions that satisfy a certain ‘staircase’ property. However,
these papers do not investigate lower-bounds in terms of noise stability, neither distribution shift as in
the canonical holdout. We note that, in the context of Boolean functions, the problem of regularizing
a learning algorithm to avoid overfitting appears in other areas of research, e.g., in the analysis of
fitness functions in biology [ANO+21].

Distribution shift. Many works were aimed at characterizing when a classifier trained on a training
distribution (also called the “source” distribution) performs well on a different test domain (also
called the “target” distribution) [QCSSL09]. On the theoretical side, [BDBC+10] obtains a bound
of the target error of a general empirical risk minimization algorithm in terms of the source error
and the divergence between the source and target distribution, in a setting where the algorithm has
access to a large dataset from the source distribution and few samples from the target distribution. We
refer to [SQZY17] for a further result in a similar setting. Instead, in this work we focus on gradient
descent on neural networks in the setting where no data from the target distribution is accessible. On
the empirical level, several benchmarks have been proposed to evaluate performance for a wide range
of models and distribution shifts [WGS+22, MTR+21, SKL+21]. Despite this significant body of
works on distribution shift, we did not find works that related the generalization error under holdout
shift in terms of the Boolean influence.
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2 Matched setting: a formal lower-bound on noise stability and generalization

Our first result provides a lower bound on the generalization error in the setting where the training
and test distributions of the inputs are both uniform on the Boolean hypercube, i.e., the “matched
setting”. We directly relate the generalization error achieved by GD, or SGD with large batch-size, to
the complexity of the task, providing theoretical support to the empirical claim in [ZRKB21], that
complex tasks are more difficult to learn for GD/SGD on neural networks. The latter work used the
noise sensitivity as a dual measure of the target function complexity, whereas we use here the noise
stability (Stab�[f ]).
Definition 4 (Noise stability). Let f : {±1}n ! R and � 2 [0, 1/2]. Let X be uniformly distributed
on the Boolean n-dimensional hypercube, and let Y be formed from X by flipping each bit indepen-
dently with probability �. We define the �-noise stability of f by Stab�[f ] := E(X,Y )[f(X) · f(Y )].

Intuitively, Stab�[f ] measures how stable the output of f is to a perturbation that flips each input bit
with probability �, independently. The noise stability can be easily related to the noise sensitivity
NS�[f ]5, used in [ZRKB21].

The generalization error depends as well on the complexity of the network, which is quantified in
terms of the number of edges in the network, the number of time steps, and gradients precision in the
gradient descent algorithm. We give one more definition before stating our result.
Definition 5 (N-Extension). For a function f : Rn ! R and for N > n, we define its N -extension
f̄ : RN ! R as f̄(x1, x2, ..., xn, xn+1, ..., xN ) = f(x1, x2, ..., xn).

Theorem 1. Consider a fully connected neural network of size E with initialization that is target
agnostic in the sense that it is invariant under permutations of the input6. Let f : {±1}n ! {±1}
be a balanced target function. Let f̄ be the 2n-extension of f as defined in Definition 5. Let f (t)

NN be
the output of noisy-GD with gradient range A, batch-size b, learning rate � and noise scale � (see
Def. 8) after t time steps. Then, for � small enough7 and for b large enough8, the generalization error
satisfies

gen
⇣
f̄ , f

(t)
NN

⌘
� 1/2� �t

p
EA

�
· Stab�[f ]1/4. (10)

Theorem 1 states a lower bound for learning in the extended input space. We use the input doubling to
guarantee that the hypothesis class F resulting from the orbit of f̄ , i.e., orb(f̄) = {f̄ � ⇡ : ⇡ 2 S2n},
is not degenerate to a single function, as this could then be learned using a proper choice of the
initialization (i.e., one can simply set the weights of the neural network at initialization to represent
the unique function, if the network has enough expressivity). Instead, the input doubling prohibits
such representation shortcut and ensures that the structural properties of the function is what creates
the difficulty of learning, irrespective of the choice of the initialization. For instance, consider the
full parity function on all of the input bits. The orbit of this function contains only that specific
function, and one can learn that function by choosing a proper initialization on a neural net of
depth 2. However, with an input doubling, this function becomes hard to learn no matter what the
initialization is [Kea98, AS20]. One can remove this input doubling requirement by assuming that f
is non-extremal (i.e., no terms of degree ✓(n) in the Fourier basis) and non-dense (i.e., poly(n)-sized
Fourier spectrum), see Appendix B.

The proof of Theorem 1 uses [AS20] which obtains a lower-bound in terms of the cross-predictability
(CP) (instead of the noise stability). The CP is a complexity measure of a class of functions, rather than
a single function. For the orbit of f̄ , the CP is defined as CP(orb(f̄)) = E⇡⇠US2n [EX⇠UF2n

2
[f̄(X) ·

f̄ � ⇡(X)]2]. We give a more general definition of CP in Appendix A (we believe that the CP also
extends to other invariances than permutations and non i.i.d. distributions).

5Specifically, for binary-valued functions, NS�[f ] = 1
2 � 1

2 Stab�[f ].
6One could consider other groups of invariances than the full permutation group; this is left for future work.
7Generally, this holds for any � such that CP (orb(f̄))  Stab�[f ]; in particular, this holds for � < 1/4

under input doubling or for some � > 0 under non-extremal and non-dense assumptions.
8This holds for b � 1/CP (orb(f̄)).
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Theorem 1 states that if the target function is highly noise unstable, specifically if there exists
� < 1/4 such that Stab�[f ] decreases faster than any inverse polynomial in n, then GD will not
learn the 2n-extension of f (or f itself if it is non-extremal/dense) in polynomial time and with a
polynomially sized neural network initialized at random. So in that sense, the noise-stability gives
a proxy to generalization error, as observed in [ZRKB21]. More specifically, this result is about
failure of the weakest form of learning no matter what the architecture is. One could also consider
‘regular’ architectures (such as with isotropic layers) and stronger learning requirements; for this it
is known that the ‘Fourier leap’ from [ABAB+21] is a relevant complexity measure, and we leave
investigations of regular architectures to future work. More details of the proof of Theorem 1 are in
Appendix A. In Appendix D, we explain how the noise stability of PVR functions can be computed,
and the implications to the result of Theorem 1.

3 Mismatched setting

In this section, we focus on the generalization error under the distribution shift setting, more specifi-
cally the canonical holdout setting defined in Definition 2. Namely, assume that at training component
k is frozen to 1, and assume it to be released to Unif{±1} at testing. Our experiments show that in
this setting, for some relevant architectures, the generalization error is close to the value of a standard
measure in Boolean analysis, namely the Boolean influence of variable k on f .

3.1 Boolean influence and generalization

To explain the connection between generalization error and Boolean influence, we start with a simple
lemma relating the Boolean influence to the `2-distance between the true target function and the
function obtained by freezing component k (which we call the “frozen function”).
Lemma 1. Let f : {±1}n ! R be a Boolean function and let f�k be defined as f�k(x) := f(x�k)
where x�k(i) = 1 if i = k and x�k(i) = x(i) otherwise. Then, 1

2EX(f(X)�f�k(X))2 = Infk(f).

The proof of Lemma 1 can be found in Appendix C. In Section 3.2, we present experiments that
demonstrate the relation between the Boolean influence and the generalization error for different
architectures. In Section 3.3, we focus on linear models, namely, linear regression and linear networks.

3.2 Experiments

We consider three architectures for our experiments: multi-layer perceptron (MLP) with 4 hidden
layers, the Transformer [VSP+17], and MLP-Mixer [THK+21]. For each architecture, we freeze
different coordinates separately and evaluate our models. In other words, we train the model while
freezing coordinate 1, then coordinate 2 and so on, until coordinate n and compare the generalization
error with the Boolean influence of the corresponding coordinates of the target function. We train
our models using `2 loss and mini-batch SGD with momentum and batch-size of 64 as the optimizer.
Moreover, we have repeated each experiment 40 times and averaged the results. Furthermore,
note that for the MLP model, we pass the Boolean vector directly to the model. However, for the
Transformer and MLP-Mixer, we first encode +1 and �1 tokens into 256-dimensional vectors using
a shared embedding layer, and then we pass the embedded input to the models. More details on
training procedure as well as further experiments are presented in Appendix F.9

Influence vs. canonical holdout generalization. In this section, we consider a Boolean PVR
function (as in Def. 1) with 3 pointer bits to be learned by the neural networks. For this function
we set window size to 3 and use majority-vote (defined as g(x1, . . . , xr) = sign(x1 + · · · + xr),
outputting �1, 0, or 1) as the aggregation function on the windows. The generalization error of the
models on this PVR function and its comparison with the Boolean influence are presented in Figure 2.
The x-axis corresponds to the index of the frozen coordinate, that is from 4 to 11 (we do not freeze
the pointer bits). On the y-axis, for each frozen coordinate we report the generalization error obtained
in the corresponding holdout setting for MLP, the Transformer, and MLP-Mixer, together with the
value of the Boolean influence of the frozen coordinate on the target function. It can be seen that the
generalization error of MLP and the Transformer can be well approximated by the Boolean influence.

9Code: https://github.com/aryol/BooleanPVR
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Figure 2: Comparison between the generalization loss in the canonical distribution shift setting and
the Boolean influence for a PVR function with 3 pointer bits, window size 3, and majority-vote
aggregation function. See Appendix F for further experiments.

Whereas, the generalization error of MLP-Mixer follows the trend of the Boolean influence with an
offset. We remark that in Figure 2, the value of the Boolean influence (and gen. error) in the PVR
task varies across different indices due to boundary effects and the use of truncated windows (see
Def. 1). We refer to Appendix F for further experiments on other target functions.

Implicit bias towards low-degree representation. Consider the problem of learning a function
f in the canonical holdout setting freezing xk = 1. Denote the Fourier coefficients of the frozen
function f�k (as defined in Lemma 1), by f̂�k(S), for all S ✓ [n] := {1, ..., n} (recall, f̂�k(S) =
EX [f�k(X)�S(X)]). For S such that k 62 S, the neural network can learn coefficient f̂�k(S)
using either �S(x) or xk · �S(x) = �S[{k}(x) (since these are indistinguishable at training). The
low-degree implicit bias states that neural networks have a preference for the lower degree monomial
�S . More precisely, �S is learned faster than �S[{k} and thus the term f̂�k(S)�S(x) in the Fourier
expansion of f�k, is mostly learned by the lower degree monomial. Consequently, according to
Lemma 1, the generalization error will be close to the Boolean influence. Figure 3 shows this bias
empirically for the above mentioned PVR function and for frozen coordinate k = 6. Figure 3 (left)
shows that the MLP model has a strong preference for low-degree monomials, Similarly, Figure 3
(bottom) shows that the Transformer also captures the monomials in the original function using
monomials that exclude the frozen index. Therefore the generalization errors of the MLP and
Transformer are very close to the Boolean influence as seen in Figure 2. Whereas, Figure 3 (right)
shows that the MLP-Mixer model has a weaker preference for lower degree monomials (e.g., it learns
1 and x6 to the same extent) and hence, its generalization error follows the trend of Boolean influence
with an offset, which is also presented in Figure 2. We refer to Appendix F for additional experiments.

3.3 Linear Models

In this section, we will focus on linear functions and linear models. First, we state a theorem for
linear regression models. Furthermore, we show experiments on the generalization error of linear
neural networks and its relation with the depth and initialization of the model.

Theorem 2. Let f : {±1}n ! R be a linear function, i.e., f(x1, · · · , xn) = f̂(;)+
Pn

i=1 f̂({i})xi.
Consider the canonical holdout where the k-th component is frozen at training for a linear regression
model where weights and biases are initialized independently with the same mean and variance
�
2. Also assume the frozen function is unbiased, i.e., EX�k [f(X)] = 0. In this case, the expected

generalization error (over different initializations) of the function learned by GD after t time steps is
given by E⇥0 [gen(f, f̃ (t)

�k)] = Infk(f) + o�2(1) +O(e�ct), where c is a constant dependent on the
learning rate. Moreover, if the frozen function is biased, the expected generalization error is equal to
E⇥0 [gen(f, f̃ (t)

�k)] =
(f̂(;)�f̂({k}))2

4 + o�2(1) +O(e�ct).
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Figure 3: The coefficients of a selected group of monomials learned by the MLP (left), MLP-
Mixer (right) and the Transformer (bottom) when learning the aforementioned PVR function, with
x6 = 1 frozen during the training. The coefficient of these monomials in the original function are
f̂({6}) = 0.1875, f̂({3, 6, 7, 8}) = 0.0625, f̂({6, 7, 8}) = �0.0625, and f̂({1, 6}) = �0.1875.
One can observe that the monomials of the lowest degree are indeed picked up first during the training
of the MLP and Transformer, which explains the tight approximation of the Boolean influence for the
generalization error in these cases. In contrast, the MLP-Mixer also picks up some contribution from
the higher degree monomials including the frozen bit x6.

Remark 2 (Kernel regression). Our result would still hold if, instead of linear regression, we per-
formed kernel regression with a kernel K that is invertible under the training distribution, i.e., such
that EX,X0⇠U�k [K(X,X

0)] is invertible. Furthermore, one could try to remove the invertibility
assumption by adding a regularization term.
Remark 3 (Staircase learning). An attempt to extend the above result to non-linear function consists
of considering staircase functions [ABAB+21, ABAM22], and extending [ABAM22] to a setting
with bias in order to show that SGD learns the lowest-degree representation under proper mean-field
initialization of depth-2 neural networks.

The proof of Theorem 2 is presented in Appendix C. In the rest of this section, we empirically
show that the condition of zero bias stated in Theorem 2 is no longer necessary if linear neural
networks of large enough depth or small enough initialization are used. In fact, the generalization
error of linear neural networks makes a transition from the value proved in Theorem 2 to the Boolean
influence as deeper models or smaller scales of initialization are used. We take f(x1, x2, . . . , x11) =
1 + 2x1 � 3x2 + 4x3 � · · · � 11x10 + 12x11 as the function that we want to learn. We consider
linear neural networks with hidden layers of size 256. Figure 4 (left) shows the effect of depth: we
initialize weights and biases independently using the uniform distribution U(� 1p

Nin
,

1p
Nin

) where
Nin is the input dimension of the respective layer. We plot the generalization error in the holdout
setting with respect to the corresponding frozen coordinate at training, together with the value of the
Boolean influence of each coordinate. We observe that with the increase of depth, the generalization
error tends to the Boolean influence. Figure 4 (right) show the role of initialization: we take a linear
neural network with 3 layers and we initialize weights and biases using the uniform distribution
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Figure 4: Effect of depth (left) and initialization scale (right) on the out-of-distribution generalization
error of linear neural networks. Generalization error tends to the Boolean influence as depth increases
(left) or as the initialization scale decreases (right).

U(�N
�↵
in , N

�↵
in ) with ↵ taking value in {0.5, 1, 1.5, 2, 2.5}. It can be seen that as the initialization

scale decreases, the generalization error tends to the Boolean influence.

4 Conclusion

This paper first establishes a formal result that supports a conjecture made in [ZRKB21], relating
the noise sensitivity of a target function to the generalization error. This gives a first connection
between a central measure in Boolean analysis, the noise-sensitivity, and the generalization error
when learning Boolean functions with GD. The paper then investigates the generalization error under
the canonical holdout. The ‘low-degree implicit bias hypothesis’ is put forward and supported both
experimentally and theoretically for certain architectures. This gives a new insight on the implicit bias
of GD when training neural networks, that is specific to Boolean functions such as the Boolean PVR,
and that relates to the fact that certain networks tend to greedily learn monomials by incrementing
their degree. In particular, this allows to characterize the generalization error in terms of the Boolean
influence, a second central notion in Boolean Fourier analysis. Boolean measures thus seem to have
a role to play in understanding generalization when learning of ‘reasoning’ or ‘logical’ functions.
There are now many directions to pursue such as: (1) extending the realm of architectures/models for
which we can prove formally the Boolean influence tightness, (2) considering more general holdout
or distribution shift models, (3) investigate how the picture changes when the bits/digits are given
by MNIST images, (4) better understanding when the low-degree implicit bias is taking place or
not, within and beyond PVR, since the Boolean influence is not always tight in our experiments
(e.g., MLP-Mixers seem to have a worse performance than the Boolean influence on PVR; see also
Appendix F for other functions), (5) investigating how to ‘revert’ the implicit bias towards low-degree
when it is taking place, to compensate for the unseen data; this will require justifying and engineering
why certain symmetries are favorable in the learned function.
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