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Abstract

This paper shows that masked generative adversarial networks (MaskedGAN)
are robust image generation learners with limited training data. The idea of
MaskedGAN is simple: it randomly masks out certain image information for
effective GAN training with limited data. We develop two masking strategies
that work along orthogonal dimensions of training images, including a shifted
spatial masking that masks the images in spatial dimensions with random shifts,
and a balanced spectral masking that masks certain image spectral bands with self-
adaptive probabilities. The two masking strategies complement each other which
together encourage more challenging holistic learning from limited training data,
ultimately suppressing trivial solutions and failures in GAN training. Albeit sim-
ple, extensive experiments show that MaskedGAN achieves superior performance
consistently across different network architectures (e.g., CNNs including BigGAN
and StyleGAN-v2 and Transformers including TransGAN and GANformer) and
datasets (e.g., CIFAR-10, CIFAR-100, ImageNet, 100-shot, AFHQ, FFHQ and
Cityscapes).

1 Introduction

“What I cannot create, I do not understand.” —Richard Feynman. Generative Adversarial Network
(GAN) [19] is such an unsupervised framework learning to understand and create: the discriminator
aims to understand “what are real and fake images” by binary discrimination while the generator
strives to produce realistic images according to discriminator’s feedback. In recent years, GANs
have achieved great success under the presence of large amounts of training data. When only limited
training data is available, they instead experience obviously increased generation failures [58, 31]. By
reversing the dictum, we get “What I do not understand, I can not create” [43], which might be the
perfect metaphor of such generation failures. Specifically, with limited training data, the discriminator
tends to achieve discrimination via certain less meaningful shortcuts by memorizing training data or
merely focusing on easy-to-discriminate image locations and spectra without holistic understanding
of images, ultimately leading to trivial solutions that fail to “create” realistic images [58, 31] as shown
in Fig. 1.

∗indicates equal contribution.
†corresponding author.
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Figure 1: State-of-the-art GANs such as BigGAN often experience clear training collapses with
limited training data such as 20% and 10% of CIFAR-10. The proposed MaskedGAN (i.e., Masked-
BigGAN) effectively stabilizes adversarial training and suppresses trivial solutions and training
failures by encouraging more challenging holistic understanding of images.

Trivial solutions are ubiquitous in unsupervised learning [3, 6, 7, 10], and so in Masked Autoencoders
(MAE) [48, 42, 8, 18, 2, 21, 51] as one prevalent unsupervised representation method. MAE works by
masking and reconstructing the image, where image masking is the core design that suppresses trivial
solutions and enables learning high-level semantic features [21, 5]. For instance, [21] presents a high-
ratio masking strategy for MAE: 1) it can impede shortcuts in image reconstruction, e.g., local spatial
interpolation that recovers a masked patch from adjacent patches without high-level understand-
ing [21, 5]; 2) it encourages global spatial interpolation that requires modelling inter-patch context
information [54, 25] globally, ultimately learning nontrivial and meaningful representations [21, 5].

In this work, we explore the idea of image masking training for GAN, aiming to develop robust
image generation learners with limited training data. By viewing image masking as one general
means of suppressing training shortcuts, we hypothesize that image masking in GAN training should
be conducted over both spatial and spectral dimensions for preventing discriminators from merely
focusing on easy-to-discriminate image locations and spectra. In another word, applying random
spatial and spectral masking creates more challenging tasks for discriminator training which forces
discriminators to learn more holistic instead of easy-to-discriminate information only. At the other
end, as applying masking to discriminators slows down their learning, it is crucial to decelerate the
generator learning synchronously for an overall balanced and stable adversarial learning.

Driven by this motivation, we design MaskedGAN, a robust image generation network that can
learn effectively with limited training data. The idea of MaskedGAN is simple: it randomly masks
certain image information to suppress trivial solutions in GAN training. We develop two masking
strategies that work along orthogonal dimensions of images. The first is shifted spatial masking
that masks the image in spatial dimensions with a random shift. Intuitively, random masking along
spatial dimensions enforces discriminator to learn over all image locations instead of merely focusing
on easy-to-discriminate locations. The second is balanced spectral masking that decomposes an
image into multiple bands in spectral space and masks a portion of spectral bands with self-adaptive
probabilities. Random masking along spectral dimension encourages discriminator to learn hard-to-
discriminate bands (e.g., high-frequency bands capturing shapes and structures) instead of largely on
easy bands (e.g., low-frequency bands capturing color and brightness). The two masking strategies
complement each other which together suppress trivial solutions and training failures by encouraging
more challenging holistic discriminator learning from limited training data.

MaskedGAN also applies the two masking strategies to the generator training. Differently, on
generator side, the two image masking operations work on outputs by sparsifying the training signals
backpropagated from the discriminator. This design slows down the generator learning and stabilizes
the overall adversarial learning by keeping similar learning paces for discriminator and generator. It
ensures that MaskedGAN can converge to a Local Nash Equilibrium under certain conditions [22].

We summarize the contributions of this work in three aspects. First, this paper investigates image
masking training for GAN, aiming for building robust image generation learners with limited training
data. Second, we propose MaskedGAN and design spatial and spectral masking for training robust
and effective GAN with limited data. The two masking strategies complement and encourage more
challenging holistic understanding of images which help suppress trivial solutions and stabilize
the overall adversarial training. Third, extensive experiments show that a simple implementation
of MaskedGAN achieves superior generation performance consistently across different network
architectures and datasets.
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2 Related Work

This work is related to two main fields of research, namely, generative adversarial networks for image
generation and masked autoencoders for unsupervised representation learning.

Generative Adversarial Network (GAN) [19] is an unsupervised data synthesis framework that
aims to generate a model distribution that mimics a given target distribution. It consists of a generator
that generates model distribution and a discriminator that distinguishes the model distribution from
the target. In recent years, a series of GANs have been proposed to improve the performance and
training stability from different perspectives, such as designing more stable training objectives [1,
36, 20, 37, 45], building better network architectures [44, 38, 39, 55, 33, 4, 28, 26, 14], involving
various training strategies [16, 30, 35], etc. Despite the great success obtained, they require large
amounts of training data for training effective generation models. When only limited training data
is available, they often suffer from clearly increased generation failures with severely degraded
performance [58, 31, 27, 9]. In this work, we focus on training effective GANs with limited training
data.

Training GAN with limited data: Recently, the task of training effective GANs with limited
data has attracted increasing attention for alleviating the requirement of large amounts of training
data. Most existing efforts address this challenging task from two perspectives. The first is data
augmentation [58, 31, 27] that works via massive hand-crafted data augmentation policies, e.g., [58]
employs different types of differentiable augmentation to stabilize GAN training. The second is
model regularization [46, 13, 9] which stabilizes GAN training by regularizing the discriminator
training via label flipping [46], network co-training [13], lottery ticket hypothesis [9], etc.

We tackle this challenging task from a perspective of image masking training. Specifically, we
design MaskedGAN that exploits two orthogonal image masking strategies for encouraging more
challenging holistic understanding of images. Extensive evaluations show that MaskedGAN stabilizes
the adversarial training process and suppresses trivial solutions and training failures effectively.

Masked Autoencoders (MAE) has greatly advanced the research of unsupervised representation
learning recently. Despite different designs, MAE is essentially a denoising autoencoder (DAE) [47]
that learns semantic representations by corrupting and reconstructing the input signals. Most existing
work can be viewed as a generalized DAE under different types of corruptions, such as masking
image pixels, patches, and regions [48, 42, 8, 18, 2, 21], or masking image color channels [57].
For example, Context Encoder [42] masks random image regions of different shapes and learns to
reconstruct them. Color Encoder [42] masks image color channels and learns to reconstruct them
from grayscale images. Recently, [18, 2, 21] mask random image patches for MAE training. In
particular, it is demonstrated in [21] that various image masking strategies can help suppress trivial
solutions in MAE training while large mask ratios help learn better representations.

Different from most existing work that explores image masking in MAE training for learning better
unsupervised representations, we explore the idea of image masking for GAN training and aim to
develop robust image generation learners with limited training data. We design two orthogonal image
masking strategies, namely, shifted spatial masking and balanced spectral masking that help learn
robust image generation models effectively, more details to be described in the ensuing subsections.

3 Method

3.1 Task Definition

This work focuses on the task of training GAN with limited training data. GAN is an unsupervised
framework that aims to generate a model distribution that mimics a given target distribution: the
generator G learns to generate images G(z) given the latent code z while the discriminator D learns
to distinguish the generated images G(z) from the real images x. Conventionally, GAN is optimized
alternatively with a discriminator loss Ld and a generator loss Lg that can be defined as:

Ld = E
x∼pdata

[fd(−D(x))] + E
z∼pz

[fd(D(G(z)))], (1)

Lg = E
z∼pz

[fg(−D(G(z)))], (2)
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Figure 2: Overview of the proposed MaskedGAN: MaskedGAN randomly masks certain image
information for effective GAN training with limited training data. We develop two masking strategies
that work along orthogonal image dimensions, including Shifted Spatial Masking that masks images
along spatial dimensions with random shifts and Balanced Spectra Masking that masks certain image
spectral bands based on self-adaptive probabilities.

where pdata denotes the distribution of the provided real images and pz is the prior distribution (e.g.,
Gaussian distribution). The notations fd and fg stand for the loss mapping functions [19, 38].

GAN training failures with limited data. Prior studies [58, 31] show that GAN often experiences
generation failures with severely degraded generation performance when only limited training data
is available. Specifically, with limited training data, the discriminator tends to discriminate via
meaningless shortcuts by merely focusing on easy-to-discriminate image locations and spectra
instead of holistic understanding of images. This can be viewed clearly in Fig. 1 of the appendix
where the Gini Coefficient [17] of discriminator’s spatial attentions increases quickly along the
training iteration (when only limited training data is available). Note that the Gini coefficient [17] is
negatively correlated with equality, i.e., the discriminator will pay more unevenly distributed attention
to each spatial location while the Gini coefficient increases from ‘0’ to ‘1’. For image generation
with GAN, the large Gini coefficient thus means that the discriminator starts to focus on certain
spatial locations (easy to discriminate) while ignoring other spatial locations (hard to discriminate),
ultimately leading to an over-confident discriminator and training collapse.

3.2 Masked Generative Adversarial Network

We tackle the challenging task of training GAN with limited data from a perspective of image
masking training [21]. Specifically, we design two orthogonal image masking strategies, namely,
shifted spatial masking and balanced spectral masking as illustrated in Fig. 2. The two masking
strategies complement each other and encourage more challenging holistic understanding of images
which help stabilize the adversarial training process and suppress trivial solutions and training failures.

Shifted spatial masking masks random image patches in spatial dimensions, aiming to force
discriminator to learn over all image locations instead of merely focusing on easy-to-discriminate
locations. It first generates a random patch-based mask and then introduces a random shift to the
generated mask and finally applies the shifted mask to the training image. The shift operation allows
to conduct spatial masking continuously along spatial dimensions: a masked patch could appear on
any possible locations instead of on fixed grid locations [21, 2]. This feature is critical to image
generation that requires high-fidelity along spatial dimensions.

Given an image x ∈ RH×W , we first generate a random patch-based spatial mask mspatial ∈
{0, 1}H×W and apply a random spatial shift d ∈ [0, D] on mspatial to acquire the shifted spatial mask
m′

spatial. The shifted spatial masking function can be defined by: : Mspatial(x) = x×m′
spatial. In the

patch-based mask generation, we set the grid size as N ×N , i.e., the patch size is H
N × W

N . We set the
random shift range D as half of patch size, which allows the masked patch to appear on any possible
locations. For images with multiple color channels, each channel are masked in the same manner.

Relations to the spatial masking in MAE. MAE aims to encode an image patch into a feature vector,
which is a downsampling process and does not require high precision along spatial dimensions (i.e.,
pixels within a patch are considered as the same). GAN, on the contrary, aims for decoding a latent
code into a high-resolution image, which is an upsampling process and requires high fidelity along
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spatial dimensions (i.e., pixels within a patch should not be completely the same). We therefore
introduce an additional “mask shift” to allow the masked patches to appear at any image locations
(instead of fixed grid locations only as in the spatial masking in MAE [21, 2]), which helps generate
images with high-fidelity along spatial dimensions.

Balanced spectral masking masks random spectral bands of an image in the decomposed spectral
space, aiming to encourage the discriminator to learn from all spectral bands instead of focusing on
easy bands (e.g., low-frequency bands capturing color and brightness) only. Specifically, balanced
spectral masking decomposes an image into multiple bands in spectral space and masks a portion
of spectral bands with self-adaptive probabilities, i.e., a spectral band is masked with a higher (or
lower) probability if it contains more (or less) contents. The balanced masking is crucial to the
spectral masking as image contents are usually unevenly distributed along the spectral dimension.
Specifically, the contents of natural images are distributed very densely around low-frequency bands
but very sparsely in high-frequency bands. Therefore, uniform masking along the spectral dimension
is imbalanced and does not work well for image generation.

Given an image x ∈ RH×W , we first employ Fourier transformation [53, 23, 24, 56] to decompose it
into multi-band representation xmul ∈ RH×W×C , where C denotes the number of spectral bands. The
image contents in each band Ix ∈ RC can then be computed by summing all contents in each band,
i.e., Ix =

∑
H

∑
W x

(H,W,C)
mul , and followed by an normalization operation: I ′x = I

(C)
x /

∑
C I

(C)
x .

With the calculated I ′x, The balanced spectral mask mspectral ∈ {0, 1}C can be generated by masking
c-th band with probability I

′(c)
x . Finally, the balanced spectral masking function can be defined by:

Mspectral(x) =
∑

C(x
(H,W,C)
mul ×m

(C)
spectral).

Loss functions. We apply the two image masking strategies to both discriminator and generator
training, where the overall training losses can be formulated as follows:

Ld = E
x∼pdata

[fd(−D(M(x)))] + E
z∼pz

[fd(D(M(G(z))))], (3)

Lg = E
z∼pz

[fg(−D(M(G(z))))], (4)

where M(·) = Mspectral(Mspatial(·)) is the combination of shifted spatial masking and balanced
spectral masking.

Note the two masking strategies work in different manners in the discriminator and generator training.
Specifically, by applying image masking on input images in discriminator training, we could create
a challenging discriminator task that requires holistic learning beyond certain easy-to-discriminate
information. Differently, in generator training, the image masking operation works on output side by
sparsifying the training signals back-propagated from the discriminator. One major consideration is
to slow down the generator training so that it has similar learning pace as the discriminator which
further stabilizes the overall adversarial learning between the discriminator and the generator.

3.3 Theoretical Insights

The proposed Masked Generative Adversarial Network (MaskedGAN) is inherently connected with
the theory of stochastic approximation.

Proposition 1 The MaskedGAN can be modeled as an instance of the Two Time-Scale Update Rule.

Proposition 2 The MaskedGAN converges to a Local Nash Equilibrium under certain conditions.

The proofs of Propositions 1 and 2 are provided in the Appendix.

4 Experiments

We evaluate MaskedGAN over different network architectures and public datasets. Sections 4.1
presents experiments with BigGAN over datasets CIFAR-10 [34], CIFAR-100 [34] and ImageNet [15].
Section 4.2 reports experimental results with StyleGAN-v2 over datasets 100-shot [58], AFHQ [11]
and FFHQ [32]. Section 4.3 presents experiments with two transformer-based GANs (TransGAN and
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Table 1: Conditional image generation with BigGAN on CIFAR-10 and CIFAR-100. MaskedGAN
(i.e., Masked-BigGAN) achieves superior performance especially with limited training data. We
calculate FID (↓) scores with 10K generated samples and the validation set, as in [58].

Method CIFAR-10 CIFAR-100

100% Data 20% Data 10% Data 100% Data 20% Data 10% Data

Non-saturated GAN [19] 9.83 ± 0.06 18.59 ± 0.15 41.99 ± 0.18 13.87 ± 0.08 32.64 ± 0.19 70.5 ± 0.38
LS-GAN [36] 9.07 ± 0.01 21.60 ± 0.11 41.68 ± 0.18 12.43 ± 0.11 27.09 ± 0.09 54.69 ± 0.12
RAHinge GAN [29] 11.31 ± 0.04 23.90 ± 0.22 48.13 ± 0.33 14.61 ± 0.21 28.79 ± 0.17 52.72 ± 0.18
StyleGAN-v2 [33] 11.07 ± 0.03 23.08 ± 0.11 36.02 ± 0.15 16.54 ± 0.04 32.30 ± 0.11 45.87 ± 0.15

BigGAN [4] (baseline) 9.74 ± 0.06 21.86 ± 0.29 48.08 ± 0.10 13.60 ± 0.07 32.99 ± 0.24 66.71 ± 0.01
LeCam-GAN [46] 8.31 ± 0.05 15.27 ± 0.10 35.23 ± 0.14 11.88 ± 0.12 25.51 ± 0.19 49.63 ± 0.16
GenCo [13] 8.83 ± 0.04 16.57 ± 0.08 28.08 ± 0.11 11.90 ± 0.02 26.15 ± 0.08 40.98 ± 0.09
ADA [31] 8.99 ± 0.03 19.87 ± 0.09 30.58 ± 0.11 12.22 ± 0.02 22.65 ± 0.10 27.08 ± 0.15
DA [58] 8.75 ± 0.03 14.53 ± 0.10 23.34 ± 0.09 11.99 ± 0.02 22.55 ± 0.06 35.39 ± 0.08
MaskedGAN 8.41 ± 0.03 12.51 ± 0.09 15.89 ± 0.12 11.65 ± 0.03 18.33 ± 0.09 24.02 ± 0.12

GANformer) over datasets CIFAR-10, CIFAR-100 and Cityscapes [12]. In addition, we present abla-
tion studies in Section 4.1 and discuss different features of the proposed MaskedGAN in Section 4.4
The implementation and dataset details are provided in appendix.

4.1 Conditional image generation with BigGAN on CIFAR-10, CIFAR-100 and ImageNet

Table 2: Ablation studies of MaskedGAN with BigGAN (baseline) on 10% CIFAR-10 data.

Method Shifted Spatial Masking Balanced Spectral Masking FID (↓)
Spatial Masking Random Shift Spectral Masking Self-adaptive Probability

BigGAN [4] 48.08

✓ 28.35
✓ ✓ 22.56

✓ 35.20
✓ ✓ 28.78

MaskedGAN ✓ ✓ ✓ ✓ 15.89

Table 3: Conditional image generation with BigGAN on ImageNet. MaskedGAN (i.e., Masked-
BigGAN) improves the image generation consistently across different setups of the large-scale
ImageNet. We evaluate the models with 10K generated samples and the whole training set.

Method 10% training data 5% training data 2.5% training data

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓
BigGAN [4] (baseline) 10.94 ± 0.35 38.30 ± 0.25 6.13 ± 0.09 91.16 ± 0.43 3.92 ± 0.07 133.80 ± 0.76
ADA [31] 12.67 ±0.31 31.89 ±0.17 9.44 ±0.25 43.21 ± 0.37 8.54 ± 0.26 56.83 ± 0.48
DA [58] 12.76 ± 0.34 32.82 ± 0.18 9.63 ± 0.21 56.75 ± 0.35 8.17 ± 0.28 63.49 ± 0.51
MaskedGAN 13.34 ± 0.24 26.51 ± 0.12 12.85 ± 0.40 35.70 ± 0.31 12.68 ± 0.27 38.62 ± 0.37

CIFAR-10 and CIFAR-100. Table 1 reports class-conditional image generation results with baseline
BigGAN [4] on CIFAR-10 and CIFAR-100. All models are trained with 100%, 20% or 10% training
data (i.e., 50K, 10K or 5K images), and evaluated over the validation set (10K images). It shows that
MaskedGAN (i.e., Masked-BigGAN) achieves superior performance over CIFAR-10 and CIFAR-100
as compared with state-of-the-art methods. Results are averaged with three runs.

Ablation studies over CIFAR-10. We perform ablation studies with the widely adopted BigGAN [4]
over 10% CIFAR-10 data as shown in Table 2. As the core of the proposed MaskedGAN, we examine
how our designed shifted spatial masking and balanced spectral masking contribute to the overall
performance of data-limited image generation. As shown in Table 2, the baseline (BigGAN) in the
first row does not perform well with limited training data. Including the basic Spatial Masking in
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Table 4: Unconditional image generation with StyleGAN-v2 on 100-shot. With only 100 training
images, MaskedGAN (i.e., Masked-StyleGAN-v2) outperforms the baseline StyleGAN-v2 signifi-
cantly in FID (↓). It also outperforms the state-of-the-art consistently, with and without pre-training.

Methods Pre-training 100-shot

w/ 70K images Obama Grumpy Cat Panda
Scale/shift [41] Yes 50.72 34.20 21.38
MineGAN [49] Yes 50.63 34.54 14.84
TransferGAN [50] Yes 48.73 34.06 23.20
TransferGAN + DA [58] Yes 39.85 29.77 17.12
FreezeD [40] Yes 41.87 31.22 17.95

StyleGAN-v2 [33] (baseline) No 80.20 48.90 34.27
ADA [31] No 45.69 26.62 12.90
LeCam-GAN [46] No 38.58 41.38 19.88
GenCo [13] No 36.35 33.57 15.50
AdvAug [9] No 52.86 31.02 14.75
DA [58] No 46.87 27.08 12.06
APA [27] No 43.75 28.49 12.34
InsGen [52] No 45.85 27.48 12.13
MaskedGAN No 33.78 ± 0.27 20.06 ± 0.13 8.93 ± 0.06

Table 5: Unconditional image generation with StyleGAN-v2 on AFHQ and FFHQ. MaskedGAN
(i.e., Masked-StyleGAN-v2) works effectively with limited training data over face generation tasks.
We calculate FID (↓) scores with 10K generated samples and the whole training set.

Method AFHQ-Cat AFHQ-Dog

20% Data 10% Data 5% Data 20% Data 10% Data 5% Data

StyleGAN-v2 [33] (baseline) 12.51 ± 0.09 17.67 ± 0.11 26.27 ± 0.21 43.74 ± 0.29 56.84 ± 0.36 95.32 ± 0.51
MaskedGAN 12.03 ± 0.10 15.27 ± 0.09 19.82 ± 0.13 42.25 ± 0.22 46.28 ± 0.25 46.68 ± 0.27

Method AFHQ-Wild FFHQ

20% Data 10% Data 5% Data 5% Data 2.5% Data 1.25% Data

StyleGAN-v2 [33] (baseline) 8.61 ± 0.03 14.82 ± 0.11 33.85 ± 0.21 30.06 ± 0.25 47.90 ± 0.31 127.82 ± 0.58
MaskedGAN 7.76 ± 0.02 10.39 ± 0.09 15.70 ± 0.11 28.53 ± 0.14 35.04 ± 0.21 44.36 ± 0.24

GAN training improves the baseline clearly as shown in the 2nd row, while further involving Random
Shift on top of Spatial Masking brings clear improvement in FID as shown in the 3rd row. On the
other hand, the basic Spectral Masking (masks spectral bands with the same probability) does not
work well as shown in the 4th row as image contents are usually unevenly distributed along the
spectral dimension. However, Balanced spectral masking which includes the proposed Self-adaptive
Probabilities as shown in the 5th row, improves image generation clearly in FID (19.30 above the
baseline), showing that the balanced masking strategy is crucial for effective spectral masking. In
addition, the two image masking strategies work in orthogonal dimensions (i.e., spatial and spectral
dimensions), which complement each other in data-limited image generation. We can observe clearly
that combining these two masking strategies (MaskedGAN in the last row) performs the best.

ImageNet. Table 3 reports class-conditional generation results with BigGAN [4] over ImageNet at
64×64 resolution. The models are trained with different amounts of training data including ~10%
(100K images), ~5% (50K images) and ~2.5% (25K images), and evaluated over the whole training
set (~1.2 million images). Experiments show that MaskedGAN works effectively with different data
setups over the very diverse and large-scale ImageNet. Results are averaged with three runs.

4.2 Unconditional image generation with StyleGAN-v2 on 100-shot, AFHQ and FFHQ

100-shot. Table 4 reports unconditional image generation results with StyleGAN-v2 [4] on 100-shot
dataset. All models are trained and evaluated over 100 images of Obama, Grumpy Cat and Panda,
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Table 6: Unconditional image generation with TransGAN on CIFAR-10 and CIFAR-100.
MaskedGAN works effectively with transformer-based GAN (TransGAN) as well. We calculate FID
(↓) scores with 10K generated samples and the validation set.

Method CIFAR-10 CIFAR-100

100% Data 20% Data 10% Data 100% Data 20% Data 10% Data

TransGAN [28] (baseline) 22.53 ± 0.18 53.58 ± 0.31 68.59 ± 0.40 25.73 ± 0.22 58.61 ± 0.37 73.95 ± 0.42
MaskedGAN 8.71 ± 0.09 18.29 ± 0.13 29.23 ± 0.21 16.88 ± 0.15 26.17 ± 0.23 32.28 ± 0.25

Table 7: Unconditional image generation with GANformer on Cityscapes. MaskedGAN brings
significant gains over the baseline GANformer consistently. We calculate the FID (↓) scores with
10K generated samples and the whole training set.

Method 5% Training Data 2.5% training data 1.25% training data

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓
GANformer [26] (baseline) 1.61 ± 0.02 34.87 ± 0.25 1.56 ± 0.02 62.23 ± 0.42 1.44 ± 0.01 108.73 ± 0.58
MaskedGAN 1.64 ± 0.02 29.84 ± 0.21 1.60 ± 0.02 55.74 ± 0.32 1.56 ± 0.02 75.75 ± 0.45

respectively. Experimental results show that the proposed MaskedGAN works effectively with only
100 images, i.e., it brings significant gains over StyleGAN-v2 (baseline) and outperforms state-of-the-
art methods by clear margins. Besides, MaskedGAN surpasses all transfer learning methods but does
not require pre-training over large-scale datasets. Results are averaged with three runs.

AFHQ and FFHQ. Table 5 presents unconditional image generation results with StyleGAN-v2 [4]
on AFHQ and FFHQ. For AFHQ, the models are trained with different amounts of training data
including ~20% (1K images), ~10% (500 images) and ~5% (250 images), and evaluated over the
whole training set ( 5K images). For FFHQ, the models are trained with ~10% (7K images), ~5%
(3.5K images) and ~2.5% (1.75K images) data, and evaluated over the whole training set (70K
images). It can be observed that MaskedGAN works effectively with limited training data over animal
and human face generation tasks. Results are averaged with three runs.

4.3 Unconditional image generation with TransGAN and GANformer

We evaluate MaskedGAN with recent transformer-based architectures including TransGAN [28] and
GANformer [26]. Specifically, TransGAN is the first work that uses purely transformers for image
generation. GANformer employs a bipartite structure for computing soft attention, which circumvents
the computation constraints in standard transformers and leads to improved image generation.

CIFAR-10 and CIFAR-100 with TransGAN. Tables 6 reports unconditional image generation with
TransGAN on CIFAR-10 and CIFAR-100. The models are trained with 100%, 20% or 10% training
data (i.e., 50K, 10K or 5K images), and evaluated over the whole training set (50K images). We can
observe that our image masking strategies work effectively with transformer-based GAN as well.
Results are acquired with three runs.

Cityscapes with GANformer. Tables 7 reports unconditional image generation with GANformer on
Cityscapes. The models are trained with ~5%, ~2.5% or ~1.25% training data (i.e., 1.25K, 0.63K or
0.31K images ), and evaluated over the whole training set (i.e., ~25K images ). Experiments show
that our image masking strategies bring significant gains over the baseline GANformer consistently
over scene generation task. Results are acquired with three runs.

4.4 Discussion

Generalization across different GAN architectures: We examine the generalization of the proposed
MaskedGAN by evaluating it with four representative GAN architectures, including two CNN-based
(i.e., BigGAN and StyleGAN-v2) and two Transformer-based (i.e., TransGAN and GANformer).
Experimental results in Tables 1- 7 show that our MaskedGAN brings clear generation improvements
consistently over different GAN architectures.
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Figure 3: Convergence of GAN training with limited training data: MaskedGAN converges well
consistently across different datasets (e.g., CIFAR-10, ImageNet, 100-shot and Cityscapes), different
amounts of training data (e.g., 10% and 2.5% of ImageNet), and different generation architectures
(e.g., BigGAN, StyleGAN-v2, GANformer and TransGAN). Most existing GANs instead experience
clear training collapses with limited training data. The recent TransGAN can converge but it trains
severely degraded generation model (~68 in FID).

StyleGAN-v2 (baseline) MaskedGAN (ours)

Figure 4: Qualitative illustration and comparison over 100-shot Obama (top) and AFHQ-Wild with
5% data (bottom): With limited training data, introducing our image masking into GAN training helps
generate more realistic and high-fidelity images, especially in terms of image shapes and structures.

Generalization across different generation tasks: We study the generalization of the proposed
MaskedGAN from the perspective of image generation tasks. Specifically, we perform extensive
evaluations over object generation tasks with CIFAR-10, CIFAR-100, and ImageNet, face generation
tasks with 100-shot AFHQ, and FFHQ, and scene generation tasks with Cityscapes. Experimental
results in Tables 1- 7 show that the proposed MaskedGAN achieves superior generation consistently
over different generation tasks.

Generalization over different numbers of training samples: We study the generalization of the
proposed MaskedGAN from the perspective of the number of training samples. Specifically, we
benchmark MaskedGAN on CIFAR-10 and CIFAR-100 with 100%, 20% and 10% data, ImageNet
with 10%, 5% and 2.5% data, AFHQ with 20%, 10% and 5% data , FFHQ and Cityscapes with 5%,
2.5% and 1.25% data and 100-shot dataset with only 100 images. Experiments in Tables 1- 7 show
that MaskedGAN achieves superior performance consistently with different amounts of training data.

Convergence comparison across different network architectures and datasets: We examine the
convergence of the proposed MaskedGAN by benchmarking it over various network architectures (e.g.,
CNNs-based including BigGAN and StyleGAN-v2 and Transformers-based including TransGAN and
GANformer) and datasets (e.g., CIFAR-10, ImageNet, 100-shot and Cityscapes). Fig. 3 provides the
line charts of FID versus training iteration. It shows clearly that most state-of-the-art GANs [33, 4]
experience generation failures (or called training collapses) with severely degraded generation
performance when only limited training data is available. In addition, prior studies on data-limited
generation (e.g., data augmentation method [58] and model regularization method [46]) could improve
the performance in some degree but still suffer from generation failures and training collapses. As
a comparison, the proposed MaskedGAN converges well consistently across different amounts of
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Figure 5: Qualitative illustration and comparison over AFHQ-Cat, AFHQ-Dog and AFHQ-Wild
with 5% training data and FFHQ with 1.25% data: With limited training data, introducing the
proposed image masking strategies into GAN training helps generate more realistic and high-fidelity
images, especially in terms of image shapes and structures.

training data, network architectures and datasets. The great convergence of MaskedGAN is largely
attributed to two factors: its image masking designs suppress trivial solutions and training failures
directly; it keeps similar learning paces for discriminator and generator which ensures that network
converge to a Local Nash Equilibrium under certain conditions [22].

We provide qualitative illustrations in Fig. 4 and 5, which show that MaskedGAN outperforms the
baseline and state-of-the-art models clearly. Specifically, with limited training data, introducing the
proposed image masking strategies into GAN training helps generate more realistic and high-fidelity
images, especially in terms of image shapes and structures. Due to the space limit, we provide
additional discussions and qualitative illustrations (including comparisons with the state-of-the-arts)
in appendix.

5 Conclusion

This paper presents MaskedGAN, a robust image generation network that can learn effectively
with limited training data. MaskedGAN introduces two image masking strategies that work along
orthogonal dimensions of training images, namely, shifted spatial masking and balanced spectral
masking. The two masking strategies complement each other which together encourage more
challenging holistic learning from limited training data, ultimately suppressing trivial solutions
and failures in GAN training. Extensive experiments show that MaskedGAN achieves superior
performance consistently across different network architectures (e.g., CNNs including BigGAN and
StyleGAN-v2 and Transformers including TransGAN and GANformer) and datasets (e.g., CIFAR-10,
CIFAR-100, ImageNet, 100-shot, AFHQ, FFHQ and Cityscapes). Moving forward, we will explore
data masking training in other generation tasks such multi-modality generation.
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