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Abstract

Gradient descent during the learning process of a neural network can be subject
to many instabilities. The spectral density of the Jacobian is a key component for
analyzing stability. Following the works of Pennington et al., such Jacobians are
modeled using free multiplicative convolutions from Free Probability Theory (FPT).
We present a reliable and very fast method for computing the associated spectral
densities, for given architecture and initialization. This method has a controlled
and proven convergence. Our technique is based on an homotopy method: it is an
adaptative Newton-Raphson scheme which chains basins of attraction. In order to
demonstrate the relevance of our method we show that the relevant FPT metrics
computed before training are highly correlated to final test accuracies – up to 85%.
We also nuance the idea that learning happens at the edge of chaos by giving
evidence that a very desirable feature for neural networks is the hyperbolicity of
their Jacobian at initialization.

1 Introduction

Neural network training and tuning can be wasteful in human and energy resources. For example
[23, Table 1] show that a single GPU training can have high energetic costs. Often, this is nothing
compared to architecture search. In this context, an obvious moonshot is estimating the performance
of an architecture before training. The goal of this paper is more realistic: providing a fast and reliable
computational method for estimating stability before training – and stability is a good proxy for
performance [12].

Framework: Consider a feed-forward network of depth L ∈ N, with L full-connected layers. For
each depth ℓ ∈ {1, 2, . . . , L}, the layer has activation vector xℓ ∈ RNℓ , where Nℓ is the current
width. The vector x0 ∈ RN0 takes in the neural network’s input, while xL ∈ RNL gives the
output. The vector of widths is written N := (N0, N1, . . . , NL) and will appear in superscript
to indicate the dependence in any of the Nℓ’s. The following recurrence relation holds between
layers xℓ = ϕℓ

(
W

(N)
ℓ xℓ−1 + b

(N)
ℓ

)
, where ϕℓ is a choice of non-linearity applied entry-wise,

W
(N)
ℓ ∈ MNℓ,Nℓ−1

(R) is a weight matrix and b
(N)
ℓ ∈ RNℓ is the vector of biases. We write

hℓ := W
(N)
ℓ xℓ−1 + b

(N)
ℓ for the pre-activations.

The Jacobian computed during back-propagation can be written explicitly by using the chain rule:

J (N) :=
∂xL

∂x0
=

∂xL

∂xL−1

∂xL−1

∂xL−2
. . .

∂x1

∂x0
= D

(N)
L W

(N)
L D

(N)
L−1W

(N)
L−1 . . . D

(N)
1 W

(N)
1 , (1.1)
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where Dℓ’s are the diagonal matrices given by[
D

(N)
ℓ

]
i,i

= ϕ′
ℓ ([hℓ]i) . (1.2)

Technically, a step of gradient descent updates weights and biases following(
W

(N)
ℓ , b

(N)
ℓ

)
←
(
W

(N)
ℓ , b

(N)
ℓ

)
− α

∂L
∂(W

(N)
ℓ , b

(N)
ℓ )

, (1.3)

for each ℓ = 1, . . . , L. Here α > 0 is the learning rate and L is the loss on a minibatch. If the
minibatch has size B ∈ N, and corresponds a small sample ((Xi, Yi) ; i = 1, . . . , B) of the dataset,
we have L = 1

B

∑B
i=1 d(xL(Xi), Yi) . Here d is a real-valued distance or similarity function, the

Xi’s are the input vectors while the Yi’s are the output vectors (e.g. labels in the case of classifier,
Yi ≈ Xi in the case of an autoencoder etc...).

The chain rule dictates:

∂L
∂(W

(N)
ℓ , b

(N)
ℓ )

=
∂L
∂xL

∂xL

∂xL−1
. . .

∂xℓ+1

∂xℓ

∂xℓ

∂(W
(N)
ℓ , b

(N)
ℓ )

=
∂L
∂xL

J
(N)
ℓ

∂hℓ

∂(W
(N)
ℓ , b

(N)
ℓ )

, (1.4)

where

∂L
∂xL

=
1

B

B∑
i=1

∂1d(xL(Xi), Yi) ∈M1,NL
(R) , (1.5)

J
(N)
ℓ = D

(N)
L W

(N)
L . . . D

(N)
ℓ+1W

(N)
ℓ+1D

(N)
ℓ ∈MNL,Nℓ

(R) . (1.6)

Therefore, for the sake of simplicity, we shall focus on the Jacobian J (N) given in Eq. (1.1) since it
has exactly the same form as the J

(N)
ℓ given in Eq. (1.6). The issue is that a large product of (even

larger) matrices can easily become unstable. If many singular values are ≪ 1, we have gradient
vanishing. If many singular values are≫ 1, we have gradient explosion. Such a transition can be
referred to as the edge of chaos [26, 27].

Intuition. This instability is easily understood thanks to the naive analogy with the one-dimensional
case. Indeed, the geometric progression qn with n → ∞ is the archetype of a long product and it
converges extremely fast, to either 0 if |q| < 0 or to∞ if |q| > 1.

A less naive intuition consists in observing that mini-batch sampling in Eq. (1.5) is very noisy. It is
fair to assume that ∂L

∂xL
has a Gaussian behavior with covariance proportional to INL

– either because
of the Central Limit Theorem if B is large enough or after time averaging, because of the mixing
properties of SGD [6, 8]. Therefore, each gradient step α ∂L

∂(W
(N)
ℓ ,b

(N)
ℓ )

in Eq. (1.3) is approximately

a Gaussian vector with covariance proportional to:

α2

(
∂hℓ

∂(W
(N)
ℓ , b

(N)
ℓ )

)T (
J
(N)
ℓ

)T
J
(N)
ℓ

∂hℓ

∂(W
(N)
ℓ , b

(N)
ℓ )

.

Simplifying further, we see the importance of the spectrum of
(
J
(N)
ℓ

)T
J
(N)
ℓ for stability. Basically,

eigenvectors of
(
J
(N)
ℓ

)T
J
(N)
ℓ are the directions along which the one-dimensional intuition applies.

Randomness. Starting from the pioneering works of Glorot and Bengio [9] on random initializations,
it was suggested that the spectral properties of J (N) are an excellent indicator for stability and
learning performance. In particular, an appropriate random initialization was suggested and since
implemented in all modern ML frameworks [19, 1].

We make classical choices of random initializations. The biases b(N)
ℓ are taken as random vectors

which entries are centered i.i.d. Gaussian random variables with standard deviation σbℓ . For the
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weights, we will consider the following matrix ensembles: the [W
(N)
ℓ ]i,j are drawn from i.i.d.

centered random variables with variance σ2
Wℓ

/Nℓ and finite fourth moment as in [17].

Modeling spectrum thanks to Free Probability Theory. Now, following the works of Pennington et
al. [20], the tools of Free Probability Theory (FPT) can be used to quantitatively analyze the singular
values of J (N) in the large width limit. The large width limit is particularly attractive when studying
large deep networks, especially because free probability appears at relatively small sizes because of
strong concentration properties [14]. Indeed, random matrices of size 100 exhibit freeness.

For the purposes of this paragraph, we restrict ourselves to square matrices and assume Nℓ = N for
all ℓ = 1, . . . , L. In fact, FPT is concerned with the behavior of spectral measures as N →∞. For
any diagonalizable AN ∈MN (R), the associated spectral measure on the real line is:

µA(N)(dx) :=
1

N

N∑
i=1

δ
a
(N)
i

(dx)

with the a(N)
i ’s being the eigenvalues of AN . For ease of notation, the spectrum of (squared) singular

values is written νA(N) := µ(A(N))
T
A(N) . A fundamental assumption for invoking tools from Free

Probability Theory, is the assumption of asymptotic freeness. Without defining the notion, which can
be found in [16], let us describe the important computation it allows, discovered in the seminal work
of Voiculescu [25]. Given two sequences of square matrices A(N), B(N) in MN (R), with converging
spectral measures:

lim
N→∞

νA(N) = νA , lim
N→∞

νB(N) = νB ,

we have that, under the assumption of asymptotic freeness limN→∞ νA(N)B(N) = νA ⊠ νB , where
⊠ is a deterministic operation between measures called multiplicative free convolution. The ⊠ will
be detailed in Section 2. The letter A (as well as B) does not correspond to a limiting matrix but to
an abstract operator, with associated spectral measure µA and measure of squared singular values νA.
For such limiting operators, we drop the superscript (N).

Under suitable assumptions which are motivated and detailed later following the works of [20, 11,
18, 17, 7], for all ℓ = 1, . . . , L, the measures ν

W
(N)
ℓ

and ν
D

(N)
ℓ

will respectively converge to νWℓ
and

νDℓ
. Again the Wℓ’s and Dℓ’s are abstract operators which only make sense in the infinite width

regime. In the limit, asymptotic freeness will also hold. Therefore, we will see that the measure of
interest is:

lim
N→∞

νJ(N) = νJ := νDL
⊠ νWL

⊠ · · ·⊠ νD1
⊠ νW1

. (1.7)

The goals of this paper are (1) To give a very fast and stable computation of νJ , in the more general
setup of rectangular matrices (2) Empirically demonstrate that FTP metrics computed from νJ do
correlate to the final test accuracy.

1.1 Contributions

We aim at streamlining the approach of Pennington et al. by providing the tools for a systematic use
of FPT. The contributions of this paper can be categorized as:

• Theoretical: In Pennington et al., a constant width is assumed. We generalize the model to allow
for varying width profiles, which is more inline with design practices. This requires us to develop a
rectangular multiplicative free convolution.
Then we propose a computational scheme for computing spectral densities, named "Newton
lilypads". The method relies on adaptative inversions of S-transforms using the Newton-Raphson
algorithm. If the Newton-Raphson scheme is only local, we achieve a global resolution by chaining
basins of attractions, thanks to doubling strategies. As such, we have theoretical guarantees for the
convergence.
Interestingly, even in the FPT community, inverting S-transforms has been considered impossible
to realize in practice. As we shall see, an S-transform is a holomorphic map with multi-valued
inverse. In the words of [5, p.218], “the operations which are necessary in this method (the inversion
of certain functions, the extension of certain analytic functions) are almost always impossible to
realise practically.”
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• Numerical: This misconception led to the use of combinatorial methods based on moments, or
fixed-point algorithms via the subordination method [2, 15, 24]. In the ML community, Pennington
et al. pioneered the application of FPT to the theoretical foundations of Machine Learning and
did not shy away from inverting S-transforms. Their [20, Algorithm 1] is based on a generic root
finding procedure, and choosing the root closest to the one found for the problem with one less
layer. A major drawback of this method is that there is no guarantee to find the correct value, unlike
our chaining which always chooses the correct branch.
Not only Newton lilypads has theoretical guarantees of convergence, but it is also an order of
magnitude faster (Fig. 1.1). A few standard Cython optimizations allow to gain another order of
magnitude, although this can certainly be refined.

Figure 1.1: Computation time (in ms) for the density of νJ w.r.t. depth L (left) and number of density
points (right). Vertical axis is log-scale. The benchmarked methods are Newton lilypads in pure
Python (blue), Newton lilypads with Cython optimizations (orange), Pennington et al.’s Algorithm 1
using a native root solver (green), Monte-Carlo (red). While of a different nature, Monte-Carlo is
given for indication.

• Empirical: We analyze the correlation between the test accuracy of several randomly generated
MLP architectures and the quantiles of νJ , after a fixed number of epochs. The same architectures
were independently trained on the MNIST, FashionMNIST and CIFAR10 datasets. We find that
accuracy is strongly correlated to FTP quantiles of νJ (see Table 1.1). Remarkably, the correlation
is almost entirely captured by the higher quantiles – see Table 1.2 for individual R factors. Scatter
plots showing the distribution of test accuracy, log10 of the 90th quantile and number of parameters
can be seen in Fig. 1.2. Interestingly, smaller networks can perform better than larger one provided
they have more spread-out νJ distribution. This suggests that spread-out spectral distributions
νJ are more desirable, provided of course we avoid the vanishing and explosive regimes. In the
language of dynamical systems, we say that the Jacobian needs to be hyperbolic i.e. with both
contracting and expanding directions. This considerably nuances the idea that learning happens
at the edge of chaos. A similar point was made in the conclusion of [6], using the language of
hyperbolic attractors.

For reproducibility of the numerical and empirical aspects, a complete implementation is provided in
a Github repository

https://github.com/redachhaibi/FreeNN

1.2 Structure of the paper

We start in Section 2 by stating facts from Free Probability Theory. Most of it is available in
the literature, except the definition of the product of rectangular free matrices. To the best of our
knowledge, this is novel. There, we establish in the rectangular setting an analogue of Eq. (1.7) in
Theorem 2.3.

4
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Regression factors
XXXXXXXXXX

Corr. indicator
Dataset MNIST FashionMNIST CIFAR10

90th quantile only
Spearman (p-value) 0.83 (3e-49) 0.79 (6e-45) 0.73 (4e-18)
Pearson (p-value) 0.84 (9e-54) 0.81 (1e-48) 0.74 (3e-19)

R factor 0.84 0.81 0.75
All quantiles of νJ R factor 0.89 0.87 0.83

Table 1.1: Correlation between test accuracy and FPT metrics. 200 randomly generated MLP
architectures were trained on 3 datasets. We performed linear regressions of test accuracy against
quantiles of νJ . Although correlation is stronger considering all quantiles, higher quantiles are
individually the most correlated (see Table 1.2). Hence, the computation of Spearman, Pearson and
R correlation factors between accuracy and 90th quantile. The last row shows the correlation of
accuracy against all the quantiles 10, 20, . . . , 80, 90% during a multivariate regression.

Quantile of νJ MNIST FashionMNIST CIFAR10
10% 0.058 0.035 -0.016
20% 0.084 0.055 0.005
30% 0.176 0.134 0.063
40% 0.204 0.156 0.089
50% 0.234 0.186 0.123
60% 0.301 0.244 0.196
70% 0.407 0.342 0.304
80% 0.597 0.539 0.498
90% 0.845 0.807 0.755

Table 1.2: Accuracy vs (log10 of) a single quantile of νJ . For each dataset and each quantile, the
table reports the R factor in a bivariate linear regression.

In Section 3, we explain in detail the FPT model for random neural networks. Then thanks to the
results of [18, 17] and our rectangular setting, we show that the spectral measure of the Jacobian
J (N) converges to νJ and we encode the limit in explicit generating series in Theorem 3.1. This gives
how νJ can theoretically be recovered.

Section 4 presents the numerical resolution which inverts the (multi-valued) generating series. By
chaining different (local) basins of attractions, we obtain a global resolution method. Our algorithm
is detailed in Algorithm 1 and Theorem 4.1 states the theoretical guarantees.

Finally Section 5 presents the experiment leading to Table 1.1. More details are given in Appendix F,
including comments on the benchmark of Fig. 1.1.

2 Free Probability

2.1 Definitions and notations

Free Probability Theory provides a framework to analyze eigenvalues and singular values of large
random matrices.We now introduce various complex-analytic generating series which encode the
measures and the basic operations on them. First, the Cauchy-Stieltjes transform of µ, a probability
measure on R+ is:

Gµ : C+ → C−
z 7→

∫
R+

µ(dv)
z−v ,

where C± := {z ∈ C | ± ℑz > 0} . The transform Gµ encodes the measure µ and reciprocally, the
measure can be recovered thanks to:

Lemma 2.1 (Cauchy-Stieltjes inversion formula – Theorem 6 in [16]). We have the weak convergence
of probability measures:

lim
y→0
− 1

π
ℑGµ(x+ iy)dx = µ(dx) .
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Figure 1.2: Accuracy versus (log10 of) 90th quantile for various datasets. From top to bottom, datasets
are MNIST, FahsionMNIST, CIFAR10.

The moment generating function is

Mµ(z) = zGµ(z)− 1 =

+∞∑
k=1

mk(µ)

zk
, (2.1)

where for all k ∈ N, mk(µ) :=
∫
R xkµ(dx) is the k-th moment of µ. For µ ̸= δ0, Mµ is invertible

in the neighborhood of∞ and the inverse is denoted by M
⟨−1⟩
µ . The S-transform of µ is defined

as Sµ(m) = 1+m

mM
⟨−1⟩
µ (m)

, and is analytic in a neighborhood of m = 0. Furthermore, the variable

z will always denote an element of C+, while the variables g and m will denote elements in the
image of Gµ and Mµ. For a diagonalizable matrix A(N) ∈ MN (R), we write SA(N) := Sµ

A(N)
,

GA(N) := Gµ
A(N)

, MA(N) := Mµ
A(N)

.

A landmark result in the field introduces free multiplicative convolution in a natural way, and shows
that this operation is linearized by the S-transform:

Theorem 2.2 (Voiculescu, [25]). Consider two sequences of positive matrices, each element in
MN (R) (

A(N) ; N ≥ 1
)

,
(
B(N) ; N ≥ 1

)
,

such that:
lim

N→∞
µA(N) = µA , lim

N→∞
µB(N) = µB .
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Under the assumption of asymptotic freeness for A(N) and B(N), there exists a deterministic prob-
ability measure µA ⊠ µB such that limN→∞ µA(N)B(N) = µA ⊠ µB . The operation ⊠ is the
multiplicative free convolution. Moreover

SAB(m) = SA(m)SB(m) . (2.2)

This convergence akin to a law of large numbers is the key ingredient which allows to build the
deterministic model for the back-propagation of gradients in Eq. (1.7).

2.2 Product of rectangular free matrices

As a generalization of Eq. (2.2) to rectangular matrices, we state:
Theorem 2.3. Let (pN )N≥1, (qN )N≥1, (rN )N≥1, be three sequences of integers satisfying

pN , qN , rN −→
N→∞

∞,
rN
qN
−→
N→∞

c > 0 .

Consider for all N ≥ 1 let A(N), B(N) be random matrices of respective sizes pN ×qN and qN ×rN

such that the (squared) singular laws of A(N), B(N) converge weakly. Assuming that B(N)
(
B(N)

)T
and

(
A(N)

)T
A(N) are asymptotically free, we have that in the limit N →∞:

S(AB)TAB(m) = SATA (cm)SBTB(m) .

Proof. See the appendix, Subsection C.1

Implicitly this defines a rectangular multiplicative free convolution, which could be denoted ⊠c in
the spirit of the rectangular free additive convolution [4]. But, in the current setting, this is not a good
idea. Indeed, if one defines µ1 ⊠c µ2 as the measure whose S-transform is Sµ1

(c ·)Sµ2
, then a quick

computation shows that ⊠c is not associative, i.e., for a triplet (µ1, µ2, µ3) of probability measures
and a pair (c1, c2) ∈ R∗

+ × R∗
+, we generically have:

µ1 ⊠c1 (µ2 ⊠c2 µ3) ̸= (µ1 ⊠c1 µ2)⊠c2 µ3 .

A better idea is to treat the dimension ratio c as part of the data via a central extension:
Definition 2.4. On the set of pairs (µ, c) such that µ is a probability measure on R+ and c ∈ R∗

+,
define the operation ⊠ as:

(µ1, c1)⊠ (µ2, c2) := (ν, c1c2) ,

where ν is the unique probability measure such that Sν = Sµ1(c2 ·)Sµ2 . This extends the classical
definition as the usual free convolution is recovered with (µ1, 1)⊠ (µ2, 1) := (µ1 ⊠ µ2, 1).

Such an operation is associative and will allow a neat formulation of the measure of interest in the
upcoming Theorem 3.1, entirely analogous to Eq. (1.7).

3 Theoretical resolution of the model

Width profile: Pennington et al. [20] consider Nℓ = N for ℓ = 1, 2, . . . , N . Here, we consider that
the width of layers is not constant across layers, which is mostly the case in practice. Indeed, modern
architectures typically have very sophisticated topologies with layers varying in widths.

Let us assume that we are in the infinite width regime in the sense that Nℓ → ∞, for all ℓ =

0, 1, 2 . . . , L with: Nℓ−1

Nℓ
−→
N→∞

λℓ > 0. And let us denote Λℓ := lim
N→∞

N0

Nℓ
=
∏ℓ

k=1 λk , with the

convention Λ0 = 1.

FPT limits: LetN be a standard Gaussian random variable on the real line P (N ∈ dx) = e−
x2

2√
2π

dx .

Here D
(N)
ℓ is diagonal with entries ϕ′

ℓ([hℓ]i) (see Eq. (1.2)), and the pre-activations

hℓ = W
(N)
ℓ xℓ−1 + b

(N)
ℓ = W

(N)
ℓ ϕℓ(hℓ−1) + b

(N)
ℓ
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clearly depend on the previous layers. Because of this lack of independence, the standard results of
FPT cannot be applied directly i.e. asymptotic freeness does not obviously hold. This is an important
subtlety that is addressed in the upcoming Theorem 3.1. Based on an information propagation
argument, the papers [21, 22] argue that the entries of hℓ behave as the i.i.d. samples of a Gaussian
distribution with zero mean and variance qℓ. A basic law of large numbers applied to Eq. (1.2) gives
a limit for the empirical measure µDℓ

= limNℓ→∞ µ
D

(N)
ℓ

= ϕ′
ℓ

(√
qℓN

)
. Also the recurrence for

the variance is:

qℓ = fℓ
(
qℓ−1

)
= σ2

Wℓ
E
[
ϕℓ

(√
qℓ−1N

)2]
+ σ2

bℓ
, (3.1)

with initial condition q1 =
σ2
W1

N1

∑N1

i=1(x
i
0)

2 + σ2
b1

.

Recently Pastur et al. completed this heuristic thanks to a swapping trick – see [18, Lemma 3.3] and
[17, Remark 3.4]. They proved that, regarding the asymptotical spectral properties of J (N), one can
replace each D

(N)
ℓ by a diagonal matrix with independent Gaussian entries

√
qℓN independent from

the rest. In that setting, one can apply the results on products of asymptotically free matrices which
were given in Section 2.
Theorem 3.1. In terms of the rectangular multiplicative free convolution, the measure of (squared)
singular values of J (N) converges to

νJ = (νDL
, 1)⊠ (νWL

, λL)⊠ · · ·⊠ (νD1
, 1)⊠ (νW1

, λ1) . (3.2)

Moreover, the S-transform of JTJ in the infinite width regime verifies

SJT J(m) =

L∏
ℓ=1

[
SD2

ℓ
(Λℓm)SWT

ℓ Wℓ
(Λℓ−1m)

]
. (3.3)

In particular, under the assumption that the entries of Wℓ are i.i.d. :

SJT J(m) =

L∏
ℓ=1

(
SD2

ℓ
(Λℓm)

1

σ2
Wℓ

1

1 + Λℓm

)
, M

⟨−1⟩
JT J

(m) =
m+ 1

m

L∏
ℓ=1

σ2
Wℓ

(1 + Λℓm)

SD2
ℓ
(Λℓm)

.

Proof. See the appendix, Subsection C.2.

Master equation: In the end, we only need to fix width ratios and non-linearities to form M
⟨−1⟩
JT J

(m),
and get the master equation which we solve numerically thanks to an adaptive Newton-Raphson
scheme. The non-linearities ReLU, Hard Tanh and Hard Sine yield explicit formulas, which can be
found in Table B.1 of the appendix. If Wℓ has i.i.d. entries, one finds the explicit master equation:

M
⟨−1⟩
JT J

(m) =
m+ 1

m

L∏
ℓ=1

σ2
Wℓ

(cℓ + Λℓm) , (3.4)

where cℓ = 1
2 when ϕℓ is ReLU, cℓ = Cℓ = P

(
0 ≤ N ≤ 1√

qℓ

)
if ϕℓ is Hard Tanh and cℓ = 1 if ϕℓ

is Hard Sine.

4 Numerical resolution

Here we describe the numerical scheme aimed at computing the spectral density of JTJ in Eq. (1.1).
We use the following steps to compute the spectral density at a fixed x ∈ R+:

• Because of the Cauchy-Stieltjes inversion formula given in Lemma 2.1, pick a small y > 0 in order
to compute: − 1

πℑGJT J(z = x+ iy) . The smaller the better, and in practice our method works
for up to y = 10−9. Figure A.1 shows the same target distribution but convolved with various
Cauchy distributions yC where y ∈ {1, 10−1, 10−4}. This corresponds to computing the density
−1
π ℑGµ (·+ iy) for different y’s.
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• Because of Eq. (2.1), we equivalently need to compute MJT J(z).

• M
⟨−1⟩
JT J

(m) is available thanks to the master equation in Theorem 3.1. Therefore, we need to invert
m 7→M

⟨−1⟩
JT J

(m). This step is the crucial part: M ⟨−1⟩
JT J

is multi-valued and one needs to choose the
correct branch.

Algorithm 1 Newton lilypads, chaining basins of attraction

Name: NEWTON_LILYPADS
Input: Image value: zobjective ∈ C+, (Optional) Proxy: (z0,m0) ∈ C+ × C.
Output: M(zobjective)
# Find a proxy (z0,m0 = 0) using a doubling strategy, if None given
if (z0,m0) is None then
m← 0
z ← zobjective
while not IS_IN_BASIN(z, m) do

z ← z + iℑ(z) = ℜ(z) + i2ℑ(z) # Double imaginary part
end while
m← NEWTON_RAPHSON(z,Guess = m)

else
(z,m)← (z0,m0)

end if
# Starts heading towards zobjective using dichotomy
while |zobjective − z| > 0 do
∆z ← zobjective − z
while not IS_IN_BASIN(z +∆z, m) do

∆z ← 0.5 ∗∆z
end while
z ← z +∆z
m← NEWTON_RAPHSON(z,Guess = m)

end while
return m

4.1 Initial setup

We first use the classical Newton-Raphson scheme to invert the equation z = f(m) where z ∈ C+ is
fixed and f is rational. A neat trick which leverages the fact that f is rational and that z ∈ C+ is to
define:

φz(m) := P (m)/z −Q(z) . (4.1)

As such, we have z = f(m) = P (m)
Q(m) ⇐⇒ φz(m) = 0 . There are several advantages of doing

that: (1) Inversion is recast into finding the zero of a polynomial function. (2) Since we have
limz→∞ M(z) = 0, if z is large in modulus, m = 0 is a natural starting point for the algorithm when
z is large.

It is well-known that the Newton-Raphson scheme fails unless the initial guess m0 ∈ C belongs to a
basin of attraction for the method. And, provided such a guarantee, the Newton-Raphson scheme is
exceptionally fast with a quadratic convergence speed. Kantorovich’s seminal work in 1948 provides
such a guarantee locally. For the reader’s convenience, we give in Appendix D the pseudo-code for
the Newton-Raphson algorithm (Algorithm 2), as well as a reference for the optimal form of the
Kantorovich criterion (Theorem D.1).

Therefore, we assume that we have at our disposal a function (z,m) 7→ IS_IN_BASIN(z,m) which
indicates if the Kantorovich criterion is satisfied for φz at any m ∈ C. It is particularly easy to
program with φz polynomial.

4.2 Newton lilypads: Doubling strategies and chaining

Now we have all the (local) ingredients in order to describe a global strategy which solves in m ∈ C
the equation φz(m) = 0 .
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First, one has to notice that this problem is part of a family parametrized by z ∈ C+. And the solution
is m ≈ 0 for z large. Therefore, one can find a proxy solution for z ∈ C+ high enough. This is done
thanks to a doubling strategy until a basin of attraction is reached.

Second, if a proxy (z,m) is available, we can use the Newton-Raphson algorithm to find a solution
(z +∆z,m+∆m) starting from m. To do so, we need ∆z small enough. This on the other hand is
done by dichotomy.

Tying the pieces together allows to chain the different basins of attraction and leads to Algorithm 1.
Notice that in the description of the algorithm, we chose to make implicit the dependence in the
function f , since it is only passed along as a parameter. Technically, f is a parameter for all three
functions NEWTON_RAPHSON, IS_IN_BASIN, NEWTON_LILYPADS.

The discussion leading to this algorithm, combined with the Kantorovich criterion yields:

Theorem 4.1. Given f : m 7→M ⟨−1⟩(m) and z ∈ C+, Algorithm 1 has guaranteed convergence.
Moreover it returns m = M(z) i.e. the (unique) holomorphic extension of the inverse of f in the
neighborhood of 0.

5 On the experiment

To leverage the numerical scheme, we designed the following experiment whose results are reported
on Table 1.1. Consider a classical Multi-Layer Perceptron (MLP) with L = 4 layers, feed-forward and
fully-connected with ReLU non-linearities. The MLP’s architecture is determined by the vector λ =
(λ0, λ1, . . . , λL) while the gains at initialization are determined by the vector σ = (σ1, σ2, . . . , σL).

By randomly sampling the vector λ, we explore the space of possible architectures. In other to
have balanced architectures, we chose independent λi’s with E (λi) = 1. Likewise, we also sample
different possible gains. Hence we find ourselves with several MLPs architectures each with it’s
unique initialization. The spectral distributions are computed thanks to our Algorithm 1.

As shown by the parameter count in Fig. 1.2, some architectures are quite large for task at hand.
To guarantee convergence despite the changing architectures, we intentionally chose a low learning
rate and did 50 epochs of training. For 200 MLPs, the experiment takes 10 hours of compute on a
consumer GPU (RTX 2080Ti). This is to be contrasted with less than one minute of CPU compute
for the spectral measure νJ .

To control for any stochastic variability, we also trained multiple instances for each MLP, and the
shown results are averages between a few runs. Finally we calculate the correlations between the
accuracy on the test set and percentiles of the spectral distribution νJ . Notice that, a posteriori, the
FPT regime is justified because the results are coherent despite various width scales.

6 Conclusion

In summary, this paper developed FPT in the rectangular setup which is the main tool for a metamodel
for the stability of neural network. Then we gave a method for the numerical resolution both fast
and with theoretical guarantees. Finally, confirming the initial claim that stability is a good proxy for
performance, we empirically demonstrated that the accuracy of a feed-forward neural network after
training is highly correlated to higher quantiles of the theoretically computed spectral distribution
using this method.

Regarding the importance of hyperbolicity, we surmise that a few large singular values allow the
SGD to escape local minima without compromising overall stability.

A challenging problem would be to accommodate for skip-connections. In this case the chain rule
used for back-propagation changes in a fundamental way. The Jacobian cannot be approximated by a
simple product of free matrices as the same free variable will appear at multiple locations.
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