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Abstract

Monocular 3D object detection (Mono3D) in mobile settings (e.g., on a vehicle, a
drone, or a robot) is an important yet challenging task. Due to the near-far disparity
phenomenon of monocular vision and the ever-changing camera pose, it is hard to
acquire high detection accuracy, especially for far objects. Inspired by the insight
that the depth of an object can be well determined according to the depth of the
ground where it stands, in this paper, we propose a novel Mono3D framework,
called MoGDE, which constantly estimates the corresponding ground depth of an
image and then utilizes the estimated ground depth information to guide Mono3D.
To this end, we utilize a pose detection network to estimate the pose of the camera
and then construct a feature map portraying pixel-level ground depth according
to the 3D-to-2D perspective geometry. Moreover, to improve Mono3D with the
estimated ground depth, we design an RGB-D feature fusion network based on the
transformer structure, where the long-range self-attention mechanism is utilized
to effectively identify ground-contacting points and pin the corresponding ground
depth to the image feature map. We conduct extensive experiments on the real-
world KITTI dataset. The results demonstrate that MoGDE can effectively improve
the Mono3D accuracy and robustness for both near and far objects. MoGDE yields
the best performance compared with the state-of-the-art methods by a large margin
and is ranked number one on the KITTI 3D benchmark.

1 Introduction

Building on the promising progress achieved in 2D object detection in recent years [41, 40], 3D object
detection, particularly on moving agents, has received increasing attention from both industry and
academia as an important component in many applications, ranging from autonomous vehicles [17]
and drones, to robotic manipulation and augmented reality applications. Compared to LiDAR-based
[12, 36, 42, 43, 23, 63] and stereo-based [10, 11, 21, 35, 38, 54] methods, a much cheaper, more
energy-efficient, and easier-to-deploy alternative, i.e., monocular 3D object detection (Mono3D),
remains an open and challenging research field. A practical Mono3D detector for moving agents
should meet the following two requirements: 1) the 3D bounding box produced by the Mono3D
detector should be accurate enough, not only for near objects but also for very distant objects, to
secure, for instance, high-priority driving safety applications; 2) the Mono3D detector should remain
robust in mobile scenarios, where the camera pose inevitably changes along with the movement of a
mobile agent.

In the literature, recent Mono3D methods with complex network structures [62, 33, 52, 37, 48] have
achieved considerably high accuracy for near objects, but the predicted 3D bounding boxes for far
objects are often ill-posed due to the lack of depth cues. This huge disparity between near and
far objects lies in the nature of monocular vision. Specifically, as depicted in Figure 1 (a), equal
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Figure 1: (a) Equal distances of different depths from the camera (e.g., ∆z1 = ∆z2) have a distinct
number of pixels in the image (e.g., ∆u1 > ∆u2 and ∆v1 > ∆v2), which is referred to as the
near-far disparity phenomenon of monocular vision, making the detection of far object susceptible to
pixel rounding errors. (b) The camera pose variance, caused by the movement of a mobile agent, can
eventually result in a large offset both in form of 3D boxes and in the bird’s eye view. (c) Each color
block represents its attention value with the centroid of the vehicle. The attention mechanism of the
transformer network can be well leveraged for this long-range relationship modeling.

distances of different depth from the camera (e.g., ∆z1 = ∆z2) have a distinct number of pixels
in the image (e.g., ∆u1 > ∆u2 and ∆v1 > ∆v2), which makes the pixel rounding errors have
a non-negligible impact for detecting far objects. Furthermore, as illustrated in Figure 1(b), the
camera pose variance can eventually result in a large offset both in form of 3D boxes and in the
bird’s eye view [15]. To the best of our knowledge, existing Mono3D methods such as geometric
constraint based [9, 34, 6, 53], pseudo-LiDAR based [29, 30, 50, 54, 37, 16, 28], and pure image
based [41, 45, 61, 3, 25, 49, 13, 22, 4, 62, 60, 27, 59], have not taken into account the issue of
inevitable camera pose changes in mobile scenarios.

In this paper, we propose a novel Mono3D method, called MoGDE, which fixates on improving
detection accuracy and robustness in mobile settings. We have one key insight that the depth of an
object in 3D space can be well determined according to the depth of the ground where it stands.
Given the pinhole model and the pose of a camera, the depth of each pixel corresponding to the
ground can be accurately derived. Based on this insight, the core idea of MoGDE is first to constantly
estimate the ground depth while moving and then to utilize the estimated ground depth information
to guide a Mono3D detector.

There are two main challenges in designing MoGDE. First, how to detect varying camera pose (e.g.,
the pitch and roll angles) from an image, which is dynamically changing in mobile scenes, and how
to ultimately obtain accurate ground depth information are non-trivial. It is clear that different camera
poses correspond to distinct ground depth estimates. To tackle this challenge, we introduce a pose
detection network to extract the vanishing point and horizon information in an image to estimate the
instant camera pose corresponding to this image. After the view direction of the camera is decided,
we then construct a feature map portraying pixel-level depth clues. Specifically, we envision a virtual
3D scene containing only the sky and the ground and project this virtual scene to an image where each
pixel is associated with a depth uniquely derived according to the 3D-to-2D perspective geometry.
Therefore, MoGDE can obtain the dynamic ground depth information as prior knowledge for guiding
Mono3D.

Second, how to incorporate the estimated ground depth into the image features to enhance the
detection accuracy is challenging. Based on our aforementioned insight, it is essential for the
Mono3D detector to identify those ground-contacting points of an object on the image. For example
in Figure 1 (a), these blue dots denote the ground-contacting points of a vehicle. To this end, we
design an RGB-D feature fusion network based on the transformer structure to tie the ground depth
feature to the image feature. Specifically, as illustrated in Figure 1(c), the feature fusion network
captures the feature of pixels close to the centroid of an object and identifies those ground-contacting
points using the attention mechanism. It then attaches depth values with weights to compute a new
feature map containing object location information. As a result, accurate 3D detection results can be
obtained via a conventional Mono3D detector using the fused feature map.

Experiments on KITTI dataset [17] demonstrate that our method outperforms the SOTA methods
by a large margin. Such a framework can be applied to existing detectors and is practical for
industrial applications. The proposed MoGDE is ranked number one on the KITTI 3D benchmark
by submission. The whole suite of the code base will be released and the experimental results will
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be posted to the public leaderboard. We highlight the main contributions made in this paper as
follows: 1) A novel Mono3D detector in a mobile setting is introduced, leveraging the dynamically
estimated ground depth as prior knowledge to improve the detection accuracy and robustness for
both near and far objects. 2) A transformer-based feature fusion network is designed, which utilizes
the long-range attention mechanism to effectively identify ground-contacting points and pin the
corresponding ground depth to the image feature map. 3) Extensive experiments on the real-world
KITTI dataset are conducted and the results demonstrate the efficacy of MoGDE.

2 Related Work

Monocular 3D Object Detection. The monocular 3D object detection aims to predict 3D bounding
boxes from a single given image. Existing Mono3D methods can be roughly divided into the following
three categories. 1) Geometric constraint based methods: Extra information of prior 3D vehicle
shapes is widely used, such as vehicle computer aided design (CAD) models [9, 34, 6, 53, 26] or key
points [1]. By this means, extra labeling cost is inevitably required. 2) Depth assist methods: A stand-
alone depth map of the monocular image is predicted at the first stage. Such prior knowledge can be
derived in various ways, such as a depth map generated by LiDAR point cloud (or Pseudo-LiDAR)
[50, 29, 8, 39], monocular depth predictors [37, 28, 16], or disparity map generated by stereo cameras
[54]. However, such external data is not easily available in all scenarios. In addition, the inference time
increases significantly due to the prediction of these dense heatmaps. 3) Pure image-based methods:
Without requiring extra side-channel information, such methods [20, 18, 24, 44] take only a single
image as input and adopt center-based pipelines following conventional 2D detectors [41, 61, 45].
M3D-RPN [3] reformulates the monocular 3D detection problem as a standalone 3D region proposal
network. With very few handcrafted modules, SMOKE [25] and FCOS3D [49] predict a 3D bounding
box by combining a concise one-stage keypoint estimation with regressed 3D variables based on
CenterNet [61] and FCOS [45], respectively. To further strengthen monocular detectors, current SOTA
methods have introduced more effective but complicated geometric priors. MonoPair [13] improves
the modeling of occluded objects by considering the relationship of paired samples and parses their
spatial relations with uncertainty. Kinematic3D [4] proposes a novel method for monocular video-
based 3D object detection, which uses kinematic motion to improve the accuracy of 3D localization.
MonoEF [62] first proposes a novel method to capture the camera pose in order to formulate detectors
that are not subject to camera extrinsic perturbations. MonoFlex [60] conducts an uncertainty-guided
depth ensemble and categorizes different objects for distinctive processing. GUPNet [27] solves
the error amplification problem by geometry-guided depth uncertainty and collocates a hierarchical
learning strategy to reduce the training instability. MonoDETR [59] introduces a simple monocular
object detection framework that makes the vanilla transformer to be depth-aware and enforces the
whole detection process guided by depth. The above geometrically dependent designs largely promote
the overall performance of center-based methods, but the underlying problem still exists, namely, the
detection accuracy for distant objects is still not satisfactory.

Object Detection with Transformer. 2D object detectors [61, 45] have achieved excellent per-
formance in recent years but are equipped with cumbersome post-processing, e.g. non-maximum
suppression (NMS) [41]. To circumvent it, the pioneering work DETR [5] constructs a novel and
simple framework by adapting the powerful transformer [47] to the field of vision detection. DETR
detects objects on images by encoding-decoding paradigm, which improves the detection performance
by using the long-range attention mechanism. DETR is further enhanced by designing deformable
attention [64], placing anchors [51], setting conditional attention [31], embedding dense prior [57],
and so on [32]. Some recent works have tried to apply transformer to some other tasks related to
monocular scene reconstruction, depth prediction, etc. Transformerfusion [2] leverages the trans-
former architecture so that the network learns to focus on the most relevant image frames for each
3D location in the scene, supervised only by the scene reconstruction task. MT-SfMLearner [46]
first demonstrates how to adapt vision transformers for self-supervised monocular depth estimation
focusing on improving the robustness of natural corruptions. While these methods have made a
demonstration of how to apply a transformer to a monocular camera model [14, 55, 56], they all
rely on other branches (either the environment reconstruction or the depth map), which will not be
available in a typical Mono3D task based on RGB images.
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Figure 2: MoGDE consists of three main components, i.e., ground depth estimation (GDE), ground
depth fusion (GDF) and monocular 3D detection (M3D). In GDE, the pose network predicts the
ground plane as well as the vanishing point. The derived pose information is then used to construct a
virtual scene and obtain a pose-specific ground depth feature map. In GDF, a transformer network is
leveraged to fuse the image features with the ground depth feature map, resulting a ground-aware
fused feature map. M3D employs a standard Mono3D detector as the underlying detection core.

Our MoGDE inherits DETR’s superiority for non-local encoding and long-range attention. Specif-
ically, we endow the transformer to be ground-aware by pinning ground depth to image features
leveraging the encoder-decoder architecture to improve the detection accuracy for far objects.

3 Design of MoGDE

3.1 Overview

The core idea of MoGDE is to utilize dynamically estimated ground depth information to improve
Mono3D so that two goals can be achieved: 1) superior ground-aware image features are obtained to
increase Mono3D accuracy for both near and far objects; 2) the impact of camera pose variation is
diminished to enhance Mono3D robustness in mobile settings. Figure 2 depicts the architecture of
our framework. Specifically, MoGDE first adopts the DLA-34 [58] as its backbone, which takes a
monocular image of size (W ×H × 3) as input and outputs a feature map of size (Ws ×Hs × C)
after down-sampling with an s-factor. Then, the feature map is fed into three components as follows:

Ground Depth Estimation (GDE). GDF mainly integrates two functions, i.e., camera pose detection
(CPD), and virtual scene construction (VSC). Specifically, CPD estimates the camera pose (i.e., the
pitch and roll angles) based on the predicted vanishing point and ground plane extracted by a pose
detection network. VSC establishes a 2D ground depth feature map based on a pose-specific virtual
3D scene containing only the sky and the ground.

Ground Depth Fusion (GDF). GDF leverages the attention mechanism of a transformer network to
fuse the image features with the ground depth feature map, resulting a superior ground-aware fused
feature map.

Monocular 3D Detection (M3D). MoGDE employs GUPNet [27], a SOTA CenterNet [61] based
SOTA monocular 3D object detector as its underlying detection core.

3.2 Ground Depth Estimation

3.2.1 Camera Pose Detection

In order to generate a ground depth estimate, it is key to detect the camera pose given an image
feature map. We have the following proposition:

Proposition 1: Given a benchmark camera coordinate system P0, which is aligned with the ground
plane coordinate systems, and the current camera coordinate system Pi, which is not aligned with
P0 due to camera movement, there exists a transformation matrix A between Pi and P0 that can be
uniquely determined by pitch θp and roll θp angle changes of the camera.)
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Therefore, we introduce the subsequent neural network to learn the pitch θp and roll θp angle changes
of the camera when the camera coordinate system changes from P0 to Pi. Specifically, in addition to
the regular regression tasks in CenterNet [61] based network, we introduce a regression branch for
pose detection following MonoEF [62]. Since the camera pose is a feature that is implicit for images,
we chose two physical quantities with a clear meaning for detection: the ground plane (associated
with roll angle) and the vanishing point (associated with pitch angle). Following the state-of-the-art
odometer framework in DeepVP [7], we represent a regression task with L1 loss as:

[ŷgp, ŷvp] = fpose (H) ,

Lpose = ‖A− g (ŷgp, ŷvp)‖ , (1)

where H is the input image feature; fpose is the CNN architecture used for horizon and vanishing
point detection in the work [19]; ŷgp and ŷvp are the predicted ground plane and vanishing point; g
is a mapping function g :

(
R2,R2

)
7→ A3×3 which turns pitch and roll angles into a matrix A. The

regression network is supervised by Lpose and can be trained jointly with other Mono3D branches.

3.2.2 Virtual Scene Construction

We envision such a virtual scene, where there is a vast and infinite horizontal plane in the camera
coordinate system P0, and have the following proposition:

Proposistion 2: Given the camera coordinate system Pi, the virtual horizontal plane can be projected
on the image plane of the camera according to the ideal pinhole camera model and the depth
corresponding to each pixel on the image is determined by the camera intrinsic parameter K and
pose matrix A from P0 to Pi.

We first construct the ground depth feature map in the camera coordinate system P0. Specifically, as
illustrated in Figure 3, for each pixel on the depth image locating at (u0, v0) with an estimated depth
ẑ0, it can be back-projected to a point (x03d, y

0
3d, ẑ

0) in the 3D scene:

x03d =
u0 − cx
fx

ẑ0 y03d =
v0 − cy
fy

ẑ0, (2)

where fx and fy are the focal lengths represented in the units of pixels along the x- and y-axis of the
image plane and cx and cy are the possible displacement between the image center and the foot point.
These are referred to as the camera intrinsic parameters K. We omit the camera extrinsic T for the
sake of simplicity, and the depth corresponding to each pixel on the image is solely determined by
the camera intrinsic parameter K under P0.

Assume that the elevation of the camera from the ground, denoted as EL, is known (for instance, the
mean height of all vehicles in the KITTI dataset, including ego vehicles, is 1.65m [17]), the depth of
a point on the depth feature map (u0, v0) can be calculated as:

z0 =
fy · EL
v0 − cy

. (3)

Note that (3) is not continuous when the point is near the vanishing point, i.e., v0 = cy, and does
not physically hold when v0 ≤ cy. To address this problem, similar to the KITTI stereo setup, we
encode the depth gradient value as an associated feature map using a virtual stereo setup with baseline
B = 0.54m. We represent the ground depth d in the following form:

d = ReLU(fy ·B
v0 − cy

fy · EL+ b
) (4)

where b is a constant to prevent the value of d from being too large. The ReLU activation is applied
to suppress ground depth values smaller than zero, which is not physically feasible for monocular
cameras. As a result, the ground depth feature map becomes spatially continuous and consistent.

Finally, to obtain the ground depth feature map in Pi, the model needs to convert the 3D coordinate
system first, and then just apply (4). We omit the formula derivation due to page limitation.
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Figure 4: The architecture of ground-aware trans-
former. The encoder uses self-attention to encode
the non-local mutual correlation of image pixels (i.e.,
object centers and ground points). The ground depth
estimate is used to generate location queries which
are thereby fed to the decoder along with the location
encoding. The cross-attention in the decoder prompts
each query to consider the image and depth features
of its associated points.

3.3 Ground Depth Fusion

In real-world scenarios, as depicted in Figure 3, objects have height. To fuse the image feature and
the ground depth feature, it is key to locate ground-contacting points of an object (e.g., the dark point)
to get an accurate depth (e.g., z0r ). On the contrary, misuse of the depth in the ground depth feature
corresponding to other points on the object (e.g., the bright point) leads to obvious depth estimation
error (e.g., z0). Specifically, the relation between the estimated depth of an object ẑ0 and the pixel
displacement in locating ground-contacting points, denoted as Ty , can be calculated as,

ẑ0 =
EL · fy · z0r

EL · fy − z0r · Ty
. (5)

It can be seen from (5) that Ty can cause inaccurate ẑ0. However, how to acquire Ty is non-trivial.
Inspired by the great success of transformer [5, 64, 51, 31, 57, 32] in adaptive long-range relational
modeling, we propose a ground-aware feature fusion method based on a transformer structure as
depicted in Figure 4, leveraging its attention mechanism to automatically locate ground-contacting
points of an object and fuse the corresponding depth feature with the image feature of that object.

Encoder. Our transformer encoder aims to encode the correlation between image features using
a self-attention mechanism. The input of the transformer encoder is the flattened image features
Himg ∈ RN×C with position encoding and the output is the embedding vectors He ∈ RN×C to be
sent to the decoder. Following the self-attention pipeline, given the input matrix calculated from the
image features: query Q ∈ RN×C , key K ∈ RN×C , and value V ∈ RN×C with sequence length
N = W ×H , the output of l + 1-th layer of self-attention can be briefly formulated as:

Ql,Kl,Vl = Embedding(Hl
img,W

l
q,W

l
k,W

l
v),

Hl+1
img = Attention(Ql,Kl,Vl) = softmax

(
QlKl>/

√
C
)
MlVl.

(6)

Here, Ml is the mask used to constrain the visible range of attention. The introduction of Ml is to
take advantage of the ground-aware property (i.e., the depth of each object should be related to the
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depth of the object’s location) so that each pixel will only consider information within a window
around that location. The encoded feature obtained through multi-head self-attention operation is
then re-transformed into a 2D feature map format and fed into a convolution-based feed-forward
network (FFN). The 2D reshape as well as convolution-based FFN are necessary because image data
is two-dimensional, unlike one-dimensional serialized data.

Decoder. The proposed transformer decoder aims to determine for each location its depth information,
using the cross-correlation between the ground depth and the image features. We propose utilizing
the ground depth as the location query of the decoder instead of learnable embedding (object query),
which is different from the common usage in previous encoder-decoder vision transformer works
[5, 64]. The main reason is that the simple learnable embedding is hard to fully represent the object’s
property and handle complex depth variant situations in the Mono3D task. In contrast, plentiful
distance-aware cues are hidden in the ground depth features, which will give the transformer a
baseline estimate of the expected depth at each location. To this end, the decoder can leverage the
power of cross-attention in the transformer to efficiently model the correlation between the target
pixel point and the point of interest (i.e., the grounded point), thus achieving the ground-awareness
for higher performance.

Specifically, the input of the decoder is the flattened ground depth Hdep ∈ RN×1 with position
encoding and embedding vectors He ∈ RN×C obtained from the encoder. In addition, the output
is the aggregated feature map Hd ∈ RN×C . The ground depth is first embedded upon the standard
self-attention architecture following (6). For the cross-attention module, its input Q is derived from
the self-attention part upstream in the decoder, and its K is derived from the encoder. The input V is
a concatenation of two sources from both the encoder and decoder. The purpose of this concatenation
is to make the decoder take into account both the information from the image and the depth during
decoding.

4 Performance Evaluation

We conduct experiments on the widely-adopted KITTI3D dataset and KITTI Odometry dataset [17].
We report the detection results with three-level difficulties, i.e. easy, moderate, and hard, in which the
moderate scores are normally for ranking and the hard category is generally distant objects that is
difficult to distinguish.

4.1 Quantitative and Qualitative Results
We first show the performance of our proposed MoGDE on KITTI 3D object detection benchmark 2

for car. Comparison results with other state-of-the-art (SOTA) monocular 3D detectors are shown in
Table 1. For the official test set, we achieve the highest score for all kinds of samples and are ranked

Method Extra data Test, AP3D Test, APBEV

Easy Mod. Hard Easy Mod. Hard

PatchNet [28] Depth 15.68 11.12 10.17 22.97 16.86 14.97
D4LCN [16] 16.65 11.72 9.51 22.51 16.02 12.55

Kinematic3D [4] Multi-frames 19.07 12.72 9.17 26.69 17.52 13.10

MonoRUn [8] Lidar 19.65 12.30 10.58 27.94 17.34 15.24
CaDDN [39] 19.17 13.41 11.46 27.94 18.91 17.19

AutoShape [26] CAD 22.47 14.17 11.36 30.66 20.08 15.59

SMOKE [25]

None

14.03 9.76 7.84 20.83 14.49 12.75
MonoFlex [60] 19.94 13.89 12.07 28.23 19.75 16.89
GUPNet [27] 20.11 14.20 11.77 - - -
MonoDETR [59] 23.65 15.92 12.99 32.08 21.44 17.85

MoGDE (Ours) 27.07 17.88 15.66 38.38 25.60 22.91
Improvement v.s. second-best +3.42 +1.96 +2.67 +6.30 +4.16 +5.06

Table 1: AP40 scores(%) of the car category on KITTI test set at 0.7 IoU threshold referred from the
KITTI benchmark website. We utilize bold to highlight the best results, and color the second-best
ones and our performance gain over them in blue. Our model is ranked NO. 1 on the benchmark.

2http://www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d
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Figure 5: Qualitative results on KITTI Odometry dataset. The predicted 3D bounding boxes of our
proposed MoGDE are shown in the first row. The second row shows the detection results in the bird’s
eye view (z-direction from right to left). The green dashed boxes are the ground truth, and the blue
and red solid boxes are the prediction results of our MoGDE and the comparison baseline (GUPNet
[27]), respectively. The third row visualizes the results of the attention map in the transformer’s
encoder, where the purple point is the location of the query point; the yellow dashed box is the range
of the encoder’s mask; the brightness of the image represents the attention value between the query
point and that pixel.

No.1 among all existing methods with different additional data inputs on all metrics. Compared to
the second-best models, MoGDE surpasses them under easy, moderate, and hard levels respectively
by +3.42, +1.96, and +2.67 in AP3D, especially achieving a significant increase (17%) in the hard
level. The comparison fully proves the effectiveness of the proposed oracle fusion for images with
prior depth knowledge.

Figure 5 shows the qualitative results on the KITTI Odometry dataset. Compared with the baseline
model without the aid of ground depth, the predictions from MoGDE are much closer to the ground
truth, especially for distinct objects. It shows that the consideration of sight-based supporting depth
clues can help to locate the object precisely.

4.2 Ablation Study

Effectiveness of each proposed component. In
Table 2, we conduct an ablation study to analyze
the effectiveness of the proposed components: (a)
Baseline: only using image features for 3D object
detection, i.e., without concerning posed variance
and proposed ground-aware modules. (b) Consid-
ering the camera pose variations implied in the
images, we use the method described in [62] to
apply a "projection transform" to the input image
to remove the perturbations. (c) Considering the
use of ground plane clues, we generate a depth
oracle about the scene (assuming constant pose)
using a convolutional neural network. (d) With

Pose
-guided

Conv.
Fusion

Tran.
Fusion Easy Mod. Hard

(a) - - - 22.76 16.46 13.72
(b) X - - 22.78 16.93 14.04
(c) - X - 22.82 17.22 14.51
(d) - - X 22.93 18.42 15.46
(e) X X - 23.07 18.66 15.73
(f) X - X 23.35 20.35 17.71

Table 2: Effectiveness of different components
of our approach on the KITTI val set for car
category. The first column is whether the model
takes into account the pose variance. The second
and third columns show which way the model
chooses to fuse the ground depth information.

the proposed ground-aware transformer, this model has the ability to model long-range relationships
of pixels. (e) Full model except that we use a convolutional neural network for oracle fusion. (f) Full
model (MoGDE).

First, we can observe from (a→ b, c→ e, and d→ f) that there is an implicit uncalibrated pose
variation in the KITTI dataset, and considering it is necessary to improve the detection accuracy.
Besides, by observing (b→ e), we illustrate that leveraging ground depth brings an improvement in
accuracy in hard level, but the improvement is limited because fusion by convolution is clumsy.
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Pose Var. Method Val, AP3D Val, APBEV

Easy Mod. Hard Easy Mod. Hard

Tiny
w/o 20.64 14.87 12.47 27.97 20.78 17.79
w/ 22.30 19.42 16.84 29.86 24.28 23.15

Imp. +1.66 +4.55 +4.37 +1.89 +3.50 +5.35

Medium
w/o 17.76 12.98 10.78 24.43 18.06 15.46
w/ 21.86 19.08 16.61 29.23 23.70 22.84

Imp. +4.10 +6.10 +5.83 +4.81 +5.64 +7.38

Large
w/o 13.29 9.60 8.05 18.05 13.34 11.57
w/ 21.10 18.35 16.10 28.33 22.98 22.06

Imp. +7.81 +8.75 +8.05 +10.28 +9.64 +10.48

Table 3: Robustness test of our approach on the
KITTI val set for car category. Tiny, medium, and
large correspond to three different degrees of pos-
ture change, i.e., the camera pitch and roll angles
vary with a Gaussian distribution with mean 0 and
standard deviation 1, 2, and 3, respectively.

Method Val, AP3D Val, APBEV

Easy Mod. Hard Easy Mod. Hard

M3D-RPN [3] 14.53 11.07 8.65 20.85 15.62 11.88
M3D-RPN + Ours 19.85 16.84 14.62 25.16 20.65 17.39
Imp. +5.32 +5.77 +5.97 +4.31 +5.03 +5.51

MonoPair [13] 16.28 12.30 10.42 24.12 18.17 15.76
MonoPair + Ours 19.20 15.42 13.16 27.33 21.71 18.68
Imp. +2.92 +3.12 +2.74 +3.21 +3.54 +2.92

Kinematic3D [4] 19.76 14.10 10.47 27.83 19.72 15.10
Kinematic3D + Ours 21.59 16.54 12.77 29.80 22.80 17.96
Imp. +1.83 +2.44 +2.30 +1.97 +3.08 +2.86

Table 4: Extension of MoGDE to existing image-
only monocular 3D object detectors. We show
the AP40 scores(%) evaluated on KITTI3D val
set. +Ours indicates that we apply the GDE and
GDF modules to the original methods. All models
benefit from the MoGDE design.

In contrast, (e→ f) indicates the effectiveness of the transformer, which helps the model to understand
the long-range attention relationship between pixel points and the ground plane.

Visualization of attention. To facilitate the understanding of our ground-aware transformer, we
visualize the depth self-attention map in the encoder and paint the query points red and mask region
yellow in the third row of Figure 5. As shown in the figure, it can be seen that, within the relevant
region of each query, areas that are interfacing the object and the ground have the highest attention
scores. In contrast, for non-ground pixels of the object, the lower attention values indicate that the
query is not relevant to them, even if they have similar image features and are geographically adjacent.
This implies that under the transformer’s attention mechanism guidance, the query is able to borrow
depth information from regions of interest (i.e., the ground plane), which helps the fused feature map
produce more accurate prediction results.

Simulation experiments on robustness. In order to verify the robustness of our proposed MoGDE
against camera pose variance, we set three cases of variances (tiny, medium, and large) to compare
the accuracy degradation of MoGDE with that of the baseline. In Table 3, it can be noticed that the
baseline is quite sensitive to pose variance, with very severe performance degradation, while our
model only has a slight performance drop. Moreover, our model performs more robustly especially
in the hard case, gaining higher performance improvement. This demonstrates the effectiveness of
our proposed pose-specific ground depth in handling camera pose variance for mobile scenes.

Plugging into existing methods. Our proposed approach is flexible to extend to existing image-only
Mono3D detectors. We respectively plug the Ground Depth Estimation and the Ground Depth Fusion
components to three popular Mono3D detectors, which is shown in Table 4. It can be seen that,
with the aid of our proposed ground depth fusion, these detectors can achieve further improvements
on KITTI3D val set, demonstrating the effectiveness and flexibility of our approach. Particularly,
MoGDE-enabled models tend to achieve more performance gains on the hard category. For example,
for Kinematic3D, the AP3D/APBEV gain is +1.83/+1.97 on the easy category and +2.30/+2.86 on
the hard category.

5 Conclusion

In this paper, we have proposed a Mono3D framework, called MoGDE, which can effectively
utilize the estimated ground depth as prior knowledge to improve Mono3D in mobile settings. The
advantages of MoGDE are two-fold: 1) it can significantly improve the Mono3D accuracy, especially
for far objects, which is an open issue for Mono3D; 2) it can improve the robustness of Mono3D
detectors when applied in more appealing mobile applications. Nevertheless, MoGDE still has two
main limitations as follows: 1) it heavily relies on pose detection, which directly affects the accuracy
of the ground depth estimation; 2) it also counts on the detection of ground-contacting points. In
cases when such points are uncertain or ambiguous due to occlusion and truncation, it is hard for
the proposed ground-aware feature fusion method to obtain accurate results. These limitations also
direct our future work. We have implemented Mono3D and conducted extensive experiments on the
real-world KITTI dataset. MoGDE yields the best performance compared with the state-of-the-art
methods by a large margin and is ranked number one on the KITTI 3D benchmark.
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