
A Implementation Details

We will release the source code of this work in form of a library building on top of PyTorch [56]
and include the presented experiments for reproducibility. For training, we use Python / PyTorch /
CUDA, while for inference (apart from PyTorch) we use C for CPU and CUDA for GPU. The library
supports both a pure PyTorch implementation as well as a native CUDA implementation (which is up
to 50×) faster than the pure PyTorch implementation. Both implementations are usable in PyTorch:
pure PyTorch / native CUDA just refers to the backend. For inference, our library automatically
converts trained logic gate network into optimized C / CUDA binaries, allowing for easy and fast
deployment, callable directly from Python (but also from any other language that can handle shared
object binaries.)

A.1 Model Architectures and Hyperparameters

For all experiments, we used ªstraightº architectures, i.e., architectures with the same number of
neurons per layer. In Tables 6 and 7, we display the numbers of layers numbers of neurons per layer
for each network architecture used in this work. In general, the architecture search for all models
was performed via grid search with the number of layers in {2, 3, 4, 5, 6, 7, 8, 9, 10} and number of
neurons per layer with a resolution of factor 2.

For all models, we use the Adam optimizer [33]. For all neural networks, we use a learning rate
of 0.001 and for all logic gate networks, we use a learning rate of 0.01. We train all models
up to 200 epochs at a batch size of 100. The softmax temperature τ was searched over a grid
of {1, 1/0.3, 1/0.1, 1/0.03, 1/0.01} (except for Adult). As the experiments for were originally
parameterized via an inverse temperature 1/τ , we provide the exact fractions to prevent rounding
errors. The optimal temperature primarily depends on the number of outputs per class. If there are
more outputs per class, the range of predictions is larger, and thus, we use a larger temperature to
counter this effect.

Table 6: Logic gate network architectures.

Dataset Model Layers Neurons / layer Total num. of p. τ

MONK-1 Ð 6 24 144 1

MONK-2 Ð 6 12 72 1

MONK-3 Ð 6 12 72 1

Adult Ð 5 256 1 280 1/0.075
Breast Cancer Ð 5 128 640 1/0.1

MNIST small 6 8 000 48 000 1/0.1
normal 6 64 000 384 000 1/0.03

CIFAR-10 small 4 12 000 48 000 1/0.03
medium 4 128 000 512 000 1/0.01

large 5 256 000 1 280 000 1/0.01
large×2 5 512 000 2 560 000 1/0.01
large×4 5 1 024 000 5 120 000 1/0.01

Table 7: Multi-layer perceptron / neural network baseline architectures. All architectures are ReLU activated.

Dataset Model Layers Neurons / layer Total num. of parameters

MONK-1 Ð 2 8 162

MONK-2 Ð 2 8 162

MONK-3 Ð 2 8 162

Adult Ð 2 32 3 810

Breast Cancer Ð 2 8 434

MNIST small 3 128 118 282

normal 7 2 048 22 609 930

CIFAR-10 Ð 5 1 024 12 597 258

14

A.2 Aggregating Predictions via Logic Gate Network Adders

Optionally, we aggregate the output bits for each class into a binary number to reduce the required
memory bandwidth for returning the predictions. This is done after learning and can be expressed
via a fixed logic gate network. Specifically, we implement adders, which can add one bit to a binary
number with logic gates. This way, the aggregation is extremely efficient, specifically, the aggregation
is faster than storing the un-aggregated results in the VRAM.

A.3 Training Times & Standard Deviations

Here, we provide training times for the MNIST and CIFAR-10 models. The training times are for
the version of the code used for the original experiments. We will also make a substantially faster
implementation publicly available. In addition, we provide the standard deviations for the accuracy.

Table 8: Training times and standard deviations for the experiments on MNIST.

Model Training Time Accuracy

Neural Net Baseline (small) 0.3 h 97.92%± 0.08%
Neural Net Baseline 0.4 h 98.40%± 0.06%

Diff Logic Net (small) 1.8 h 97.69%± 0.11%
Diff Logic Net 5.3 h 98.47%± 0.05%

Table 9: Training times and standard deviations for the experiments on CIFAR-10.

Model Training Time Accuracy

Neural Net Baseline 0.8 h 50.79± 0.35

Diff Logic Net (small) 1.3 h 51.27± 0.26
Diff Logic Net (medium) 7.4 h 57.39± 0.13
Diff Logic Net (large) 24.2 h 60.78± 0.12
Diff Logic Net (large×2) 45.6 h 61.41± 0.02
Diff Logic Net (large×4) 90.3 h 62.14± 0.02

B Additional Discussion of Baselines

In this section, we provide an additional discussion of fast network architectures as baselines for
differentiable logic gate nets.

B.1 Binary Neural Networks

Qin et al. [3] give a current overview of binary neural networks in their survey. They discuss
the challenges of training binary neural networks or translating existing neural networks into their
binarized counterparts. They identify FINN by Umuroglu et al. [44] as the fastest method for
classifying MNIST at an accuracy of 98.4% at a frame rate of 1 561 000 images per second on
specialized FPGA hardware.

FPGAs (field-programmable gate arrays) are configurable hardware accelerated processors that can
achieve extreme speeds for fixed, predefined tasks that are expressed via logic gates. As FPGAs
operate at extreme speeds, they were also used for applications such as mining cryptocurrencies [57],
[58] or even implementing an oscilloscope [59] since, here, the required complexity is rather limited,
while high speeds are necessary.

The binary FINN MNIST model by Umuroglu et al. [44] requires 5.82 MOPs (Mega binary OPera-
tions) per frame, which means that their FPGA achieves around 5.82 · 106 · 1.561 · 106 = 9.09 · 1012

binary operations per second, i.e., 9.09 TOPS (Tera binary OPerations per Second). Conventional
CPUs, are 10− 100 times slower than their FPGA. On different FPGAs, Ghasemzadeh et al. [46]
achieve 330 000 images per second on MNIST at an accuracy of 98.29%, and Jokic et al. [45] propose
an FPGA based embedded camera system achieving 20 000 images per second at 98.4% accuracy.

15

Zhan et al. [47] concentrate on deploying Low-Bit Neural Networks (LBNNs) on FPGAs and achieve
an accuracy of 99.2% on MNIST at 6 580 images per second. Shani et al. [60] explore analog logic
gate nets (a physical approximation to Boolean nets) and achieve accuracies up to 89% on MNIST.

B.2 Sparse Neural Networks

Sparse neural networks are neural networks where only a selected subset of connections is present, i.e.,
instead of fully-connected layers, the layers are sparse. Hoefler et al. [4] give an overview of sparsity
on deep learning in their recent literature review. They identify Molchanov et al. [48] to achieve the
sparsest (originally fully-connected) model on MNIST with a sparsity of 98.5% achieving an accuracy
of 98.08%. For this, Molchanov et al. [48] propose variational dropout with unbounded dropout
rates to sparsify neural networks. Louizos et al. [49] propose sparsification via L0 regularization
and report an MNIST accuracy of 98.6% for a model with around 2 · 105 FLOPs (FLoating point
OPerations), which corresponds to a sparsity of around 2/3.

Zhou et al. [53] propose ProbMask and give an overview over the sparsest CIFAR-10 models. They
report up to a sparsity of 99.9%, which corresponds to around 140 kFLOPs for their smallest network
architecture (ResNet32, which has a base cost of 140 MFLOPs [61].) This is the only work where
architectures this sparse are reported in the literature. While these models have the advantage of being
based on the VGG and ResNet CNN architectures, our models are still very competitive, especially
considering that our models are much smaller than their smallest reported results.

Blalock et al. [62] report in their survey that for CIFAR-10 with a VGG, to achieve a theoretical
speedup of 32×, all evaluated methods drop significantly below 70% test accuracy. Note that this
speedup corresponds to a sparsity of around 97%, which makes up a much larger model than the
models considered in this work.

Mocanu et al. [28] propose training neural networks with sparse evolutionary training inspired by
network science. Their method evolves an initial sparse topology of two consecutive layers of
neurons into a scale-free topology. They achieve an accuracy of 74.84% on CIFAR-10 with 278 630
floating-point parameters. We estimate this to correspond to a theoretical cost of around 550 kFLOPs
(multiplication + addition), corresponding to 550 MOPs as per our conservative estimate. On MNIST,
they achieve (with 89 797 parameters) an accuracy of 98.74%. Thus, the model is by orders of
magnitude more expensive to evaluate than the logic gate networks considered in this work.

A FLOP generally corresponds to many binary OPs. Specifically, a float32 adders / multiplier requires
usually at least 1 000 logical gates or look up tables and usually has a delay of tens of logical levels.
Practically, float32 adders / multipliers are implemented directly in hardware in CPUs and GPUs,
as it is an essential operation on such platforms. Nevertheless, also in practice, a float32 adder /
multiplier is much more expensive than performing a bitwise logical operation on int64 data types
(even on float32 and int32 focussed GPUs). On CPUs, around 3− 10 int64 bit-wise operations can
be performed per cycle, while floating-point operations usually require a full clock cycle. To convert
a non-sparse model we assume a very conservative 100 OPs per 1 FLOP. Note that speeds for sparse
neural networks are also only theoretical because sparse execution usually brings an overhead of
factor 10− 100×. So overall, in practice, 1 000 (binary) OPs per 1 sparse (float32) FLOP is a very
conservative estimate in favor of sparse float32 models. Further, in theory, 1 000 OPs per 1 FLOP is
an accurate estimate (assuming sparsity to come without cost and assuming floating-point operations
to not be hardware accelerated).

C Additional Discussions

C.1 Depth vs. Accuracy Trade-off

We observed a trade-off between depth and accuracy that is similar to the trade-off for regular neural
networks. In our experiments, we found that logic gate networks can generally be trained efficiently
up to around 8-10 layers, when training starts to suffer from vanishing gradients. This is similar to
where vanishing gradients start to be a problem in regular neural networks, at least without applying
tricks like residual connections or batch norm.

16

C.2 On the Effectiveness of Randomized Sparse Connections

We rely on fixed connections because learning the connectivity would require a relaxed connectivity,
which would add additional complexity to the relaxation, which would degrade performance. How-
ever, we note that updating the connectivity based on some heuristic after a certain amount of training
could, in principle, improve performance. This could be a subject of future work.

Sparsity can actually be viewed from two related angles: first, sparsity arises from the definition of
binary logic gate operators leading to each neuron having only two inputs, which contrasts regular
fully connected networks, where each neurons is a weighted sum of all inputs; second, sparsity can
be seen from the perspective of the number of pairs of neurons covered: here, for n inputs to a layer,
we have n · (n+ 1)/2 possible pairs of inputs, but typically only choose to consider n pairs to avoid
an exploding number of neurons in the downstream layers. Here, we use a random selection of
connections as it is the canonical choice. We found that, as long as not only neighboring pairs of
neurons are selected, the method of selection does not substantially affect performance, which is
why we stuck with random connections to simplify the method. In future work, speed improvements
(training and inference) could be possible by designing sparsity patterns that lead to faster memory
access on respective hardware, while keeping the selection sufficiently ªrandomº or ªshuffledº such
that accuracy is not impacted. As to why sparse and random connections work well in the first place,
Liu et al. [32] discuss and investigate randomly selected sparse connections in regular neural network
in great detail and demonstrate their effectiveness.

C.3 Ternary and Other Additional Operators

In this work, we focus on binary logic gates. However, one may also consider ternary logic gates,
i.e., logic gates with three inputs, e.g., a ∧ b ∧ c, or the more general form of k-ary logic gates. For

k binary inputs there are exactly 2(2
k) possible binary operators. Thus, e.g., for 3 inputs, there are

256 possible binary operators. An important reason to limit the number of possible operators is
that too many operators would lead to vanishing probabilities, thereby inhibiting training. Further,
additional operators would lead to computationally more expensive training because more relaxed
logic operators would need to be computed, more outputs would need to be aggregated, and more
derivatives would need to be computed.

D Differentiable Logics: T-Norms and T-Conorms

Here, we cover various T-norms and T-conorms, which are the build blocks of real-valued logics, and
could be considered as alternatives to the probabilistic T-norm and T-conorm used in the main paper.

The axiomatic approach to multi-valued logics (which we need to combine the occlusions by different
faces in a ªsoftº manner) is based on defining reasonable properties for truth functions. We state
the axioms for multi-valued generalizations of the conjunction (logical ªandº), called T-norms, in
Definition 1 and generalizations of the disjunction (logical ªorº), called T-conorms, in Definition 2.

Definition 1 (T-norm). A T-norm (triangular norm) is a binary operation ⊤ : [0, 1]× [0, 1] → [0, 1],
which satisfies

• associativity: ⊤(a,⊤(b, c)) = ⊤(⊤(a, b), c),

• commutativity: ⊤(a, b) = ⊤(b, a),

• monotonicity: (a ≤ c) ∧ (b ≤ d) ⇒ ⊤(a, b) ≤ ⊤(c, d),

• 1 is a neutral element: ⊤(a, 1) = a.

Definition 2 (T-conorm). A T-conorm is a binary operation ⊥ : [0, 1]× [0, 1] → [0, 1], which satisfies

• associativity: ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c),

• commutativity: ⊥(a, b) = ⊥(b, a),

• monotonicity: (a ≤ c) ∧ (b ≤ d) ⇒ ⊥(a, b) ≤ ⊥(c, d),

• 0 is a neutral element ⊥(a, 0) = a.

Remark 3 (T-conorms and T-norms). While T-conorms ⊥ are the real-valued equivalents of the
logical ‘or’, so-called T-norms ⊤ are the real-valued equivalents of the logical ‘and’. Certain T-
conorms and T-norms are dual in the sense that one can derive one from the other using a complement
(typically 1− x) and De Morgan’s laws (⊤(a, b) = 1−⊥(1− a, 1− b)).

17

Clearly, these axioms ensure that the corners of the unit square, that is, the value pairs considered
in classical logic, are processed as with a standard conjunction: neutral element and commutativity
imply that (1, 1) 7→ 1, (0, 1) 7→ 0, (1, 0) 7→ 0. From one of the latter two and monotonicity it follows
(0, 0) 7→ 0. Analogously, the axioms of T-conorms ensure that the corners of the unit square are
processed as with a standard disjunction. Actually, the axioms already fix the values not only at the
corners, but on the boundaries of the unit square. Only inside the unit square (that is, for (0, 1)2)
T-norms (as well as T-conorms) can differ.

In the theory of multi-valued logics, and especially in fuzzy logic [10], it was established that the
largest possible T-norm is the minimum and the smallest possible T-conorm is the maximum: for
any T-norm ⊤ it is ⊤(a, b) ≤ min(a, b) and for any T-conorm ⊥ it is ⊥(a, b) ≥ max(a, b). The
other extremes, that is, the smallest possible T-norm and the largest possible T-conorm are the
so-called drastic T-norm, defined as ⊤◦(a, b) = 0 for (a, b) ∈ (0, 1)2, and the drastic T-conorm,
defined as ⊥◦(a, b) = 1 for (a, b) ∈ (0, 1)2. Hence, it is ⊤(a, b) ≥ ⊤◦(a, b) for any T-norm ⊤ and
⊥(a, b) ≤ ⊥◦(a, b) for any T-conorm ⊥. We do not consider the drastic T-conorm for an occlusion
test because it clearly does not yield useful gradients.

As mentioned, it is common to combine a T-norm ⊤, a T-conorm ⊥ and a negation N (or complement,
most commonly N(a) = 1− a) so that DeMorgan’s laws hold. Such a triplet is often called a dual
triplet. In Tables 10 and 11 we show the formulas for the families of T-norms and T-conorms,
respectively, which, together with the standard negation N(a) = 1− a, form dual triplets.

Finally, we would like to recapitulate that, in this work, we used the probabilistic T-norm / T-conorm.

Table 10: (Families of) T-norms.

Minimum ⊤M (a, b) = min(a, b)

Probabilistic ⊤P (a, b) = ab

Einstein ⊤E(a, b) = ab
2−a−b+ab

Hamacher ⊤H
p (a, b) = ab

p+(1−p)(a+b−ab)

Frank ⊤F
p (a, b) = logp

(

1 + (pa
−1)(pb

−1)
p−1

)

Yager ⊤Y
p (a, b) = max

(

0, 1− ((1− a)
p
+ (1− b)

p
)

1

p

)

AczÂel-Alsina ⊤A
p (a, b) = exp

(

− (| log(a)|p + | log(b)|p)
1

p
)

Dombi ⊤D
p (a, b) =

(

1 +
(

(

1−a
a

)p
+

(

1−b
b

)p
)

1

p
)

−1

Schweizer-Sklar ⊤S
p (a, b) = (ap + bp − 1)

1

p

Table 11: (Families of) T-conorms.

Maximum ⊥M (a, b) = max(a, b)

Probabilistic ⊥P (a, b) = a+ b− ab

Einstein ⊥E(a, b) = ⊥H
2 (a, b) = a+b

1+ab

Hamacher ⊥H
p (a, b) = a+b+(p−2)ab

1+(p−1)ab

Frank ⊥F
p (a, b) = 1− logp

(

1 + (p1−a
−1)(p1−b

−1)
p−1

)

Yager ⊥Y
p (a, b) = min

(

1, (ap + bp)
1

p

)

AczÂel-Alsina ⊥A
p (a, b) = 1− exp

(

− (| log(1− a)|p + | log(1− b)|p)
1

p
)

Dombi ⊥D
p (a, b) =

(

1 +
(

(

1−a
a

)p
+
(

1−b
b

)p
)

−
1

p
)

−1

Schweizer-Sklar ⊥S
p (a, b) = 1− ((1− a)p + (1− b)p − 1)

1

p

18

	Implementation Details
	Model Architectures and Hyperparameters
	Aggregating Predictions via Logic Gate Network Adders
	Training Times & Standard Deviations

	Additional Discussion of Baselines
	Binary Neural Networks
	Sparse Neural Networks

	Additional Discussions
	Depth vs. Accuracy Trade-off
	On the Effectiveness of Randomized Sparse Connections
	Ternary and Other Additional Operators

	Differentiable Logics: T-Norms and T-Conorms

