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Abstract

Concept-based explanations permit to understand the predictions of a deep neural
network (DNN) through the lens of concepts specified by users. Existing methods
assume that the examples illustrating a concept are mapped in a fixed direction
of the DNN’s latent space. When this holds true, the concept can be represented
by a concept activation vector (CAV) pointing in that direction. In this work, we
propose to relax this assumption by allowing concept examples to be scattered
across different clusters in the DNN’s latent space. Each concept is then represented
by a region of the DNN’s latent space that includes these clusters and that we call
concept activation region (CAR). To formalize this idea, we introduce an extension
of the CAV formalism that is based on the kernel trick and support vector classifiers.
This CAR formalism yields global concept-based explanations and local concept-
based feature importance. We prove that CAR explanations built with radial kernels
are invariant under latent space isometries. In this way, CAR assigns the same
explanations to latent spaces that have the same geometry. We further demonstrate
empirically that CARs offer (1) more accurate descriptions of how concepts are
scattered in the DNN’s latent space; (2) global explanations that are closer to human
concept annotations and (3) concept-based feature importance that meaningfully
relate concepts with each other. Finally, we use CARs to show that DNNs can
autonomously rediscover known scientific concepts, such as the prostate cancer
grading system.

1 Introduction

Deep learning models are both useful and challenging. Their utility is reflected in their increasing
contributions to sophisticated tasks such as natural language processing [1, 2], computer vision [3, 4]
and scientific discovery [5–8]. Their challenging nature can be attributed to their inherent complexity.
State of the art deep models typically contain millions to billions parameters and, hence, appear as
black-boxes to human users. The opacity of black-box models make it difficult to: anticipate how
models will perform at deployment [9]; reliably distil knowledge from the models [10] and earn the
trust of stakeholders in high-stakes domains [11–13]. With the aim of increasing the transparency of
black-box models, the field of explainable AI (XAI) developed [14–17]. We can broadly divide XAI
methods in 2 categories: 1 Methods that restrict the model’s architecture to enable explanations.
Examples include attention models that motivate their predictions by highlighting features they pay
attention to [18] and prototype-based models that motivate their predictions by highlighting relevant
examples from their training set [19]. 2 Post-hoc methods that can be used in a plug-in fashion to
provide explanation for a pre-trained model. Examples include feature importance methods (also
known as feature attribution or saliency methods) that highlight features the model is sensitive to [20–
26]; example importance methods that identify influential training examples [27–29] and hybrid
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Figure 1: Illustration of the CAR framework. To define a concept, a set of positive and negative
examples are fed to the model. In this illustration, we consider a neural network predicting the
species of a bird based on a picture. The concept we illustrate is white breast. Concept positive and
negative images respectively exhibit birds with and without white breasts. CARs aim at explaining
the prediction for a given example x. 1⃝ All the examples are mapped in the model’s representation
spaceH. Unlike CAVs [31], CARs rely on kernel-based support vector classifiers (SVC) and do not
require the positive and negative sets to be linearly separable inH. 2⃝ CAR uses the SVC to output
TCAR scores that indicate how classes are related to concepts. 3⃝ The CAR formalism can be used
in combination with any feature importance method for deep neural networks. This permits to create
concept-specific saliency maps.

methods combining the two previous approaches [30]. In this work, we focus on a different type
of explanation methods known as concept-based explanations. Let us now summarize the relevant
literature to contextualize our own contribution.

Related work. Concept-based explanations were first formalized with the concept activation vector
(CAV) formalism [31, 32]. Given a concept specified by the user (e.g. stripes in an image), linear
classifiers are used as probes [33] to assess whether a deep model’s representation space separates
examples where a concept is present (concept positive examples) from examples where a concept is
absent (concept negative examples). A CAV is then extracted from the linear classifier’s weights. With
this CAV, it is possible to provide post-hoc explanations such as the sensitivity of a model’s prediction
to the presence/absence of a concept. It goes without saying that several concepts are needed to
explain the prediction of a deep model. To formalize this idea, existing works have used concept basis
decomposition [34] and sufficient statistics [35]. Although most applications of CAV involve image
data, we note that the formalism has been successfully applied to time-series data [36, 37]. While
concepts are typically specified by the user, early works in computer vision have been undertaken to
discover concepts in the form of meaningful image segmentations [38]. The main criticism against
the CAV formalism is that it requires concept positive examples to be linearly separable from concept
negative examples [39, 40]. This is because linear separability of concept sets is a restrictive criterion
that the model is not explicitly trained to fulfil. To address this issue, works like concept whitening
transformations [39] and concept bottleneck models [41–43] propose to do away with the post-hoc
nature of concept-based explanations. These methods introduce new neural network architectures
that permit to train the models with concept labels. We stress that this requires the set of concepts to
be specified before training the model. This assumes that we know what concepts are relevant for a
model to solve a downstream task a-priori. This is not the case whenever we train a model to solve a
task for which little or no knowledge is available. In this setup, it seems more appropriate to train a
model for the task first and, then, perform a post-hoc analysis of the model to determine the concepts
that were relevant in providing a solution. Furthermore, recent concerns have emerged regarding the
reliability of interpretations provided by these altered model architectures [44, 45].

Contributions. In this work, our purpose is to retain the flexible post-hoc nature of concept-based
explanations without assuming that the concept sets are linearly separable. To that aim, we introduce
concept activation regions (CARs), an extension of the CAV framework illustrated in Figure 1.
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1 Generalized formalism. As a substitute to linear separability, we propose in Section 2.1 to
adapt the smoothness assumption from semi-supervised learning [46]. Intuitively, this more general
assumption only requires positive and negative examples to be scattered across distinct clusters in the
model’s representation space. In practice, this generalization is implemented by substituting CAV’s
linear classifiers by kernel-based support vector classifiers. We demonstrate that choosing radial
kernels leads to CAR classifiers that are invariant under isometries of the latent space. This permits
to assign identical explanations to latent spaces characterized by the same geometry. Moreover, we
show in Section 3.1.1 that our CAR classifiers yield a substantially more accurate description of how
concepts are distributed in deep model’s representation spaces. 2 Better global explanations. With
the nonlinear decision boundaries of our support vector classifiers, there is no obvious way to adapt
the notion of concept activation vectors. Since CAV’s concept importance (TCAV score) is computed
with these vectors, we need an alternative approach. In Section 2.2, we propose to define concept
importance by building on our smoothness assumption. Concretely, a concept is important for a
given example if the model’s representation for this example lies in a cluster of concept positive
representations. With this characterization, we define TCAR scores that are the CAR equivalent
of TCAV scores. In Section 3.1.2, we demonstrate that TCAR scores lead to global explanations
that are more consistent with concept annotations provided by humans. 3 Concept-based feature
importance. In Section 2.3, we argue that our CAR formalism permits to assign concept-specific
feature importance scores for each example fed to the neural network. We verify empirically in
Section 3.1.3 that those feature importance scores reflect meaningful concept associations. Finally,
we illustrate in Section 3.2 how these contributions permit to establish that deep models implicitly
discover known scientific concepts.

2 Concept Activation Regions (CARs)

2.1 Preliminaries

We assume a typical supervised setting where each sample is represented by a couple (x,y) with
input features x ∈ X ⊆ RdX and a label y ∈ Y ⊆ RdY , where dX , dY ∈ N∗ are respectively the
dimensions of the feature (or input) and label (or output) spaces 1. In order to predict the labels from
the features, we are given a deep neural network (DNN) f = l ◦ g : X → Y , where g : X → H is
a feature extractor that maps features x ∈ X to latent representations h = g(x) ∈ H ⊆ RdH and
l : H → Y maps latent representations h ∈ H to labels y = l(h) ∈ Y . The representation h = g(x)
typically corresponds to the output from one of the DNN’s hidden layer. We assume that the model f
was obtained by fitting a training set Dtrain ⊂ X × Y . Our purpose is to understand how the neural
network representation induced by g allows the model f to solve the prediction task. To that end, we
shall use concept-based explanations. Those explanations rely on a set of C ∈ N∗ concepts indexed 2

by c ∈ [C], where [C] denotes the set of positive integers between 1 and C. Each concept c ∈ [C] is
defined by the user through a set of N c ∈ N∗ positive examples Pc = {xc,n | n ∈ [N c]} and a set of
N¬c negative examples N c = {x¬c,n | n ∈ [N¬c]}. The concept c ∈ [C] is present in the positive
examples Pc and absent from the negative examples N c. For instance, if we work in a computer
vision context and the concept of interest is c = Stripes, then Pc contains images with stripes (e.g.
zebra images) and N c contains images without stripes (e.g. cow images). We note that non-binary
concepts (e.g. a colour) can be one-hot encoded to fit this formulation. In this paper, we use balanced
sets: N c = N¬c.

CAV formalism. Let us start by summarizing the CAV formalism [31]. This formalism relies on
the crucial assumption that the sets g(Pc) ⊂ H and g(N c) ⊂ H are linearly separable inH. Hence,
it is possible to find a vector wc ∈ RdH and a bias term bc ∈ R such that (wc)⊺h+ bc > 0 for all
h ∈ g(Pc) and, conversely, (wc)⊺h+bc < 0 for all h ∈ g(N c). The vector wc is called the concept
activation vector (abbreviated CAV) associated to the concept c ∈ [C]. Geometrically, this vector
is normal to the hyperplane separating g(Pc) from g(N c) in the latent space H. Intuitively, this
vector points in a direction of the latent space where the presence of the concept c ∈ [C] increases.
When fk(x) = lk ◦ g(x) corresponds to the predicted probability of class k ∈ [dY ] for x ∈ X ,
this insight allows us to define a class-wise conceptual sensitivity. Indeed, the directional derivative

1Note that we use bold symbols for vectors.
2It is understood that there exists a dictionary between the integer concept identifier and the concept’s name.

In this way, if the first concept of interest is stripes, we can write c = 1 and c = Stripes.
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Sc
k(x) ≡ (wc)⊺∇hlk [g(x)] measures the extent to which the probability of class k varies in the

direction of the CAV. If the sensitivity is positive Sc
k(x) > 0, this indicates that the presence of

concept c increases the belief of the model f that k is the correct class for example x. Note that
CAV sensitivities Sc

k(x) can be generalized to aggregate the gradients between g(x) and a baseline
h̄ ∈ H [32]. Given a dataset of examples split by class D =

⊔dY

k=1Dk, where Dk contains only
examples of class k ∈ [dY ], it is possible to summarize the overall sensitivity of class k to concept c
by computing the score TCAVc

k = |{x∈Dk|Sc
k(x)>0}|/|D|, where |·| denotes the set cardinality.

Figure 2: Classes are linearly
separable (top) but concept
sets are not (bottom).

The limitations of linear separability. The linear separability of
concept negatives and positives is central in the aforementioned
formalism. Indeed, the existence of a separating hyperplane in H
is necessary to define CAVs, which in turn are required to define
concept sensitivity and TCAV scores. This assumption has been
criticized in the literature [39, 40]. The main criticism is the follow-
ing: there is no reason to expect the representation map g to linearly
separate concept positive and negatives since these concept-related
labels are not known by the model. Let us consider a concrete
example to stress that generic classifiers should not be expected
to linearly separate concepts even if they linearly separate classes.
Consider a classifier f = l ◦ g, where for each class k ∈ [dY ]:
lk(h) = Softmax(α⊺

kh + βk) with αk ∈ RdH and βk ∈ R. This
parametrization is typically realized when the representation space
H corresponds to the penultimate layer of a neural network. For
concreteness, we consider a computer vision setting with the classes
k ∈ {Tiger,Lion,Cow,Zebra}. We note that the decision boundary
in H for any pair of class is a hyperplane. For instance, the deci-
sion boundary between the classes lion and tiger is parametrized
by lLion(h) = lTiger(h), which corresponds to the equation of a hy-
perplane in H: (αLion − αTiger)

⊺h + (βLion − βTiger) = 0. In this
setting, any successful classifier f requires a representation map g
that linearly separates the classes in the latent space H. We now
consider the concept c = Stripes. In this case, we can expect exam-
ples from the classes tiger and zebra in PStripes (as both tigers and
zebras have stripes) and examples from the classes lion and cow in
N Stripes (as neither lions nor cows have stripes). As illustrated in Figure 2, it is therefore perfectly
possible to have g(PStripes) and g(N Stripes) that are not linearly separable in spite of the classes linear
separability. With this example, we emphasize the subtle distinction between classes and concept
linear separability. While the former is expected and holds experimentally [33], this is not the case
for the latter.

A better assumption. Although the representations from Figure 2 do not linearly separate the concept
sets, we note that concept positive and negative examples are scattered across distinct clusters. In this
way, a model that produces these representations appears to make a difference between presence and
absence of the concept. From this angle, we could consider that the concept is well encoded in the
representation space geometry. To formalize this more general notion of concept set separability, we
adapt the smoothness assumption originally formulated in semi-supervised learning [46].

Assumption 2.1 (Concept Smoothness). A concept c ∈ [C] is encoded in the latent space H if
H is smooth with respect to the concept. This means that we can separate H = Hc

⊔
H¬c into a

concept activation region (CAR) Hc where the concept c is mostly present (i.e. |g(Pc)
⋂
Hc| ≫

|g(N c)
⋂
Hc|) and a region H¬c where the concept c is mostly absent (i.e. |g(N c)

⋂
H¬c| ≫

|g(Pc)
⋂
H¬c|). If two points h1,h2 ∈ H in a high-density region of the latent space are close to

each other, then we should have h1,h2 ∈ Hc or h1,h2 ∈ H¬c.

Remark 2.1. We can easily see that linear separability is trivially included in this assumption: it
corresponds to the case where the CARHc andH¬c are separated by a hyperplane. Conversely, our
assumption does not require the CARHc andH¬c to be separated by a hyperplane for a concept to
be relevant, as illustrated in Figure 3.

There are two crucial components in the previous assumption that need to be detailed: what do we
mean by density and how do we extract a CARHc fromH.
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Figure 3: Linear separability implies concept smoothness but not the opposite.

2.2 Detecting Concepts

Concept Density. Let us start by detailing the notion of density that we use. We first note that
the notion of proximity inH is crucial in Assumption 2.1. It is conventionally formalized through
a kernel function κ : H2 → R+ [47]. These functions are such that the proximity between
h1,h2 ∈ H increases with κ(h1,h2). Similarly, the proximity between h and a discrete set S ⊂ H
of representations increases with

∑
h′∈S κ(h,h′). This last sum can be interpreted as the density

of examples from S at a point h ∈ H. In our setup, it is natural to define a density relative to each
concept c ∈ [C] by using the two sets Pc and N c. This motivates the following definition.

Definition 2.1 (Concept Density). Let κ : H2 → R+ be a kernel function. For each concept
c ∈ [C], we assume that we have a positive set Pc = {xc,n | n ∈ [N c]} and a negative set N c =
{x¬c,n | n ∈ [N c]}. We define the concept density as a function ρc : H → R such that

ρc(h) = ρP
c

(h)− ρN
c

(h),

ρP
c

(h) =
1

N c

Nc∑
n=1

κ [h, g(xc,n)] , ρN
c

(h) =
1

N c

Nc∑
n=1

κ [h, g(x¬c,n)] .

The concept density for an example x ∈ X can similarly be defined as ρc[g(x)].

Remark 2.2. This density function is not necessarily positive. Indeed, we have assigned a positive
contribution for examples from Pc and a negative one for those of N c. The idea is that ρc(h) > 0
whenever the density of g(Pc) is higher around h. Conversely, ρc(h) < 0 whenever the density of
g(N c) is higher around h. Finally, ρc(h) ≈ 0 if h is isolated from positive and negative examples or
if the density of g(Pc) balances the density of g(N c) around h.

Concept Activation Regions. With this definition, it is tempting to use the density ρc to define the
regions Hc and H¬c. A natural choice would be to define the CAR as the positive density region
Hc = (ρc)−1(R+) and its complementary as the negative density regionH¬c = (ρc)−1(R−). This
corresponds to using a Parzen window classifier for the concept [48]. An obvious limitation of this
approach is that each evaluation of the density ρc scales linearly with the number N c of concept
examples. If the size of concept sets is large, it is possible to obtain a sparse version of this Parzen
window classifier with a support vector classifier (SVC) [49, 50] scκ : H → {0, 1}. This SVC is fitted
to discriminate the concept sets g(Pc) and g(N c). We can then define the CARs asHc = (scκ)

−1(1)
andH¬c = (scκ)

−1(0). More details can be found in Appendix A.

Global explanations. Our CAR formalism permits to extend those local (i.e. sample-wise) consid-
erations globally. Let us start by defining the equivalent of TCAV scores described in Section 2.1.
This score aims at understanding how the model relates classes with concepts. We define the TCAR
score as the fraction of examples that have class k and whose representation lies in the CAR Hc:
TCARc

k = |g(Dk)
⋂

Hc|/|Dk|. Note that TCARc
k ∈ [0, 1], where 0 corresponds to no overlap and 1 to

a full overlap. In Appendix B, we extend this approach to measure the overlap between two concepts.

Latent space isometries invariance. In many applications such as clustering [51] or data visual-
ization [52], the only relevant geometrical information of the representation spaceH is the distance
∥h1 − h2∥H between every pair of points (h1,h2) ∈ H2. Informally, we say that two representation
spaces are isometric if they assign the same distance to each pair of points. In the aforementioned
applications, two isometric representation spaces are therefore indistinguishable from one another.
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Since concept-based explanations similarly describe the representation space geometry, one might
require similar invariance to hold in this context. In Appendix D, we show that our CAR formalism
provides such guarantee if κ is a radial kernel [53]. To the best of our knowledge, this type of analysis
has not been performed in the context of concept-based explanation methods. We believe that future
works in this domain would greatly benefit from this type of insight.

2.3 Concepts and Features

Not all features are relevant to identify a concept. As an example, let us consider the concept
c = Stripes in a computer vision setting. If the image x represents a zebra, only some small portion
of the image will exhibit stripes (namely the body of the zebra). Therefore, if we build a saliency
map for the concept c, we expect only this part of the image to be relevant for the identification of
this concept. Existing works to produce concept-level saliency maps relying on the CAV formalism
exist in the literature [34, 54]. In the absence of CAVs, we need an alternative approach. We now
describe how any feature importance method can be used in conjunction with CARs. A generic
feature importance method assigns a score ai(f,x) ∈ R to each feature i ∈ [dX ] for a scalar model
f : X → R to make a prediction f(x) [55]. Since our purpose is to measure the relevance of each
feature in identifying a concept c ∈ [C], we compute the feature importance for the concept density:
ai(ρ

c ◦ g,x). Note that some specific feature importance methods, such as Integrated Gradients [25]
or Gradient Shap [24], require the explained model to be differentiable. This is the case whenever the
kernel κ and the latent representation g are differentiable. We note that the support vector classifier
scκ cannot be used in this context due to its non-differentiability. In Appendix C, we show that our
CAR-based feature importance can be endowed with a useful completeness propriety that relates the
importance scores ai(ρc ◦ g,x) to the concept density ρc ◦ g(x).

3 Experiments

The code to reproduce all the experiments from this section is available at https://github.com/
JonathanCrabbe/CARs and https://github.com/vanderschaarlab/CARs.

3.1 Empirical Evaluation

Our purpose is to empirically validate the formalism described in the previous section. We have
several independent components to evaluate: 1 the concept classifier used to detect the CARsHc,
2 the global explanations induced by the TCAR values and 3 the feature importance scores induced
by the concept densities ρc.

Datasets. We perform our experiments on 3 datasets. 1 The MNIST dataset [56] consists of 28× 28
grayscale images, each representing a digit. We train a convolutional neural network (CNN) with 2
layers to identify the digit of each image. 2 The MIT-BIH Electrocardiogram (ECG) dataset [57, 58]
consists of univariate time series with 187 time steps, each representing a heartbeat cycle. We train a
CNN with 3 layers to determine whether each heartbeat is normal or abnormal. 3 The Caltech-UCSD
Birds-200 (CUB) dataset [59] consists of coloured images of various sizes, each representing a bird
from one of the 200 species present in the dataset. We fine-tune an Inceptionv3 neural network [60]
to identify the species each bird belongs to among the 200 possible choices.

Concepts. For each dataset, we study the models through the lens of several well-defined concepts that
are provided by human annotations. 1 For MNIST: we use C = 4 concepts that correspond to simple
geometrical attributes of the images: Loop (positive images include a loop), Vertical/Horizontal Line
(positive images include a vertical/horizontal line) and Curvature (positive images contain segments
that are not straight lines). 2 For ECG: we use C = 4 concepts defined by cardiologists to better
characterize abnormal heartbeats [61]: Premature Ventricular, Supraventricular, Fusion Beats and
Unknown. The exact definition for each of these concepts is beyond the scope of this paper. We
simply note that annotations for those concepts are available in the ECG dataset. 3 For CUB: we
use C = 112 concepts that correspond to visual attributes of the birds (e.g. their size, the colour of
their wings, etc.). We use the same procedure as [41] to extract those concepts from the CUB dataset.
We stress that, in each case, we selected concepts that can be unambiguously associated to the classes
that are predicted by the models. Hence, it is reasonable to expect those concepts to be salient for the
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Figure 4: Overall accuracy of concept classifiers.

models. In each case, we sample the positive and negative sets Pc and N c from the model’s training
sets. For more details on the concepts and the models, please refer to Appendix E.

3.1.1 Accuracy of concept activation regions

Methodology. The purpose of this experiment is to assess if the concept regions Hc identified by
our CAR classifier generalize well to unseen examples. Each of the models described above are
endowed with several representation spaces (one per hidden layer). For several of those latent spaces,
we fit our CAR classifier (SVC with radial basis function kernel) to discriminate the concept sets
Pc,N c for each concept c ∈ [C]. These two sets have a size N c = 200 and are sampled from the
model’s training set. The classifier is then evaluated by computing its accuracy on a holdout balanced
concept set T c of size 100 sampled from the model’s testing set. For MNIST and ECG, we repeat this
experiment 10 times for each concept and let the sets Pc,N c, T c vary on each run. For comparison,
we perform the same experiment with a linear CAV classifier as a benchmark. We report the overall
(all the concepts together) accuracy in Figure 4.

Analysis. The CAR classifier substantially outperforms the CAV classifier. Note that this advantage
is even more striking in the representation spaces associated to the deeper (last) DNN layers. This
can be better understood through the lens of Cover’s theorem [62]: the linear separation underlying
CAV is usually easier to achieve in higher dimensional spaces, which corresponds to the shallower
(first) DNN layers in this case. When the dimension dH of the latent space becomes comparable to
the size N c of the concept sets, linear separation often fails to maintain a high accuracy. By contrast,
the SVC underlying CARs manage to maintain high accuracy through the more flexible notion of
concept smoothness defined in Assumption 2.1. This suggests that concepts can be well encoded in
the geometry of the latent space even when accurate linear separability is not possible. We also note
that the accuracy CAR classifiers seems to increase with the representation’s depth. This is consistent
with the behaviour of class probes [33].

Statistical significance. The statistical significance of the concept classifiers is evaluated with the
permutation test from [32]. All of them are statistically significant with p-value < .05 except for
some concepts classifiers that are fitted with the layers Mixed5d and Mixed6e of the CUB Inceptionv3
model. We note that those classifiers do not generalize well in Figure 4c. This suggests that deeper
networks are required to identify more challenging concepts correctly.

Take-away 1: CAR classifiers better capture how concepts are spread across representation spaces.

3.1.2 Consistency of global explanations

Methodology. The purpose of this experiment is to assess if the aforementioned concept classifiers
create meaningful global association between classes and concepts. For each model, we now focus our
study on the penultimate layer. We compute the TCAV and TCAR scores for each (class, concept)
pair over the whole testing set. Ideally, these scores should be correlated to the true proportion
(computed with the human concept annotations) of examples from the class that exhibit the concept.
To that aim, we report the Pearson correlation r between each score and this true proportion in Table 1.
To illustrate those global explanations, we also provide the scores for one class of each dataset in
Figure 5 (for CUB, we restrict to wing colour concepts, other examples are reported in Appendix K).
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Figure 5: Examples of global concept-based explanations.
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Figure 6: Correlations between concept feature importance.

Table 1: Evaluation of global explanations.

Dataset r(TCAR,TrueProp.) r(TCAV,TrueProp.)

MNIST 1.00 .60
ECG .99 .74
CUB .86 .52

Analysis. The TCAR scores better correlate
with the true presence of concepts. This differ-
ence can be understood by looking at the exam-
ples from Figure 5. We note that TCAV scores
tend to predict nonexistent associations (e.g. yel-
low wings for American crows) and miss exist-
ing associations (e.g. curvature for digit 2). For
ECG, we note that TCAR does capture the fact that some concepts (like fusion beats) are less
represented within the class, while TCAV does not. In all of these cases, TCAV explanations might
give the impression that the model did not learn meaningful class-concept associations. The TCAR
analysis leads to the opposite conclusion. Since we have established that TCAR is built upon more
accurate concept classifiers, it seems that models indeed learn concepts as intended, in spite of what
TCAV explanations suggest.

Take-away 2: TCAR scores more faithfully reflect the true association between classes and concepts.

3.1.3 Coherency of concept-based feature importance

Methodology. Focusing again on the model’s penultimate layer, we are now interested in feature
importance. The evaluation of feature importance methods is a notoriously difficult problem [63].
To perform an analysis in line with our concept-based explanations, we propose to check that our
concept-based feature importance meaningfully captures features that are concept-specific. We
analyse this through 2 desiderata: 1 concept-based feature importance is not equivalent to the
model (vanilla) feature importance and 2 only concepts that can be identified with similar features
should yield correlated feature importance. To evaluate these desiderata empirically, we compute
our CAR-based Integrated Gradients ai(ρc ◦ g,x) for each concept c ∈ [C] and for each example
x ∈ Dtest from the test set. Similarly, we compute the vanilla Integrated Gradients ai(f ,x) for the
model 3. We quantitatively compare these various feature importance scores by computing their
Pearson correlation r as in [64, 65]. We report the results in Figure 6 (again, we selected a subset of
6 concepts for CUB).

3The vanilla Integrated Gradients are computed for the model estimation of the true class probability.
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Analysis. First, we observe that CAR-based feature importance correlates weakly with vanilla feature
importance (|r| < .25 for all datasets). This confirms that desideratum 1 is fulfilled. Then, we
note that most of the CAR-based feature importance scores are decorrelated or weakly correlated
with each other. The counterexamples that we observe indeed correspond to concepts that can be
identified with similar features. A first example is the positive correlation between the loop and the
curvature concepts for MNIST (r = .71), both concepts are generally associated to curved symbols.
Another example is the negative correlation between striped and solid back patterns for CUB birds
(r = −.86), those concepts are mutually exclusive and identified by inspecting the bird’s back. Those
examples support that CAR-based feature importance fulfils desideratum 2 .

Take-away 3: CAR-based feature importance is concept-specific and captures concept associations.

3.2 Use Case: Machine Learning Model Rediscovering Known Medical Concepts

We will now describe a use case of the CAR formalism introduced in this paper. We stress that
the literature already contains numerous use cases of CAV concept-based explanations, especially
in the medical setting [66, 67, 37]. Since CARs generalize CAVs, it goes without saying that they
apply to these use cases. Rather than repeating existing usage of concept-based explanations, we
discuss an alternative use case motivated by recent trends in machine learning. With the successes of
deep models in various scientific domains [5–8], we witness an increasing overlap between scientific
discovery and machine learning. While this new trend opens up fascinating opportunities, it comes
with a set of new challenges. The evaluation of machine learning models is arguably one of the most
important of these challenges. In a scientific context, the canonical machine learning approach to
validate models (out-of-sample generalization) is likely to be insufficient. Beyond generalization
on unseen data, the scientific validity of a model requires consistency with established scientific
knowledge [68]. We propose to illustrate how our CARs can be used in this context.

Dataset. We use the data collected with the Surveillance, Epidemiology, and End Results (SEER)
Program. The dataset [69] contains a US population-based cohort of 171,942 men diagnosed with
non-metastatic prostate cancer between Jan 1, 2000, and Dec 31, 2016. Each patient is described
by age, the results of a prostate-specific antigen blood test (PSA), the clinical stage of its tumour
and two Gleason scores (primary and secondary). Each patient also has a label that indicates if they
died because of their prostate cancer. We train a multilayer perceptron (MLP) to predict the patient’s
mortality on 90% of the data and test on the remaining 10%. For a more detailed description of the
data and the model, please refer to Appendix F.

Concepts. Doctors use an established grading system to predict how likely the cancer is to spread [70].
This system assigns to each patient a grade between 1 and 5. The probability that the cancer
spreads increases with this grade. It can be computed from the two Gleason scores (more details in
Appendix F). We can consider each of these 5 grades as a concept. We note that this grade is not
explicitly part of the input features of the MLP that we trained. Our purpose is to assess if the MLP
implicitly discovered those grades in order to predict the patient’s mortality. If this happens to be the
case, this would demonstrate that the MLP is in-line with existing medical knowledge.

Methodology. As in the previous section, we are going to use the output of the MLP’s penultimate
layer as a representation space. We fit a CAR classifier (SVC with linear kernel) to discriminate the
concepts sets Pc,N c for each grade c ∈ [5]. Both of those sets contain N c = 250 patients sampled
from the training set. We then proceed to several verifications. 1 We determine if the grades have
been learned by measuring the accuracy of each CAR classifier on a holdout balanced concept set
T c of size 100 sampled from the model’s testing set. 2 We check that each grade is associated
to the appropriate outcome by reporting the TCAR scores between each pair (mortality, grade) in
Figure 7a. 3 We verify that grades are identified with the right features by plotting a summary of the
absolute feature importance scores |ai(ρc ◦ g,x)| on the test set x ∈ Dtest in Figure 7b.

Analysis. Let us summarize the findings for each of the above points. 1 All of the CAR classifiers
generalize well on the test set (their accuracy ranges from 90% to 100%). This strongly suggests
that the MLP implicitly separates patients with different grades in representation space. 2 Figure 7a
demonstrates that the model associates higher grades with higher mortality. This is in line with the
clinical interpretation of the grades. 3 Figure 7b suggests that the Gleason scores constitute the most
important features overall (highest quantiles) for the model to discriminate between grades. This is
consistent with the fact that grades are computed with the Gleason scores. We conclude that the MLP
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Figure 7: CAR explanations with the prostate cancer grades as concepts.

implicitly identifies the patient’s grades with high accuracy and in a way that is consistent with the
medical literature.

Take-away 4: The CAR formalism can reliably support scientific evaluation of a model.

4 Conclusion

We introduced Concept Activation Regions, a new framework to relax the linear separability as-
sumption underlying the Concept Activation Vector formalism. We showed that our framework
guarantees crucial properties, such as invariance with respect to latent symmetries. Through extensive
validation on several datasets, we verified that 1 Concept Activation Regions better capture the
distribution of concepts across the model’s representation space, 2 The resulting global explanations
are more consistent with human annotations and 3 Concept Activation Regions permit to define
concept-specific feature importance that is consistent with human intuition. Finally, through a use
case involving prostate cancer data, we show the neural network can implicitly rediscover known
scientific concepts, such as the prostate cancer grading system.

Many important points that were not covered in the main paper can be found in the appendices.
In Appendix A, we discuss how to tune the various hyperparameters of the CAR classifiers. In
Appendix B, we explain how to generalize concept activation vectors to nonlinear decision boundaries.
In Appendix G, we show that the CAR explanations are robust to adversarial perturbations and
background shifts. In Appendix H, we demonstrate that CAR explanations can be used to relate
abstract concepts discovered by self-explaining neural networks with human concepts. Finally,
Appendix I illustrates how CAR explanations allow us to probe language models.

We believe that our extended concept explainability framework opens up many interesting avenues for
future work. A first one would be to probe state of the art neural networks with an approach similar
to Section 3. In particular, it would be interesting to analyse if improving model performance is
associated with a better encoding of human concepts. A second one would be to analyze how concept
discovery [38] can benefit from our generalized notion of concept activation. A more fine-grained
characterization of a model’s latent space is likely to improve the surfaced concept. A third one, as
suggested by Section 3.2, would be to use concept-based explanations to make a better scientific
assessment of neural networks. Indeed, consistency with well-established knowledge is crucial for a
scientific model to be accepted.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] All the claims from the abstract and Section 1
are verified empirically in Section 3. The theoretical claims are demonstrated in
Appendices C and D.

(b) Did you describe the limitations of your work? [Yes] The assumption for our concept-
based explanations to be valid are clearly stated in Assumption 2.1. Our method only
applies to neural networks, which is stated in Section 2.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work
improves the transparency of deep neural networks. This has many beneficial societal
impacts, as described in Section 1. We do not see any potential negative societal impact
to this approach. We have carefully reviewed the points from the ethical guideline and
none of the mentioned negative impact seems to apply to our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethics review guidelines and confirm that our paper
conforms to them.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions in Propositions C.1 and D.1 are clearly stated in Appendices C and D respectively.

(b) Did you include complete proofs of all theoretical results? [Yes] The proofs for
Propositions C.1 and D.1 are given in Appendices C and D respectively.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The full code is
available at https://github.com/JonathanCrabbe/CARs and https://github.
com/vanderschaarlab/CARs. The implementation of our method closely follows
Algorithms 1, 2 and 4 in the appendices. All the details to reproduce the experimental
results are given in Appendices E and F.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All the training details are specified in Appendices E and F.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Figure 4 measures the accuracy of our method over
several runs. All the runs are aggregated together in the form of a box-plot.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Our computing resources are
described in Appendices E and F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We have included a
citation for the MNIST dataset [56], for the ECG dataset [57], for the CUB dataset [59],
for the SEER dataset [69] and for the InceptionV3 model [60].

(b) Did you mention the license of the assets? [Yes] The licenses are mentioned in
Appendices E and F.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We have used only existing assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All the datasets that we use are publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The medical datasets we use are public and
have been de-identified.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18


