
Contents

1 Introduction 1

2 Problem Setting and Assumptions 3

2.1 Model selection and best-of-both-worlds regret 5

3 Summary of Our Contributions and Discussion 5

4 Adversarial Model Selection Using Regret Balancing 6

5 Adversarial Model Selection with Best of Both Worlds Guarantees 8

5.1 First Phase: Candidate Policy Identification and Gap Estimation 8

5.2 Second Phase: Exploitation . 10

6 Conclusions 10

A Lower Bound on Model Selection for Stochastic Environments 15

B Examples of h-Stability and Extendability 16

B.1 Geometric Hedge for Adversarial Linear Bandits 16

B.1.1 h-Stability . 17

B.1.2 Extendability . 18

B.1.3 Removing an Individual Policy For Best of Both Worlds Regret 18

B.1.4 Proofs . 18

B.2 Exp4 algorithm for finite policy classes . 27

C Adversarial Regret Balancing and Elimination 28

C.1 Proof of Lemma 21 . 28

C.2 Concentration Bounds on Reward Sequences . 30

D Adversarial Regret Balancing and Elimination with Best of Both Worlds Regret 31

D.1 Description of the Second Phase: Gap Exploitation 35

D.2 Analysis of the First Phase . 38

D.2.1 Adversarial Guarantees . 38

D.2.2 Stochastic Guarantees . 41

D.3 Analysis of Arbe-GapExploit . 46

D.3.1 Guarantees for stochastic environments 46

D.3.2 Exploitation Subroutine Guarantees for Adversarial Environments 49

D.4 Concentration Bounds in Stochastic Environments 53

E Additional Technical Lemmas 55

14

A Lower Bound on Model Selection for Stochastic Environments

Considering a simple multi-armed bandit problem suffices to prove that in stochastic environments
with gap ∆ it is generally impossible to obtain model selection guarantees of the form

R2(Πi?) log T

∆
.

Theorem 6. Let K1,K2 ∈ N with K1 < K2 and let ∆ ∈ R+ be fixed. Further, let c : N→ R be an
arbitrary function over the real numbers. If c(K1) < K2 −K1, there is a class of K2 multi-armed
bandit problems with one optimal arm and gaps in [∆, 2∆] and a T0 ∈ N such that the following
holds. For any algorithm A and for all T ≥ T0, there is a problem instance such that

E[RegA(T)] >

{
c(K1)

∆ lnT if the optimal arm a? ∈ [K1]
c(K2)

∆ lnT otherwise .

Remark 7. The proof below actually shows the following stronger version

E[RegA(T)] >

{
c(K1)

∆ lnT if the optimal arm a? ∈ [K1]

∆
16T

1− c(K1)
K2−K1 otherwise .

This shows that if we aim to obtain an instance-dependent logarithmic regret bound that only scales
with K1 when a? ∈ [K1], then we cannot recover sublinear regret for K2 � K1 when a? /∈ [K1].

Proof. We will show the statement for K1 = 1 but it can be trivially generalized to K1 > 1. The
rewards of all arms and in all instances are drawn from a Gaussian distribution with variance 1 but
different means. We denote by µji the mean reward of arm j in instance i. We identify each bandit
instance in the family by its mean rewards µi. They are given by

µi = [∆, 0, . . . , 0] for i = 1 (6)
µi = [∆, 0, . . . , 2∆︸︷︷︸

i’th pos

, 0, . . . , 0] for i > 1 (7)

Thus, arm i is optimal in instance i. Consider any algorithm A and assume it violates the lower bound
for the case where a? ∈ [K1], i.e., in the first problem instance,

E [RegA(T, µ1)] ≤ c(K1) log(T)

∆

holds for some T ≥ T0 (we will specify T0 later). Otherwise, the statement is already true. We
will now show that this algorithm has to satisfy the regret lower bound in one of the other problem
instances for T . By definition of µ1, we can write the expected regret as

ERegA(T, µ1) ≥ 2∆

K2∑
i=K1+1

E1 [Ti(T)] ,

where Ti(T) is the (random) number of times A has pulled arm i up to time T . Ej and Pj denote
the expectation and the probability distribution induced by algorithm A in instance j, respectively.
Consider now a problem instance î ∈ argminK1+1≤i≤K2

E1 [Ti(T)]. As a consequence of the
previous two observations,

2∆(K2 −K1)E1

[
Tî(T)

]
≤ c(K1) log(T)

∆
,

hence

E1

[
Tî(T)

]
≤ c(K1) log(T)

2(K2 −K1)∆2
.

By the divergence decomposition [20, Lemma 15.1],

KL
(
P1,Pî

)
= E1

[
Tî(T)

] (2∆)2

2
≤ c(K1) log(T)

K2 −K1
.

15

Define the event E = {T1(T) ≤ T
2 }. Notice that,

T

2
∆P1 (E) ≤ E1 RegA(T, µ1) ≤ c(K1) log(T)

∆

which implies,

P1(E) ≤ 2c(K1) log(T)

∆2T
. (8)

By the Bretagnolle-Huber inequality,

P1 (E) + Pî (Ec) ≥ 1

2
exp

(
−c(K1) log(T)

K2 −K1

)
=

1

2

(
1

T

) c(K1)
K2−K1

,

and by combining the last two inequalities, we can lower bound Pî (Ec) as

Pî (Ec) ≥ 1

2

(
1

T

) c(K1)
K2−K1

− 2c(K1) log(T)

∆2T
.

Since Eî RegA(T, µî) ≥
T∆
2 Pî (Ec) this implies,

Eî RegA(T, µî) ≥
T∆

2

1

2

(
1

T

) c(K1)
K2−K1

− 2c(K1) log(T)

∆T

 =
∆

4
T 1− c(K1)

K2−K1 − c(K1) log(T) .

By setting T0 sufficiently large as a function of ∆,K1,K2 and c, we can conclude that

Eî RegA(T, µî) ≥
∆

4
T 1− c(K1)

K2−K1 − c(K1) log(T) ≥ ∆

8
T 1− c(K1)

K2−K1 >
c(K2) log(T)

∆
.

Specifically, it suffices to set T0 as the smallest value of T that satisfies the last two inequalities in the
display. This shows that the lower bound holds at time T for problem instance î.

B Examples of h-Stability and Extendability

This appendix shows examples of h-stability and extendabilty. The first example, contained in Section
B.1, is a variant of the Geometric Hedge algorithm from [7]. We sketch a second example in Section
B.2, where we deal with a high probability variant of the Exp4 algorithm from [6].

B.1 Geometric Hedge for Adversarial Linear Bandits

Let us start by introducing a weighted version of the Geometric Hedge Algorithm that satisfies the
h-stability condition of Definition 2. We consider the setting where the action A ⊂ Rd is finite (but
potentially large). We denote by at and ωt the learner’s action selection and the adversary’s reward
vector at time t, respectively. The associated reward rt = a>t ωt is assumed to lie in the interval
[−1, 1]. Moreover, let δ ∈ (0, 1) be a probability parameter and set for brevity δ′ = δ

|A| .

The algorithm, an anytime variant of the Geometric Hedge algorithm from [7] with John’s ellipsoid
exploration (e.g., [9]) is detailed in Algorithm 3. We call the algorithm Anytime Weighted Geometric
Hedge. The algorithm takes in input the set of actions A, the failure probability δ, and a weighting
probability ρ ∈ (0, 1] which will play the role of an importance weight. As is standard, the
algorithm maintains over time a distribution pt over A, which is itself a mixture of an exponential
weight distribution qt and an exploration distribution pE . The exploration distribution pE is defined
beforehand to be the John’s ellipsoid distribution associated with A (see [9] for details). As in
Geometric Hedge [7], the algorithm builds a covariance matrix Σt by computing the expectation of
aa> where a is drawn according to the current distribution pt over actions.8 Then, the algorithm
samples a Bernoulli random variable bt, and computes an (importance-weighted) unbiased estimator
ω̂t of ωt, which is plugged into the (biased) reward estimator r̃t(a) that the algorithm associates with
every action a ∈ A. The factors r̃t(a) are those that determine the exponential update of distribution
pt.

8In this section, we denote by Ft−1 the σ-algebra generated by all past random variables up to, but excluding,
the random draw of at (so that pt is Ft−1-measurable).

16

Algorithm 3: Anytime Weighted Geometric Hedge.
1 Input: Action set A, failure probability δ, weighting probability ρ ∈ (0, 1].
2 Initialize w1(a) = 1, W1 = |A| and q1(a) = 1

|A| for all a ∈ A
3 for t = 1, 2, · · · do
4 Compute sampling distribution

pt(a) = (1− γt)qt(a) + γtpE(a) where qt(a) =
wt(a)

Wt
(9)

5 Adversary generates reward vector ωt
6 Sample action at ∼ pt
7 Observe and gather reward rt = a>t ωt
8 Build covariance matrix Σt = Ea∼pt

[
aa>|Ft−1

]
9 Sample bt ∼ Ber(ρ)

10 Compute unbiased reward vector estimator ω̂t = bt
rtΣ
−1
t at
ρ

11 Compute the reward upper bounds

r̃t(a) = a>ω̂t + 2a>Σ−1
t a

√
ln(12t2/δ′)

ρ d t
∀a ∈ A

Update distribution

wt+1(a) = exp

(
ηt+1

t∑
`=1

r̃`(a)

)
∀a ∈ A (10)

Update normalization factor Wt+1 =
∑

a∈A wt+1(a)

Remark 8. For simplicity, the algorithm is formulated for the case where the action space A is
finite. When A is infinite, we can still formulate an algorithm that applies to a ε-cover of A that is
restarted at exponentially increasing time-steps t0 = 1, 2, 4, 8, . . . ,. At the beginning of each epoch,
the covering level ε is set to O(1/t0) so as to obtain an anytime algorithm. A very similar bound to
the one in Theorem 10 is obtained, where |A| therein is replaced by |A1/t|, A1/t being a 1/t-cover
of A w.r.t. the infinity norm.
Remark 9. Notice that we are using the fact that Σt is invertible for all t. This is no loss of generality,
as we can always assume that A spans the whole d-dimensional space (if this is not the case, we can
project each a onto the space spanned by A and reduce to this case). Combined with the fact that,
for all t, distribution pt assigns a nonzero probability to each action, this implies that the expectation
Σt = Ea∼pt

[
aa>|Ft−1

]
must be full rank.

B.1.1 h-Stability

Setting the mixture factor γt and the learning rate ηt appropriately, we can prove the following regret
guarantee for Algorithm 3.
Theorem 10. Let the Anytime Weighted Geometric Hedge Algorithm be run with

ηt = O

 ργt

d+
√

d
t

√
ρ ln |A| ln t

δ

 , γt = min

√
d ln |A| ln t

δ

ρ t
,

1

2

 ,

and ρ ∈ (0, 1]. Then with probability at least 1 − δ(3 + 2d2), simultaneously for all t, the regret
Reg(t) after t rounds can be bounded as

Reg(t) = O

(√
d t ln |A|

ρ
ln
t

δ
+ ρ ln |A| ln t

δ
ln t+

(
ln |A|
d

ln
t

δ

)1/4

t1/4
(

1

ρ

)3/4

+
1

ρ
ln
t

δ

)
.

In the above, the big-oh notation only hides absolute constants.

17

Hence we have the following corollary.

Corollary 11. Let the complexity R(Π) of the policy space Π be defined as R(Π) =
√
d log |A|.

Then with the same assumptions and setting as in Theorem 10, the Anytime Weighted Geometric
Hedge algorithm is h-stable in that, for t → ∞ and constant ρ independent of t, its regret Reg(t)
satisfies

Reg(t) = O
(
R(Π)

√
t

ρ
ln
t

δ

)
,

with probability at least 1− δ, where the big-oh hides terms in t which are lower order than
√
t log t

as t→∞.

B.1.2 Extendability

The extendability of the Anytime Weighted Geometric Hedge algorithm is easily obtained by simply
observing that, since A ⊆ Rd, we can extend the dimensionality d to d+ k. Then we extend each
a = (a1, . . . , ad) ∈ A to a′ = (a1, . . . , ad, 0, . . . , 0︸ ︷︷ ︸

k zeros
), and add k new actions bi of the form

bi = (0, . . . , 0︸ ︷︷ ︸
d zeros

, 0, . . . , 1, . . . , 0︸ ︷︷ ︸
position i

)

for i = 1, . . . , k. Denote the extended policy space by A′. Consistent with this extension, any policy
π in the original policy space Π has to be interpreted as a probability distribution in ∆A′ , whose
last k components are zero, while the k extra indicator policies 1 {b1} , . . . ,1 {bk} are degenerate
probability distributions in ∆A′ , where 1 {bi} places all its probability mass on the (d + i)-th
component. Finally the adversary reward vector ωt ∈ Rd turns into the (d+ k)-dimensional vector
ω′t ∈ Rd+k, where the first d components of the two vectors are the same, and the (d + i)-th
component of ω′t is simply the regret generated for the i-th extra action bi.

B.1.3 Removing an Individual Policy For Best of Both Worlds Regret

For the best of both worlds regret in Section 5 we adopt the following view. Here, each policy
corresponds to a single action a ∈ A, i.e., the policy space of the learner is Π = {1 {a} : a ∈ A}.
In this case, the random draw of at ∼ pt is interpreted as a random choice of policy. Note that this
view does not impact the regret guarantee and is consistent with approach for extendability above.
This view is necessary for a positive gap to be possible and removing a certain policy can be easily
implemented by removing the corresponding action.

B.1.4 Proofs

We work under the assumption all the rewards rt have values between −1 and 1:

Assumption B.1 (Boundedness). The true rewards rt are bounded in that ∀a ∈ A and ∀t ∈ N we
have |a>ωt| ≤ 1.

For all a ∈ A, define

r̂t(a) = a>ω̂t where ω̂t = bt
rt (Σt)

−1
at

ρ
.

We will use the notation E[·|Ft] to denote the conditional expectation where the sigma algebra Ft
is generated by the random variables (ω1, b1,a1, · · · ,ωt−1, bt−1,at−1,ωt, bt,at). Let F−t be the
sigma algebra generated by (ω1, b1,a1, · · · ,ωt−1, bt−1,at−1,ωt). Observe that ω̂t, r̂t(·) and r̃t(·)
are Ft measurable, Σt is Ft−1 measurable, E

[
ω̂t|F−t

]
= ωt and E [bt|Ft−1] = E

[
bt|F−t

]
= ρ.

When considering E
[
·|F−t

]
, the expectation is over at, bt holding ωt fixed. Every time we consider an

expectation of the form Ea∼pt
[
r̂t(a)|F−t

]
, Ea∼pt

[
r̃t(a)|F−t

]
, Ea∼pt [r̂t(a)|Ft] or Ea∼pt [r̃t(a)|Ft]

the random variable a is a sample from pt conditionally independent from at given Ft or F−t .
Moreover, for notational simplicity, whenever possible, we will omit the absolute multiplicative
constants, and instead resort to a big-oh notation.

18

Lemma 12. Let

sup
a,b∈A

a>Σ−1
t b ≤ c(d)

γt
, (11)

for some function c(·) whose value will be detailed later on. Then for any fixed a ∈ A and t ∈ N the
following holds:

1. |r̂t(a)| ≤ c(d)
ργt

;

2. a> (Σt)
−1

a ≤ c(d)
γt

;

3. Eã∼pt

[
ã> (Σt)

−1
ã
∣∣∣Ft−1

]
= d and Eã∼pt

[
ã> (Σt)

−1
ã
∣∣∣F−t] = d ;

4. E
[
r̂2
t (a)|F−t

]
≤ a>(Σt)

−1a
ρ .

Proof. Item 1 simply follows by recalling that r̂t(a) = bt
rt a>(Σt)

−1at
ρ with |rt| ≤ 1. The condition

from Equation 11 then implies the result. Item 2 follows from the same condition. Item 3 follows by
observing that

Eã∼pt [ã
> (Σt)

−1
ã|Ft−1] = Eã∼pt [tr(ãã>Σ−1

t)|Ft−1] = tr
(
Eã∼pt [ãã>]Σ−1

t

)
= d .

Item 4 follows from the definition of r̂t(a). In fact, for any fixed a, we can write

E
[
r̂2
t (a) | F−t

]
=

1

ρ2
Ebt∼Ber(ρ),at∼pt [b

2
t r

2
t a
> (Σt)

−1
ata
>
t (Σt)

−1
a | F−t]

=
1

ρ
Eat∼pt [r

2
t a
> (Σt)

−1
ata
>
t (Σt)

−1
a | F−t]

(i)

≤ 1

ρ
Eat∼pt [a

> (Σt)
−1

ata
>
t (Σt)

−1
a | F−t]

=
1

ρ
a> (Σt)

−1 Et
[
ata
>
t

]
(Σt)

−1
a

=
1

ρ
a> (Σt)

−1
a ,

where (i) holds because |rt| ≤ 1.

This allows us to prove the following version of Lemma 5 in [7],
Lemma 13. Let {α`}∞`=1 be a sequence of deterministic nonnegative weights satisfying α` ≤ 1 for
all ` ∈ N. Let δ′ = δ

|A| . Then with probability at least 1− δ, simultaneously for all a ∈ A and all
t ∈ N,

t∑
`=1

α`r̃`(a) ≥
t∑
`=1

α` a>ω` −O

(√
dt

ρ
ln

t

δ′
+Bt ln

t

δ′

)
, (12)

where Bt = max`≤t
c(d)α`
ργ`

+ α`.

Proof. Fix a ∈ A, and recall the definition of r̃`(a) in Algorithm 3. Define Mt(a) = αt a
>ωt −

αtr̂t(a), and notice that {Mt(a)}t=1,2,... is a martingale difference sequence. Using Lemma 12 (Item
1), along with Assumption B.1, we see that

|Mt(a)| ≤ c(d)αt
ργt

+ αt .

Let Vt(a) =
∑t
`=1 Var[M`(a) | F−`] be the sum of conditional variances of variables M`(a). Using

Lemma 50 we see that with probability at least 1− δ′, simultaneously for all t,
t∑
`=1

α`r̂`(a) ≥
t∑
`=1

α` a>ω` −O

(√
Vt ln

t

δ′
+Bt ln

t

δ′

)
. (13)

19

Since Var[Mt(a) | F−`] ≤ E[M2
t (a) | F−`] ≤ α2

tEt
[
r̂2
t (a)

]
, by Lemma 12 (Item 4) we can write

√
Vt(a) ≤

√√√√ t∑
`=1

α2
`a
> (Σ`)

−1
a

ρ

≤

√√√√(1√
dt

t∑
`=1

α2
`a
> (Σ`)

−1
a

√
ρ

)√
dt

ρ

≤ 1

2

(
1√
dt

t∑
`=1

α2
`a
> (Σ`)

−1
a

√
ρ

+

√
dt

ρ

)
,

the last inequality being the arithmetic-geometric inequality
√
ab ≤ 1

2 (a+ b). Substituting back into
Eq. (13) gives

t∑
`=1

α`r̂`(a) ≥
t∑
`=1

α` a>ω` −O

((∑t
`=1 α

2
`a
> (Σ`)

−1
a√

ρdt
+

√
dt

ρ

)√
ln

t

δ′
+Bt ln

t

δ′

)

with probability at least 1 − δ′ for all t ∈ N. Since the function g(t) =
ln t
δ′
t is decreasing for all

t ≥ 1 we conclude that
ln `
δ′
d` is a decreasing function of `. Using this last fact together with the

condition α` ≤ 1 we see that

α`
a> (Σ`)

−1
a√

ρd`

√
ln
`

δ′
≥ α`

a> (Σ`)
−1

a√
ρdt

√
ln

t

δ′
≥ α2

`

a> (Σ`)
−1

a√
ρdt

√
ln

t

δ′
,

and therefore
t∑
`=1

α`r̂`(a) + α`
a> (Σ`)

−1
a√

ρd`

√
ln
`

δ′
≥

t∑
`=1

α`r̂`(a) + α`
a> (Σ`)

−1
a√

ρdt

√
ln

t

δ′

≥
t∑
`=1

α`a
>ω` −O

(√
dt

ρ
ln

t

δ′
+Bt ln

t

δ′

)
with probability at least 1 − δ′ for all t ∈ N. The result follows by taking a union bound over all
a ∈ A.

In particular when all weights α` = 1 Lemma 13 implies the following.
Corollary 14. With the same notation as in Lemma 13, with probability at least 1− δ simultaneously
for all a ∈ A and all t ∈ N ,

t∑
`=1

r̃`(a) ≥
t∑
`=1

a>ω` −O

(√
dt

ρ
ln

t

δ′
+Bt ln

t

δ′

)
,

where Bt = max`≤t
c(d)
ργ`

+ 1.

We now proceed to upper bound |r̃t(a)|. This will inform our choice for learning rate ηt.

Lemma 15. Let δ′ = δ
|A| . For all a ∈ A, |r̃t(a)| = O

(
c(d)
ργt

+
(

c(d)

γt
√
ρdt

√
ln t

δ′

))
.

Proof. For each a ∈ A, we can write

|r̃t(a)| = O

(
|r̂t(a)|+ a> (Σt)

−1
a√

ρdt

√
ln

t

δ′

)

= O

(
c(d)

ργt
+

(
c(d)

γt
√
ρdt

√
ln

t

δ′

))
,

the last inequality holding as a consequence of Lemma 12.

20

For the analysis of exponential weights, we will insure that |ηtr̃t(a)| ≤ 1 for all a and t. This imposes
the restriction of the following form

ηt = O

 ρ

c(d)
γt

+
(

c(d)

γt
√
dt

√
ρ ln t

δ′

)
 = O

 ργt

c(d) + c(d)√
dt

√
ρ ln t

δ′

 . (14)

We are now ready to tackle the anytime high probability regret guarantees for Algorithm 3.
Lemma 16. Let the condition in Eq. (14) hold with a nonincreasing sequence of learning rates ηt.
Then for all ā ∈ A and t ∈ N
t∑
`=1

r̃`(ā) ≤ 1+
ln(A)

ηt
+

t∑
`=1

1

1− γ`

(
Ea∼p`

[
r̃`(a) + η` (r̃`(a))

2
∣∣∣F`]− γ`Ea∼pE(a)

[
r̃`(a)

∣∣∣F`]) .
Proof. Recall that

w`(a) = exp

(
η`

`−1∑
`′=1

r̃`′(a)

)
and W` =

∑
a∈A w`(a). Let us also define

w−` (a) = exp

(
η`−1

`−1∑
`′=1

r̃`′(a)

)

and, W−` =
∑

a∈A w
−
` (a). Moreover, set for brevity A` = ln

(
W−`+1

W`

)
. We can write

exp(A`) =
W−`+1

W`

=

∑
a∈A exp

(
η`
∑`
`′=1 r̃`′(a)

)
∑

a∈A exp
(
η`
∑`−1
`′=1 r̃`′(a)

)
=
∑
a∈A

q`(a) exp (η`r̃`(a))

≤ 1 +
∑
a∈A

q`(a)η`r̃`(a) + q`(a)η2
` (r̃`(a))

2

the last inequality holding because ex ≤ 1 + x+ x2 whenever |x| ≤ 1. Taking logs and using the
fact that ln(1 + x) ≤ x yields

A` ≤ η`
∑
a∈A

q`(a)r̃`(a) + q`(a)η` (r̃`(a))
2

(i)

≤ η`
∑
a∈A

q`(a)r̃`(a) +
p`(a)

1− γ`
η` (r̃`(a))

2

(ii)
=

η`
1− γ`

∑
a∈A

p`(a)r̃`(a) + p`(a)η` (r̃`(a))
2 − γ`pE(a)r̃`(a) ,

where (i) follows because q`(a) ≤ p`(a)
1−γ` and (ii) because p` = (1− γ`)q`(a) + γ`pE(a). Hence

t∑
`=1

A`
η`

=

t∑
`=1

1

η`
ln

(
W−`+1

W`

)

≤
t∑
`=1

1

1− γ`

∑
a∈A

p`(a)r̃`(a) + p`(a)η` (r̃`(a))
2 − γ`pE(a)r̃`(a) . (15)

21

Now, define the following potential

Φ`(η) =
1

η
ln

(
1

|A|
∑
a∈A

exp

(
η

`−1∑
`′=1

r̃`′(a)

))
.

Notice that by de L’Hopital’s rule, this implies limη→0 Φ`(η) = Φ`(0) = 1 for all `. Let η0 = 0. We
have

1 +

t∑
`=1

1

η`
ln

(
W−`+1

W`

)
= Φ1(η0) +

t∑
`=1

Φ`+1(η`)− Φ`(η`)

=

(
t∑
`=1

(Φ`(η`−1)− Φ`(η`))

)
+ Φt+1(ηt) .

Next, we now show that for all ` the function Φ`(η) is an increasing function of η. To this effect, let

pη` (a) =
exp(η

∑`−1

`′=1
r̃`′ (a))∑

a′∈A exp(η
∑`−1

`′=1
r̃`′ (a

′))
. Observe that the following relationship holds,

Φ′`(η) =
−1

η2
ln

(
1

|A|
∑
a∈A

exp

(
η

`−1∑
`′

r̃`′(a)

))
+

1

η

∑
a∈A

[∑`−1
`′=1 r̃`′(a)

]
exp

(
η
∑`−1
`′=1 r̃`′(a)

)
∑

a∈A exp
(
η
∑`−1
`′=1 r̃`′(a)

)
=

1

η2

∑
a∈A

pη` (a)

(
η

`−1∑
`′=1

r̃`′(a)− ln

(
1

|A|
∑
a′∈A

exp

(
η

`−1∑
`′=1

r̃`′(a
′)

)))

=
1

η2
KL (pη` ,Uniform(A))

≥ 0 ,

where KL(·,·) denotes the Kullback Leibler divergence between the two distributions at arguments.

Since we are assuming η` ≤ η`−1, this implies that Φ`(η`−1) ≥ Φ`(η`). Thus,

1 +

t∑
`=1

1

η`
ln

(
W−`+1

W`

)
=

(
t∑
`=1

(Φ`(η`−1)− Φ`(η`))

)
+ Φt+1(ηt) ≥ Φt+1(ηt). (16)

Combining (15) with (16) gives

Φt+1(ηt) ≤ 1 +

t∑
`=1

1

η`
ln

(
W−`+1

W`

)

≤ 1 +

t∑
`=1

1

1− γ`

∑
a∈A

p`(a)r̃`(a) + p`(a)η` (r̃`(a))
2 − γ`pE(a)r̃`(a) .

Since for any ā ∈ A the potential Φt+1(ηt) satisfies,

Φt+1(ηt) =
1

ηt
ln

(
1

|A|
∑
a∈A

exp

(
ηt

t∑
`=1

r̃`(a)

))
≥

t∑
`=1

r̃`(ā)− ln(A)

ηt

we have
t∑
`=1

r̃`(ā) ≤ 1 +
ln(A)

ηt
+

t∑
`=1

1

1− γ`

∑
a∈A

(
p`(a)r̃`(a) + p`(a)η` (r̃`(a))

2 − γ`pE(a)r̃`(a)
)

The claimed result now follows by simply observing that∑
a∈A

p`(a)r̃`(a) + p`(a)η` (r̃`(a))
2

= Ea∼p`

[
r̃`(a) + η` (r̃`(a))

2
∣∣∣F`] .

22

In the sequel, we shall impose the restriction

γt ∈ (0, 1/2] , (17)

holding for all t, so that 1
1−γt ≤ 2 and γt

1−γt ≤ 1.

To get a high probability anytime bound starting from Lemma 16, we are required to prove high
probability bounds for each of the terms I, II, III and IV defined below:

I =

t∑
`=1

r̃`(ā).

II =

t∑
`=1

1

1− γ`
Ea∼p` [r̃`(a)|F`] .

III =

t∑
`=1

η`
1− γ`

Ea∼p`

[
(r̃`(a))

2 |F`
]

IV = −
t∑
`=1

γ`
1− γ`

Ea∼pE [r̃`(a)|F`]

We proceed by (upper or lower) bounding the four terms above in turn.

Bounding term I. By Corollary 14 with probability at least 1 − δ for all ā ∈ A and all t ∈ N
simultaneously,

I ≥
t∑
`=1

ā>ω` −O

(√
dt

ρ
ln

t

δ′
−
(

max
`≤t

c(d)

ργ`
+ 1

)
ln

t

δ′

)
.

Let us denote the event where this bound holds by EI. The preceding discussion implies P (EI) ≥ 1−δ.

Bounding term II. Recalling the definition of r̃`(a), we can write

II =

t∑
`=1

1

1− γ`
Ea∼p` [r̃`(a)|F`]

=

t∑
`=1

1

1− γ`
Ea∼p`

[
r̂`(a) +O

(
a>Σ−1

` a√
ρd`

√
ln

(
`

δ′

)) ∣∣∣F`]
(i)
=

t∑
`=1

1

1− γ`
Ea∼p` [r̂`(a)|F`] +O

(
1

(1− γ`)

√
d

ρ`

√
ln

(
`

δ′

))
(ii)

≤
t∑
`=1

1

1− γ`
Ea∼p` [r̂`(a)|F`] +O

(√
dt

ρ
ln

(
t

δ′

))
, (18)

where (i) follows from Item 3 in Lemma 12, and in (ii) we have used 1
1−γ` ≤ 2, ln

(
`
δ′

)
≤ ln

(
t
δ′

)
,

along with
∑t
`=1

√
d
` ≤ 2

√
dt .

We are left to prove a high probability upper bound for
∑t
`=1

1
1−γ`Ea∼p` [r̂`(a)|F`] which we

achieve through the following Lemma.

Lemma 17. With probability at least 1− δ for all t ∈ N,

t∑
`=1

1

1− γ`
Ea∼p` [r̂`(a)|F`] ≤

t∑
`=1

r`
1− γ`

+O

(√
dt

ρ
ln
t

δ
+ max

`≤t

(
c(d)

ργ`
+ 1

)
ln
t

δ

)
.

23

Proof. Let ā` = Ea∼p` [a|F`] where the samples a ∼ p` are conditionally independent from a`.
Observe that

t∑
`=1

1

1− γ`
Ea∼p` [r̂`(a)|F`] =

t∑
`=1

1

1− γ`
Ea∼p`

[
ω̂>` a|F`

]
=

t∑
`=1

1

1− γ`
ω̂>` ā` .

The proof of this lemma follows closely the proof of Lemma 6 in [7]. Consider the martingale
difference sequence Y` =

ω̂>` ā`−r`
1−γ` with respect to the filtration {F−` }∞`=1, where we recall that

ω̂` = b`
r`(Σ`)

−1a`
ρ . The process {Y`}∞`=1 is a martingale difference sequence w.r.t. the filtration

{F−` }∞`=1 since E
[
ω̂>` ā`|F−`

]
= ω>` ā` = E[r`|F−`], and therefore E

[
ω̂>` ā` − r`|F−`

]
= 0.

The conditional variance of Y` can be bounded as follows:

Var
[
Y`|F−`

]
= E

[
(Y`)

2 |F−`
]

=
E
[(
ω̂>` ā` − r`

)2 |F−`]
(1− γ`)2

(i)

≤ 4E
[(
ω̂>` ā`

)2 ∣∣∣F−`]
(ii)

≤
4ā>` Σ−1

` ā`
ρ

(iii)

≤
4Ea∼p`

[
a>Σ−1

` a|F`−1

]
ρ

(iv)
=

4d

ρ
,

where: (i) holds because E
[(
ω̂>` ā` − r`

)2 |F−`] ≤ E
[(
ω̂>` ā`

)2 |F−`] and 1
1−γ` ≤ 2; (ii) is a

consequence of Item 4 of Lemma 12 (treating ā` as a fixed vector); (iii) holds by Jensen’s inequality;
(iv) holds by Item 3 of Lemma 12. Thus, Var

[
Y`|F−`

]
≤ 4d

ρ

As a consequence,
∑t
`=1 Var

[
Y`|F−`

]
≤ 4td

ρ . Furthermore, |Y`| ≤ 2c(d)
ργ`

+2 by Item 1 in Lemma 12
and because 1

1−γ` ≤ 2.

We are in a position to apply Lemma 51 (setting therein Vt = 4td
ρ and Bt = 2c(d)

ργt
+ 2) to the

martingale differences sequence {Y`}∞`=1. Rearranging terms this gives the claimed bound.

Denote by EII the event where the bound of Lemma 17 holds. By the previous result we have
P (EII) ≥ 1− δ. Lemma 17 along with |r`| ≤ 1 for all ` (see Assumption B.1) together imply the
following.
Corollary 18. If EII holds then

t∑
`=1

1

1− γ`
Ea∼p` [r̂`(a)|F`] ≤

t∑
`=1

r` + 2γ` +O

(√
dt

ρ
ln
t

δ
+ max

`≤t

(
c(d)

ργ`
+ 1

)
ln
t

δ

)
.

Proof. Since 1
1−γ` − 1 = γ`

1−γ` we immediately see that
t∑
`=1

r`
1− γ`

=

t∑
`=1

r` +
γ`r`

1− γ`

And from |r`| ≤ 1 and 1
1−γ` ≤ 2,

t∑
`=1

r`
1− γ`

=

t∑
`=1

r` + 2γ` ,

thereby concluding the proof.

24

Finally, (18) and Corollary 18 imply that, in case EII holds,

II ≤
t∑
`=1

r` + 2γ` +O

(√
dt

ρ
ln
t

δ
+ max

`≤t

(
c(d)

ργ`
+ 1

)
ln
t

δ
+

√
dt

ρ
ln

(
t

δ′

))
.

Bounding term III. By definition of r̃`(a), the fact that 1
1−γ` ≤ 2, along with the inequality

(a+ b)2 ≤ 2a2 + 2b2, we can write

t∑
`=1

η`
1− γ`

Ea∼p`
[
r̃2
` (a)|F`

]
≤

t∑
`=1

4η`Ea∼p`

(r̂`(a))
2

+
4 ln

(
12`2

δ′

)
ρd`

(
a>Σ−1

` a
)2 ∣∣∣F`

=

t∑
`=1

4η`Ea∼p`

[
(r̂`(a))

2
∣∣∣F`]︸ ︷︷ ︸

A

+O

(
t∑
`=1

η`Ea∼p`

[(
a>Σ−1

` a
)2

ln
(
`
δ′

)
ρd`

∣∣∣F`])︸ ︷︷ ︸
B

.

We proceed to upper bound A and B separately. Let us start from term B. We have

B
(i)
= O

(
t∑
`=1

η`c(d) ln
(
`
δ′

)
ρ`γ`

Ea∼p`
[
a>Σ−1

` a
]) (ii)

=

t∑
`=1

O

(
η`c(d)d ln

(
`
δ′

)
ρ`γ`

)
, (19)

where (i) follows from Item 2. of Lemma 12, and (ii) follows from Item 3. of the same lemma.
Notice that this upper bound holds deterministically. Let us now turn to handling term A now. We
use a similar argument as Lemma 8 in [7].
Lemma 19. With probability at least 1− δ simultaneously for all t ∈ N,

A = O

 t∑
`=1

η`d

ρ
+

√√√√ln

(
t

δ

) t∑
`=1

η2
` c(d)d

γ`ρ3
+ max

`≤t

c(d)η`
ρ2γ`

ln
t

δ

 . (20)

Proof. Recalling that ω̂` = b`
r`(Σ`)

−1a`
ρ , we first observe that

Ea∼p`

[
(r̂`(a))

2
∣∣∣F`] =

∑
a∈A

p`(a)ω̂>` aa>ω̂`

= ω̂>`

(∑
a∈A

p`(a)aa>

)
ω̂`

=
r2
` b

2
`

ρ2
a>` Σ−1

` Σ`Σ
−1
` a`

=
r2
` b`
ρ2

a>` Σ−1
` Σ`Σ

−1
` a`

≤
b`a
>
` Σ−1

` a`
ρ2

.

Summing over ` and multiplying by 4η` yields

A ≤
t∑
`=1

4η`
ρ2
b`a
>
` Σ−1

` a` .

Now, Item 2 of Lemma 12 implies the magnitude of each of the terms 4η`
ρ2 b`a

>
` Σ−1

` a` is at most

4 c(d)η`
ρ2γ`

. Moreover, Item 3 of Lemma 12 implies that for each term the conditional expectation

25

E
[

4η`
ρ2 b`a

>
` Σ−1

` a`

∣∣∣F−`] equals 4η`d
ρ . As for the conditional variance, we can write

Var

[
4η`
ρ2
b`a
>
` Σ−1

` a` −
4η`d

ρ

∣∣∣F−`] ≤ 16η2
`

ρ4
E
[
b2`
(
a>` Σ−1

` a`
)2 ∣∣∣F−`]

(i)

≤ 16η2
` c(d)

γ`ρ4
E
[
b`a
>
` Σ−1

` a`|F−`
]

(ii)
=

16η2
` c(d)d

γ`ρ3

where (i) follows from Item 2 in Lemma 12, and (ii) is from Item 3. An application of Lemma 51
concludes the proof

We denote by EIII the event where the bound of Lemma 19 holds. By the previous result, P (EIII) ≥
1− δ. Thus if EIII holds, Equations 19 and 20 imply,

III =

t∑
`=1

η`
1− γ`

Ea∼p`
[
r̃2
` (a)

]

= O

 t∑
`=1

η`d

ρ
+

√√√√ln

(
t

δ

) t∑
`=1

η2
` c(d)d

γ`ρ3
+ max

`≤t

c(d)η`
ρ2γ`

ln
t

δ
+

t∑
`=1

η`c(d)d ln
(
`
δ′

)
ρ`γ`

 .

Bounding Term IV. Define supp(pE) = {a ∈ A : pE(a) > 0}, and recall that

IV = −
t∑
`=1

γ`
1− γ`

∑
a∈A

pE(a)r̃`(a) .

Let a be any action in supp(pE), and set in Lemma 13 α` = γ`
1−γ` . This implies that with probability

at least 1− δ,

t∑
`=1

γ`
1− γ`

r̃`(a) ≥
t∑
`=1

γ`
1− γ`

a>ω` −O

(√
dt

ρ
ln

t

δ′
+

(
c(d)

ρ
+ 1

)
ln

t

δ′

)

≥ −2

t∑
`=1

γ` −O

(√
dt

ρ
ln

t

δ′
+

(
c(d)

ρ
+ 1

)
ln

t

δ′

)
the last inequality following from |a>ω`| ≤ 1 and 1

1−γ` ≤ 2.

A simple union bound along with the fact that
∑

a∈supp(pE) pE(a) = 1 implies that with probability
at least 1− |supp(pE)|δ

IV ≤ 2

t∑
`=1

γ` +O

(√
dt

ρ
ln

t

δ′
+

(
c(d)

ρ
+ 1

)
ln

t

δ′

)
.

Similar to before, we denote by EIV the event where this bound holds. By the previous result
P (EIV) ≥ 1− |supp(pE)|δ.

Putting it all together. We plug the bounds so obtained on I− IV back into Lemma 16, collect
common terms, and overapproximate. We obtain that, when EI ∩ EII ∩ EIII ∩ EIV holds,

t∑
`=1

(
ā>ω` − r`

)
= O

(
ln(A)

ηt
+

√
dt

ρ
ln

t

δ′
+ max

`≤t

(
c(d)

ργ`
+ 1

)
ln

t

δ′
+

t∑
`=1

γ` +

t∑
`=1

η`c(d)d ln
(
`
δ′

)
ρ`γ`

+

t∑
`=1

η`d

ρ
+

√√√√ln

(
t

δ

) t∑
`=1

η2
` c(d)d

γ`ρ3
+ max

`≤t

c(d)η`
ρ2γ`

ln
t

δ

)
,

26

with δ′ = δ
|A| .

Now, recall the restriction on ηt as in (14). In order to fulfill this requirement, we set

ηt = O

 ργt

c(d) + c(d)√
dt

√
ρ ln |A| ln t

δ

 .

This gives

t∑
`=1

(
ā>ω` − r`

)
= O

(
c(d) ln |A|

ργt

(
1 + 2

√
ρ ln |A|
dt

ln
t

δ

)
+ max

`≤t

(
c(d)

ργ`
+ 1

)
ln |A| ln t

δ

+

t∑
`=1

γ` +

t∑
`=1

ln |A| ln
(
`
δ

)
`

+

t∑
`=1

γ`d

c(d)
+

√
dt ln |A|

ρ
ln

12t2

δ

+

√√√√ln
t

δ

t∑
`=1

γ`d

c(d)ρ
+

1

ρ
ln
t

δ

)
.

We now set γ` so as to satisfy (17):

γ` = min

√
c(d) ln |A| ln `

δ

ρ `
,

1

2

 .

Under the assumption that c(d) ≥ d (see below) this gets

t∑
`=1

(
ā>ω` − r`

)
= O

(√
c(d)t ln |A|

ρ
ln
t

δ
+ ρ ln |A| ln t

δ
ln t+

√
dt ln |A|

ρ
ln
t

δ

+

(
ln |A|
c(d)

ln
t

δ

)1/4

t1/4
(

1

ρ

)3/4

+
1

ρ
ln
t

δ

)
.

Now, from [9] (Ch. 5 therein), it is known that with John’s exploration, the smallest eigenvalue of
Σt is at least γtd , so that the function c(d) in Lemma 12 is ≤ d. Moreover, the support of John’s
exploration distribution has size at most d(d+ 1)/2 + 1 ≤ 2d2. Combining with the last displayed
equation, and taking a final union bound so as to make the events EI, EII, EIII, and EIV jointly hold
concludes the proof of Theorem 10.

B.2 Exp4 algorithm for finite policy classes

Consider now the case of the Exp4 algorithm from [6]. The algorithm operates with a finite set of
policies Π. An anytime high probability regret guarantee for a biased version of Exp4 can be derived
by following a similar pattern as in Section B.1, but it can also be derived, e.g., by modifying the
high-probability analysis for Exp3 contained in [25]. The proof is omitted.

Corollary 20. Let the complexity R(Π) of the policy space Π be defined as R(Π) =
√
|A| log |Π|.

Then a version of the Exp4 algorithm from [6] exists that is h-stable in that, for t→∞ and constant
ρ independent of t, its regret Reg(t) satisfies

Reg(t) = O
(
R(Π)

√
t

ρ
ln
t

δ

)
,

with probability at least 1− δ, where the big-oh hides terms in t which are lower order than
√
t log t

as t→∞.

Regarding extendability and the ability to handle policy removals, this is fairly immediate for Exp4,
and we omit the trivial details.

27

C Adversarial Regret Balancing and Elimination

In this section, we provide the proof of Arbe’s regret bound for adversarial environments. For
convenience, we restate the main theorem here:
Theorem 4. Consider a run of Algorithm 1 with Arbe(δ, 1, 0) and M base algorithms with 1 ≤
R(Π̃1) ≤ · · · ≤ R(Π̃M) where Π̃i is the extended version of policy class Πi with (M − i) additional
actions. Then with probability at least 1− poly(M)δ the regret Reg(t,ΠM) for all rounds t ≥ i? is
bounded by

O

((
R(Π̃i?)

R(Π̃1)

√
i? +M

)
R(Π̃i?)

√
i?t ln

t

δ

)
, (4)

where i? is the smallest index of the base algorithm that is h-stable.

The proof of this regret bound relies on the following regret bound of Arbe in between restarts:
Lemma 21 (Regret per Epoch of Arbe). Consider a run of Algorithm 1 with Arbe(δ, s, t0) let
T ∈ N ∪ {∞} be the round when the algorithm restarts (T = ∞ if there is no restart). Then the
regret against ΠM is bounded with probability at least 1− poly(M)δ for all t ∈ [T] simultaneously
as

RegM([t0 + 1, t],ΠM) = O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
(t− t0) ln

t

δ
+M ln

ln t

δ

)
.

Further, if s ≥ i?, then the algorithm does not restart, i.e., T =∞.

With this result, Theorem 4 can be proven quickly:

Proof of Theorem 4. Denote by t0 = 0 and ti the round of the i-th restart and∞ if it does not exist
for i ∈ [i?]. By Lemma 21, there can be at most i? − 1 restarts and thus ti? =∞. The total regret of
Arbe(δ, 1, 0) can be decomposed into the regret between two restarts

RegM(t,ΠM) =

i?∑
i=1

Reg([ti−1 + 1,min{ti, t}],ΠM) .

We can now plug in the bound from Lemma 21 for each term on the RHS which gives

RegM(t,ΠM) =

i?∑
s=1

O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t̄s ln

t

δ
+M ln

ln t

δ

)
. (21)

where t̄s = max{min{ts, t} − ts−1, 0}. We can bound this further using Jensen’s inequality and the
fact that

∑i?
s=1 t̄s = t as

RegM(t,ΠM) = O

((
R(Π̃i?)

R(Π̃1)

√
i? +M

)
R(Π̃i?)

√
i?t ln

t

δ
+Mi? ln

ln t

δ

)
(22)

When t ≥ i? the last term is dominated by the others and hence, the proof is complete.

C.1 Proof of Lemma 21

We first show that there are at most i? restarts. This is because, due to extendability and h-stability of
learners above i?, the elimination test can never trigger for them. The following lemma makes this
argument formal:
Lemma 22. With probability at least 1− poly(M)δ, the elimination test in Equation 2 never triggers
for i, j with i? ≤ i < j ≤M .

Proof. Let i, j ∈ [i?,M] = {i?, i? + 1, . . . ,M} and t ∈ N and denote by t0 the round of the last
restart before t. By definition of i? in Section 2.1, base learner i is h-stable and extendable. We
consider the event where the regret bound of i holds and where the statements in Lemma 23 hold.

28

This happens for all i ≥ i? with probability at least 1 − poly(M)δ. Since i ≥ i? is h-stable and
extendable, we have

max
π∈Π̃i

t∑
`=t0+1

Ea∼π[r`(a, x`)]− r`(ai`, x`) ≤ cR(Π̃i)

√
t− t0
ρi

ln
t

δ

where c is an absolute constant. Since the extended policy class Π̃i includes an action ãj that always
follows base learner Aj , i.e., r`(ãj , x`) = r`(a

j
` , x`), we have in particular

t∑
`=t0+1

[
r`(a

j
` , x`)− r`(a

i
`, x`)

]
≤ cR(Π̃i)

√
t− t0
ρi

ln
t

δ
.

Using now Equation 25 from Lemma 23, we have

C̃Rewj(t0, t)− C̃Rewi(t0, t) ≤ Dj(t0, t) + Di(t0, t) +

t∑
`=t0+1

[
r`(a

j
` , x`)− r`(a

i
`, x`)

]
≤ Dj(t0, t) + Di(t0, t) + cR(Π̃i)

√
t− t0
ρi

ln
t

δ

and thus, the test in Equation 2 does not trigger for i and j in round t.

We are now ready to do the proof of Lemma 21.

Proof of Lemma 21. By Lemma 22 there are at most i? restarts and s ≤ i? at all times. The regret of
Arbe in rounds [t0 + 1, t] against any policy π′ ∈ ΠM can be written as

t∑
`=t0+1

[Ea∼π′ [r`(a, x`)]− r`(a`, x`)] =

M∑
i=s

t∑
`=t0+1

[ρiEa∼π′ [r`(a, x`)]− 1 {b` = i} r`(a`, x`)] .

For i ≥ i?, we can bound the summand on the RHS directly using h-stability and extendability of i as
t∑

`=t0+1

[ρiEa∼π′ [r`(a, x`)]− 1 {b` = i} r`(a`, x`)]

= ρi

t∑
`=t0+1

[
Ea∼π′ [r`(a, x`)]−

1 {b` = i} r`(ai`, x`)
ρi

]

≤ ρi
t∑

`=t0+1

[
Ea∼π′ [r`(a, x`)]− r`(ai`, x`)

]
+ ρiDi(t0, t) (Lemma 23)

≤ cR(Π̃i)

√
(t− t0)ρi ln

t

δ
+ ρiDi(t0, t) (h-stability of Ai)

= O

(
R(Π̃i)

√
(t− t0)ρi ln

t

δ
+

√
(t− t0)ρi ln

ln t

δ
+ ln

ln t

δ

)
(definition of Di)

= O

(
R(Π̃i)

√
(t− t0)ρi ln

t

δ
+ ln

ln t

δ

)
(since R(Π̃i) ≥ 1)

= O

(√
t− t0∑M

j=sR(Π̃j)−2
ln
t

δ
+ ln

ln t

δ

)
(definition of ρi)

= O

(√
t− t0

R(Π̃i?)−2
ln
t

δ
+ ln

ln t

δ

)
(since s ≤ i?)

= O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
. (23)

29

For i < i?, we cannot rely on h-stability and extendability and instead have to use the fact that the
misspecification test in Equation 2 did not trigger until the last round where there can be at most a
regret of 1. This allows us to bound

t∑
`=t0+1

[ρiEa∼π′ [r`(a, x`)]− 1 {b` = i} r`(a`, x`)]

= ρi

t∑
`=t0+1

[
Ea∼π′ [r`(a, x`)]−

1 {b` = i} r`(ai`, x`)
ρi

]

≤ ρi
t∑

`=t0+1

[
Ea∼π′ [r`(a, x`)]−

1 {b` = i?} r`(ai?` , x`)
ρi?

]

+ ρiDi(t0, t) + ρiDi?(t0, t) +R(Π̃i)

√
ρi(t− t0) ln

t

δ
+ 1 (misspecification test failed)

≤ ρi
t∑

`=t0+1

[
Ea∼π′ [r`(a, x`)]− r`(ai?` , x`)

]
(Lemma 23)

+ 2ρiDi?(t0, t) +R(Π̃i)

√
ρi(t− t0) ln

t

δ
+ 1 (Di?(t0, t) ≥ Di(t0, t))

≤ ρicR(Π̃i?)

√
t− t0
ρi?

ln
t

δ
+ 2ρiDi?(t0, t) +R(Π̃i)

√
ρi(t− t0) ln

t

δ
+ 1 (h-stability of Ai?)

= O

(
ρiR(Π̃i?)

√
t− t0
ρi?

ln
t

δ
+
√
ρi

√
ρi
ρi?

(t− t0) ln
t

δ
+R(Π̃i)

√
ρi

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
(definition of Di?)

= O

((
ρiR(Π̃i?)
√
ρi?

+R(Π̃i)
√
ρi

)√
(t− t0) ln

t

δ
+ ln

ln t

δ

)

= O

((
R(Π̃i?)2

R(Π̃i)
+R(Π̃i)

)√
ρi(t− t0) ln

t

δ
+ ln

ln t

δ

)

= O

(
R(Π̃i?)2

R(Π̃i)

√
ρi(t− t0) ln

t

δ
+ ln

ln t

δ

)
(R(Π̃i) ≤ R(Π̃i?))

Finally, combining both bounds yields

RegM([t0 + 1, t],ΠM) = O

((
M∑
i=i?

R(Π̃i?) +

i?−1∑
i=s

R(Π̃i?)2

R(Π̃i)

√
ρi

)√
(t− t0) ln

t

δ
+M ln

ln t

δ

)

= O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
(t− t0) ln

t

δ
+M ln

ln t

δ

)
.

C.2 Concentration Bounds on Reward Sequences

Lemma 23. With probability at least 1 − poly(M)δ, the following inequalities hold for all base
learners i ∈ [M] for all time steps t ∈ N where Ai was not eliminated yet∣∣∣∣∣

t∑
`=t0+1

[
Ea∼πi` [r`(a, x`)]− r`(ai`, x`)

]∣∣∣∣∣ = O

(√
(t− t0) ln

ln(t− t0)

δ

)
(24)

∣∣∣∣∣
t∑

`=t0+1

[
1 {b` = i} r`(a`, x`)

ρi
− r`(ai`, x`)

]∣∣∣∣∣ = O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(25)

30

where t0 is the time of the last restart of Algorithm 1 before t and ρi is the probability with which
learner i is chosen in round t.

Proof. There can be at most M restarts of Algorithm 1. Thus, we can prove the concentration bounds
for a single restart and a single base learner i and obtain the statement for all restarts with a union
bound over M2.

Consider first Equation 24 and let

F` = σ
(
{rj , xj , πj1, {aij}i∈[M], bj}j∈[t0+1,`−1] ∪ {r`, x`, πi`, {ak` }k∈[M]\{i}}

)
be the sigma field of all previous reward functions, contexts and actions as well as the context and
action in the current round. Further let τ be the stopping time w.r.t. {F`} of when the algorithm
restarts, and denote

X` = 1 {` ≥ τ}
(
Ea∼πi` [r`(a, x`)]− r`(ai`, x`)

)
.

The sequence {X`}`>t0 is a martingale difference sequence w.r.t. {F`}`>t0 and X` ∈ [−1, 1] almost
surely for all `. Then by Lemma 46 (setting m = 1 and at = −1, bt = 1) with probability at least
1− δ, we have for all t > t0

t∑
`=t0+1

X` ≤ 1.44

√
(t− t0)

(
1.4 ln ln (4 (t− t0)) + ln

5.2

δ

)
= O

(√
(t− t0) ln

ln(t− t0)

δ

)

We can apply the same argument to −
∑t
`=t0+1X` which proves Equation 24.

Consider now Equation 25 and let

F` = σ
(
{rj , xj , πj1, {aij}i∈[M], bj}j∈[t0+1,`−1] ∪ {r`, x`, πi`, {ak` }k∈[M]}

)
.

Again, let τ be the stopping time w.r.t. {F`}` of when the algorithm restarts and denote

X` = 1 {` ≥ τ}
[

1 {b` = i} r`(ai`, x`)
ρi

− r`(ai`, x`)
]

which is a martingale difference sequence w.r.t. {F`}`>t0 . We have X` ≤ 1
ρi

almost surely and
E[X

2
` |F`] ≤ 1

ρi
. By Lemma 47 (with m = 1/ρi), this implies that with probability at least 1− δ for

all t > t0

t∑
`=t0+1

X` ≤ 1.44

√
t− t0
ρi

(
1.4 ln ln (4(t− t0)) + ln

5.2

δ

)
+

0.41

ρi

(
1.4 ln ln (4(t− t0)) + ln

5.2

δ

)
︸ ︷︷ ︸

=:Di(t0,t)

.

We define the RHS as the precise definition of Di(t0, t) used in Algorithm 1. Note that

Di(t0, t) = O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(26)

are required. Finally, we can apply the exact same argument to −
∑t
`=t0+1X` which finishes the

proof.

D Adversarial Regret Balancing and Elimination with Best of Both Worlds
Regret

In this section, we provide the proofs of the main regret bound for Arbe-Gap in Theorem 5 and
describe the Arbe-GapExploit subroutine in detail. We restate the theorem her for convenience:

31

Theorem 5. Consider a run of Algorithm 2 with inputs t0 = 0, arbitrary policy policy π̂ ∈ ΠM

and M base learners A1, . . . ,AM . Then with probability at least 1− poly(M)δ, the following two
conditions hold for all t ≥M2 simultaneously. In any adversarial or stochastic environment B, the
regret is bounded as

Reg(t,ΠM) = O

((
M + ln(t) +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)
.

If B is stochastic and there is a unique policy with gap ∆ > 0, then the pseudo-regret is bounded as,

PseudoRegM(t,ΠM) = O

(
R(ΠM)2

∆
ln(t) ln

t

δ
+
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln2

(
MR(Π̃M)

∆δ

))
.

(5)

We break the proof of this statement into several parts based on the phases of the algorithm. The first
phase end when Arbe-Gap calls Arbe-GapExploit and the second phase are all rounds played by
Arbe-GapExploit. Finally, in case Arbe-GapExploit was called but terminated at some point, we
have a final phase where we simply execute Arbe. For the regret in this final phase, we can directly
use the guarantees of Arbe. The behavior in the first two phases is analyzed below. The following
lemma characterizes the regret and pseudo-regret in the first phase until Arbe-GapExploit is called.
It also ensures that if the environment is stochastic, the inputs of Arbe-GapExploit are correct, i.e., π̂
is the optimal policy and ∆̂ is an accurate estimate of its gap.

Lemma 24 (Guarantee for First Phase). Consider a run of Algorithm 2 with inputs t0 = 0, arbitrary
policy policy π̂ ∈ ΠM and M base learners A1, . . . ,AM . Further, let tgap ∈ N ∪ {∞} be the round
where the Arbe-GapExploit subroutine is called. Then with probability at least 1− poly(M)δ, the
following conditions hold for all rounds t ∈ [2i?, tgap]. The regret is bounded as

RegM(t,ΠM) = O

((
M +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)
.

If B is stochastic and there is a unique policy π? with gap ∆ > 0, then the gap estimator ∆̂ and
policy π̂ passed onto Arbe-GapExploit satisfy ∆

2 ≤ ∆̂ ≤ ∆ and π̂ = π?. Further, the pseudo-regret
is bounded as

PseudoRegM(t,ΠM) = O

(
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)
.

The proof of this result can be found in Appendix D.2. To characterize the regret and pseudo-regret
of the second phase, we use the following main properties of the Arbe-GapExploit routine in
Algorithm 4. It ensures that the regret and pseudoregret are well controlled and that the routine never
terminates if the environment was indeed stochastic with a gap.

Lemma 25 (Guarantee for Second Phase). Let A be an h-stable learner with policy class ΠA. Then
the regret of Algorithm 4 against ΠA ∪ {π̂} is bounded with probability at least 1 − O(δ) for all
rounds t > t0 that the algorithm has not terminated yet as

RegM([t0 + 1, t],ΠA ∪ {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
.

Further, if the environment is stochastic with an optimal policy π? that has a gap ∆ compared to the
best policy in ΠA and the inputs satisfy π̂ = π? and ∆̂ ≤ ∆ ≤ 2∆̂, then with probability at least
1−O(δ) the pseudo-regret of Algorithm 4 is bounded in all rounds t > t0 as

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) = O
(
R(ΠA)2

∆

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆δ

))
and the algorithm never terminates.

32

The proof of this statement is available in Appendix D.3. While combining Lemma 24 and Lemma 25
gives the desired pseudo-regret guarantee in Theorem 5 above for stochastic environments fairly
directly, the bound on the regret in Theorem 5 requires more work. Arbe-GapExploit guarantees
only guarantees that the regret is of order Õ(R(ΠM \ {π̂})2/∆̂ +

√
t) while we would like a bound

that does not scale with R(ΠM \ {π̂} in our final result. To achieve that, we will use the following
lemma which states that the length of the initial phase tgap has to be sufficiently large as a function
of the gap estimate ∆̂. This will allow us to absorb the R(ΠM \ {π̂})2/∆̂ term into the regret of the
first phase.
Lemma 26. Consider a run of Algorithm 2 with inputs t0 = 0, n = 1, arbitrary policy π̂ ∈ ΠM

and M base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤ R(Π̃2) ≤ · · · ≤ R(Π̃M) where Π̃i is the
extended version of policy class Πi with (M + 1− i) additional actions. Let tgap be the round where
ArbeGap-Exploit was called with gap estimate ∆̂. Then with probability at least 1− poly(M)δ

∆̂ = Ω

R(Π̃M)2

R(Π̃i?)

√
ln

tgap
δ

tgap

 .

Proof. ArbeGap calls ArbeGap-Exploit as soon as 2W (t0, t) ≤ ∆̂t. Hence, when the call happened
in round tgap, we must have 2W (t0, tgap) ≤ ∆̂ or, plugging in the definition of W (t0, tgap) with an
appropriate absolute constant c

cR(Π̃M)
√
ρM

√
ln n(k)

δ

k
+

c

ρM

ln n ln(k)
δ

k
≤ ∆̂,

where k = tgap − t0. We can further lower-bound the LHS as

cR(Π̃M)
√
ρM

√
ln nk

δ

k
+

c

ρM

ln n ln(k)
δ

k
≥ cR(Π̃M)
√
ρM

√
ln k

δ

k

≥ cR(Π̃M)2

√√√√ M∑
i=s

R(Π̃i)−2

√
ln k

δ

k

≥ cR(Π̃M)2

R(Π̃i?)2

√
ln k

δ

k

where the last equation holds because i? is never eliminated with high probability Lemma 28. Finally,
since the function on the RHS is monotonically decreasing in k, we can further lower-bound this

quantity by replacing k with tgap ≥ k. Hence, we have ∆̂ ≥ cR(Π̃M)2

R(Π̃i?)2

√
ln
tgap
δ

tgap
. Reordering terms

gives the desires statement.

We are now ready to state the proof of Theorem 5:

Proof of Theorem 5. We first consider stochastic environments with a gap and apply Lemma 24.
We denote by tgap the round where Arbe-Gap calls Arbe-GapExploit. For all t ≤ tgap, the
pseudo-regret is bounded as

PseudoRegM(t,ΠM) = O

(
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)
.

Further, Arbe-GapExploit can only be called with ΠA = ΠM \ {π?}, π̂ = π? and ∆̂ that satisfies
∆̂ ≤ ∆ ≤ 2∆̂. This allows us to apply Lemma 25 to bound the pseudo-regret of any round played by
Arbe-GapExploit as

PseudoRegM([tgap + 1, t],ΠM) = O
(
R(ΠM)2

∆

(
ln(t) ln

t

δ
+ ln

R(ΠM)

∆δ

))
.

33

It further tells us that, with high probability, Arbe-GapExploit will never return. Hence, we can
bound the pseudo-regret of both phases to get a bound on the total pseudo-regret after any number of
rounds

PseudoRegM(t,ΠM) = O

(
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln

(
MR(Π̃M)

∆δ

)
ln
tgap
δ

+
R(ΠM)2

∆

(
ln(t) ln

t

δ
+ ln

R(ΠM)

∆δ

))

= O

(
R(ΠM)2

∆
ln(t) ln

t

δ
+
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln2

(
MR(Π̃M)

∆δ

))

where we upper-bounded tgap using a crude upper-boundO
(
R(Π̃M)6M5

∆4δ2

)
of the bound in Lemma 34

which gives that ln(tgap) = O(ln(MR(Π̃M)/∆δ)).

We now move on to the regret bound in any environment. Again, Lemma 24 gives us a regret bound
that holds with high probability for any round t ≤ tgap of

RegM(t,ΠM) = O

((
M +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)
.

If t falls into a round that is played by the routine Arbe-Gap, then Lemma 25 the regret after tgap
and before t is bounded as

RegM([tgap + 1, t],ΠM) = O

(
R(ΠM)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠM)

∆̂δ

)
+

√
(t− tgap) ln(t) ln

t

δ

)
.

Using Lemma 26, we can further bound 1

∆̂
= O

(
R(Π̃i?)

R(Π̃M)2

√
tgap

ln(1/δ)

)
and plugging this into the

bound above gives

RegM([tgap + 1, t],ΠM)

= O

(
R(Π̃i?)

√
tgap

(
ln3/2(t) ln1/2 t

δ
+ ln(tgapR(ΠM))

)
+

√
(t− tgap) ln(t) ln

t

δ

)

= O

(
R(Π̃i?)

√
t ln3/2(t) ln1/2 t

δ
+

√
t ln(t) ln

t

δ

)
.

Here, we also used the fact that tgap = Ω(R(ΠM)) since the test in Line 14 of Algorithm 2 can only
trigger when W (t0, t) ≤ R(ΠM)2 which is only possible after at least Ω(R(ΠM)) rounds. Finally,
if t falls into a round after Arbe-GapExploit returned (in round tadv , then the regret since the return
can be bounded using the regret bound of Arbe in Theorem 4 as

RegM([tadv + 1, t],ΠM) = O

((
R(Π̃i?)

R(Π̃1)

√
i? +M

)
R(Π̃i?)

√
i?t ln

t

δ

)
,

Combining the bounds from all three possible phases gives the following bound that holds for all
t > M2 as

RegM(t,ΠM) = O

((
M +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

+R(Π̃i?)
√
t ln3/2(t) ln1/2 t

δ

)

= O

((
R(Π̃i?)

R(Π̃1)

√
i? +M + ln(t)

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)

34

Algorithm 4: Arbe-GapExploit

1 Input: current round t0, learner A with policy class ΠA, candidate policy π̂, gap estimate ∆̂,
failure probability δ

2 Initialize k0 = Θ
(
R2(ΠA)

∆̂2
ln R(ΠA)

∆̂δ

)
3 for epoch e = 0, 1, 2 . . . do
4 Set next epoch length ke+1 = 2ke and final round te+1 = te + ke

5 Set learner probability ρe = Θ
(
R2(ΠA)

ke∆̂2
ln ke

δe

)
where δe = δ

(e+1)2

6 Restart A with failure probability δe
7 for round t = te + 1, te + 2, . . . , te+1 do
8 Set π1

t as the current policy of A and π0
t = π̂

9 Sample bt ∼ Bernoulli(ρe)

10 Get context xt and compute ait ∼ πit(·|xt) for i ∈ {0, 1}
11 Play action at = abtt and receive reward rt(at, xt)
12 Update learner A with reward btrt(at,xt)

ρe

13 Set V (t) = Θ

(
R(ΠA)

√
ln t−te

δe

ρe(t−te) +
ln

ln(t−te)
δe

t−te

)
14 if C̃Rew0(te+1,t)−C̃Rew1(te+1,t)

t−te < ∆̂− V (t) then
15 return // environment is adversarial

16 if C̃Rew0(te+1,t)−C̃Rew1(te+1,t)
t−te > 4∆̂ + V (t) then

17 return // environment is adversarial

D.1 Description of the Second Phase: Gap Exploitation

We present the Arbe-GapExploit algorithm of the Gap Exploitation phase as a general procedure
that takes a focus policy π̂, a policy class ΠA and a gap estimate ∆̂ and is tasked with testing the
hypothesis ‘π̂ is the optimal policy, and has a gap of order Θ(∆̂)’, incurring in small regret while
doing so.

We use Arbe-GapExploit with input policy class ΠA = ΠM . If it ever returns, the learner can
conclude the environment is adversarial and thus, start playing Arbe with the policy classes
Πs, . . . ,ΠM not yet eliminated by the misspecification tests during Arbe-Gap. We develop
results for the more general case when the input algorithm and policy class equal A and
ΠA. In case the environment is stochastic with gap ∆ and ∆̂ = Θ(∆), we show Arbe-
GapExploit has a pseudo regret of order O

(
R(ΠA)2

∆

(
ln(t) ln t

δ + ln R(ΠA)
∆δ

))
at time t (see

Lemma 38). Similarly we show that Arbe-GapExploit has an adversarial regret rate of order

O
(
R(ΠA)2

∆̂

(
ln(t) ln t

δ + ln R(ΠA)

∆̂δ

)
+
√

(t− t0) ln(t) ln t
δ

)
at time t (see Lemma 41). The adver-

sarial rate consists of a poly-logarithmic factor with an upfront multiplier of order R2(ΠA)

∆̂
plus a

factor scaling with
√
t− t0. Since in our case ∆̂ = Ω

(
R(Π̃M)2

R(Π̃i?)

√
M ln

tgap
δ

tgap

)
(see Lemma 26) and

ΠA = ΠM , the adversarial regret has an upper bound of the form Õ
(
R(Π̃i?)

√
tgap +

√
t− tgap

)
(where Õ hides polylogarithmic factors) thus satisfying a model selection guarantee.

In Arbe-GapExploit we divide time into epochs indexed from e = 0, 1, . . . of length ke = k0 · 2e

where k0 = Θ

(
R2(Π̃A) log

R(Π̃A)

∆̂δ

∆̂2

)
. During epoch e, learner A is sampled with probability

ρe = Θ

(
R2(Π̃A) log(keδe)

ke∆̂2

)
. We define k0 and ρe so that for all epochs 1 − ρe ≥ 1

2 . Thus

35

for all t ∈ {te + 1, · · · , te+1}, it holds that
∣∣∣C̃Rew0(te + 1, t)−

∑t
`=te+1 Ea∼π̂ [r`(a, x`)]

∣∣∣ =

O
(√

(t− te) ln t−te
δe

)
. By the h-stability of A, and using a concentration argument, we prove

that C̃Rew1(te + 1, t) can be used to estimate maxπ∈ΠA\{π̂}
∑t
`=te+1 Ea∼π [r`(a, x`)] up to

V (t) = Θ

(
R(ΠA)

√
ln t−te

δe

ρe(t−te) +
ln

ln(t−te)
δe

t−te

)
accuracy.

When the environment is stochastic, π̂ is the optimal policy and ∆/2 ≤ ∆̂ ≤ ∆ it follows that

(t− te)∆̂ ≤
t∑

`=te+1

Ea∼π̂,x∼D [r(a, x)]− max
π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π,x∼D [r(a, x)] ≤ 4∆̂ .

Therefore when the condition in line 14 or 16 of Algorithm 4 trigger, we would have found evidence
that

t∑
`=te+1

Ea∼π̂,x∼D [r(a, x)]− max
π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π,x∼D [r(a, x)] < (t− te)∆̂

or
t∑

`=te+1

Ea∼π̂,x∼D [r(a, x)]− max
π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π,x∼D [r(a, x)] > 4(t− te)∆̂

thus indicating the environment cannot be stochastic.

The observations above imply that in case the environment is stochastic the tests of lines 14 and 16 in
Algorithm 4 do not trigger. Let us jump to the task of analyzing the regret of Arbe-GapExploit in
stochastic environments. We will assume t lies in epoch e. By the h-stability of A, the sum of its
pseudo-rewards in a stochastic environment satisfies

t∑
`=te+1

Ea∼π1
` ,x∼D [r(a, x)]+O

(
R(ΠA\{π̂})

√
(t− te)
ρe

ln
t− te
δe

)
︸ ︷︷ ︸

I

≥ max
π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π,x∼D [r(a, x)] .

In this case, pseudo-regret is only incurred when bt = 1. From te + 1 to t the variable bt equals 1
an average of ρe(t− te) times. Let us use the notation π′? = maxπ∈ΠA\{π̂} Ea∼π,x∼D [r(x, a)]. The
regret collected during these rounds can be upper bounded by

O

∆ · ρe(t− te)︸ ︷︷ ︸
Regret of π′? w.r.t. π̂

+ ρe × I︸ ︷︷ ︸
Regret of A w.r.t. π′?

 = O
(

∆ρe(t− te) +R(ΠA\{π̂}))
√
ρe(t− te) ln

t− te
δe

)
.

Substituting in the value of ρe and using the fact that ∆̂ = Θ(∆) when the environment is stochastic
allow us to write

∆ · ρe(t− te) + ρe · I = O

(
R2(ΠA)

ke∆
(t− te) ln

(
ke
δe

)
+
R2(ΠA)

∆

√
t− te
ke

ln

(
t− te
δe

)
ln

(
ke
δe

))

= O
(
R2(ΠA)

∆
ln

(
ke
δe

))
.

Summing over all epochs e′ ≤ e, and using
∑e
e′=0 ln

(
ke′
δe′

)
= O

(
ln(t) ln

(
t
δ

)
+ ln

(
R(ΠA)

∆δ

))
we

conclude that

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) = O
(
R(ΠA)2

∆

(
ln
R(ΠA)

∆δ
+ ln(t) ln

t

δ

))
and thus the proof sketch of Lemma 38.

36

We now bound the adversarial regret of Arbe-GapExploit during the timesteps before Lines 14 or 16
of Algorithm 4 trigger. In this case, the h-stability of A implies,

t∑
`=te+1

Ea∼π1
`

[r`(a, x`)]+O

(
R(ΠA\{π̂})

√
(t− te)
ρe

ln
t− te
δe

)
︸ ︷︷ ︸

II(t,te)

≥ max
π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π [r`(a, x`)] .

(27)
While Lines 14 or 16 of Algorithm 4 have not triggered, we can certify that with high probability

∆̂(t−te)−Ve(t)(t−te) ≤
t∑

`=te+1

Ea∼π̂ [r`(a, x`)]−
t∑

`=te+1

Ea∼π1
`

[r`(a, x`)] ≤ 4∆̂(t−te)+Ve(t)(t−te).

(28)
In the above, we used the notation Ve(t) to denote the V (t) of epoch e. Hence the regret collected
during rounds {te + 1, . . . , t} can be upper bounded by the sum of three terms

max

(
t∑

`=te+1

Ea∼π̂ [r`(a, x`)]−
t∑

`=te+1

Ea∼π` [r`(a, x`)] , 0

)
︸ ︷︷ ︸

B

+ max

(
max

π∈ΠA\{π̂}

t∑
`=te+1

Ea∼π [r`(a, x`)]−
t∑

`=te+1

Ea∼π̂ [r`(a, x`)] , 0

)
︸ ︷︷ ︸

C

+

t∑
`=te+1

Ea∼π̂ [r`(a, x`)]− r`(a`, x`)︸ ︷︷ ︸
D

.

From te + 1 to t the variable bt equals 1 an average of ρe(t− te) times. Note that V (t)(t− te) ≈
O
(

∆̂
√
ke(t− te)

)
. We can bound B,C,D individually as follows:

• B is the Pseudo-Regret of A w.r.t π̂, and can be upper bounded by
O
(

∆̂ · ρe(t− te) + ∆̂ · ρe
√

(t− te)ke
)

= O
(

∆̂ · ρe
√

(t− te)ke
)

as a consequence of
multiplying the right hand side of Equation 28 by ρe.

• C is the Pseudo-Regret of π̂ w.r.t. ΠA\{π̂}, and can be upper bounded by II(t, te)− ∆̂(t−
te) +Ve(t)(t− te) as a consequence of combining Equations 27 and the left hand side of 28.
• D is the difference between sample rewards vs. Pseudo-Rewards and can be bound by

Hoeffding’s inequality.

Let t′e = min(t, te). Summing the upper bound C over all epochs e′ ≤ e, we choose the multiplier c
in ρe = cR2(ΠA)

ke∆̂2
ln ke

δe
such that9

∑
e′≤e

II(t′e′ , te′)− ∆̂(t′e′ − te′) + Ve′(t
′
e′)(t

′
e′ − te′) =

∑
e′≤e

O

(
∆̂

√
ke(t′e′ − te′)

c

)
− ∆̂(t′e′ − te′)

≤ O
(

∆̂k0

)
. (29)

Combining the bounds for B and D,

O

∆̂ · ρe(t− te)︸ ︷︷ ︸
B

+

√
(t− te) ln

(
t− te
δe

)
︸ ︷︷ ︸

D

 = O

(
R2(ΠA)

∆̂
ln

(
ke
δe

)
+

√
(t− te) ln

(
t− te
δe

))
.

9Increasing the value of c implies we have to set k0 to be larger. This has the only effect of increasing the
constant on the RHS of Eq. 29.

37

Summing over all epochs and using the upper bounds
e∑

e′=0

ln

(
ke′

δe′

)
= O

(
ln(t) ln

(
t

δ

)
+ ln

(
R(ΠA)

∆̂δ

))
e∑

e′=0

√
(t′e′ − te′) ln

(
t′e′ − te′
δe′

)
= O

(√
(t− t0) ln(t) ln

t

δ

)

and the bound from Eq. 29 along with the observation ∆̂k0 = O
(
R2(ΠA)

∆̂
ln R(ΠA)

∆̂δ

)
allows us to

conclude,

RegM([t0 + 1, t],ΠA ∪ {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
,

and with it we finish the proof sketch of Lemma 41. Combining these results finalizes the proof of
Lemma 25.

D.2 Analysis of the First Phase

We will use the notation tgap to denote the (random) time when the Arbe-Gap estimation phase ends
(see Algorithm 2).
Lemma 27 (Guarantee for First Phase). Consider a run of Algorithm 2 with inputs t0 = 0, arbitrary
policy policy π̂ ∈ ΠM and M base learners A1, . . . ,AM . Further, let tgap ∈ N ∪ {∞} be the round
where the Arbe-GapExploit subroutine is called. Then with probability at least 1− poly(M)δ, the
following conditions hold for all rounds t ∈ [2i?, tgap]. The regret is bounded as

RegM(t,ΠM) = O

((
M +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)
.

If B is stochastic and there is a unique policy π? with gap ∆ > 0, then the gap estimator ∆̂ and
policy π̂ passed onto Arbe-GapExploit satisfy ∆

2 ≤ ∆̂ ≤ ∆ and π̂ = π?. Further, the pseudo-regret
is bounded as

PseudoRegM(t,ΠM) = O

(
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)
.

D.2.1 Adversarial Guarantees

We first start by bounding the number of restarts of the algorithm:
Lemma 28 (Number of Restarts of Arbe-Gap). Consider a run of Algorithm 2 with inputs t0 = 0,
arbitrary policy policy π̂ ∈ ΠM and M base learners A1, . . . ,AM . Then for any total number of
rounds t, there are at most ln(t) restarts due to a change in candidate policy (Line 17 in Algorithm 2)
up to that round t. Further, with probability at least 1− poly(M)δ, there are at most i? − 1 restarts
due an elimination of a base learner (Line 11 in Algorithm 2).

Proof. We first show the bound on the number of restarts due to changes in the candidate policy π̂.
Let t1, t2, . . . be the rounds at which a restart is triggered in Line 17 of Algorithm 2 and π̂1, π̂2, . . .
be the candidate policies selected at those restarts. For each restart i, we know that π̂i was selected in
at least 3ti

4 of the first ti rounds and therefore also ti+1 rounds. However, since the policy changed
from π̂i to π̂i+1 at round ti+1, we also know that π̂i can only be selected at most ti+1

4 of the first ti+1

rounds. Combining both bounds yields
3ti
4
≤ ti+1

4

and thus ti+1 ≥ 3ti holds for all i. Since also t1 ≥ 9 by the condition in the algorithm, up to round t,
there can only be log3(t)− 1 ≤ ln(t)− 1 ≤ ln(t) restarts.

Finally, the number of restarts due to base learner elimination is bounded by i?−1 since this condition
can never trigger for i ≥ i? by Lemma 22 (which also holds for Arbe-Gap).

38

The following lemma now bounds the regret within each restart:

Lemma 29. Consider a run of Algorithm 2 with Arbe-Gap(δ, s, t0, π̂) where s ≤ i? and let
T ∈ N∪{∞} be the round when the algorithm restarts or calls Arbe-GapExploit (T =∞ if there is
no restart or transition to the second phase). Then the regret against ΠM is bounded with probability
at least 1− poly(M)δ for all t ∈ [t0 + 1, T] = {t0 + 1, t0 + 2, . . . , T} simultaneously as

RegM([t0 + 1, t],ΠM) = O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
(t− t0) ln

t

δ
+M ln

ln t

δ

)
.

Proof. The regret of Arbe-Gap in rounds [t0 + 1, t] against any policy π′ ∈ ΠM can be written as

t∑
`=t0+1

[Ea∼π′ [r`(a, x`)]− r`(a`, x`)] =

M+1∑
i=s

t∑
`=t0+1

[ρiEa∼π′ [r`(a, x`)]− 1 {b` = i} r`(a`, x`)] .

For i ∈ [s,M], we can follow the analysis of Arbe and apply the arguments in the proof of Lemma 21
verbatim. This yields with probability at least 1− poly(M)δ

M∑
i=s

t∑
`=t0+1

[ρiEa∼π′ [r`(a, x`)]− 1 {b` = i} r`(a`, x`)]

= O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
(t− t0) ln

t

δ
+M ln

ln t

δ

)
. (30)

It only remains to bound the regret contribution of the special base learner AM+1, which does not
exist in Arbe. To do so, we will use the fact that the gap test in Line 14 can only trigger in the
last round before a restart happens. This allows us to relate the regret of AM+1 to that of AM . For
the regret of AM , we again use the arguments in the proof of Lemma 21 (Equation 23 specifically)
verbatim to show

t∑
`=t0+1

[ρMEa∼π′ [r`(a, x`)]− 1 {b` = M} r`(a`, x`)] = O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
.

(31)

The regret contribution of AM+1 can now be bounded as

t∑
`=t0+1

[ρM+1Ea∼π′ [r`(a, x`)]− 1 {b` = M + 1} r`(a`, x`)]

= ρM+1

([
t∑

`=t0+1

Ea∼π′ [r`(a, x`)]

]
− C̃RewM+1(t0 + 1, t)

)
(definition of C̃RewM+1)

= ρM+1

([
t∑

`=t0+1

Ea∼π′ [r`(a, x`)]

]
− C̃RewM (t0 + 1, t)

)
+ ρM+1

(
C̃RewM (t0 + 1, t)− C̃RewM+1(t0 + 1, t)

)
≤ ρM+1

([
t∑

`=t0+1

Ea∼π′ [r`(a, x`)]

]
− C̃RewM (t0 + 1, t)

)
+ 7ρM+1W (t0, t)(t− t0) + 1 (gap test not triggered at t− 1)

≤ ρM+1

ρM
O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
+ 7ρM+1W (t0, t)(t− t0) + 1 (Equation 31)

≤ O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
+ 7ρMW (t0, t)(t− t0) (ρM ≥ ρM+1)

39

= O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
+O

(
R(Π̃M)

√
ρM (t− t0) ln

t

δ

)
(definition of W)

= O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ
+

√
t− t0∑M+1

i=s R(Π̃i)−2
ln
t

δ

)
(definition of ρM)

= O

(
R(Π̃i?)

√
(t− t0) ln

t

δ
+ ln

ln t

δ

)
(s ≤ i?)

Note that ρM ≥ ρM+1 holds without loss of generality since Π̃M+1 contains 2 fewer policies than
Π̃M . Finally, the desired statement follows by combining the previous display with Equation 30.

Equipped with the previous two lemmas, we can now prove the regret bound of the first phase for
adversarial environments:

Lemma 30. Consider a run of Algorithm 2 with inputs t0 = 0, arbitrary policy policy π̂ ∈ ΠM and
M base learners A1, . . . ,AM . Further, let tgap ∈ N∪{∞} be the round where the Arbe-GapExploit
subroutine is called. Then with probability at least 1− poly(M)δ, the following conditions hold for
all rounds t ∈ [2i?, tgap]. The regret is bounded as

RegM(t,ΠM) = O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t(ln(t) + i?) ln

t

δ

)
.

Proof. Let τ0, τ1, . . . be the rounds where Arbe-Gap restarts or eventually calls Arbe-GapExploit.
By convention, we set τ0 = 0 and τi = ∞ when there are less than i total calls to Arbe-Gap. By
Lemma 28, there are at most ln(t) + i? calls of Arbe-Gap up to round t with probability at least
1−poly(M)δ for all t ∈ N jointly. Further, by Lemma 29, the regret in each of these calls is bounded
with probability 1− poly(M)δ as well. If we were to apply a naive union bound over all ln(t) + i?,
then our failure probability would increase at a rate of ln(t). However, we can easily avoid this by
choosing the absolute constants in the definition of Di appropriately. A factor of 3 larger is sufficient.
This ensures that each of these terms is effectively at least as large as if we had invoked them with δ

n2

instead of δ in the n-th restart of Arbe-Gap. We now illustrate why this is true. Let c′ be the absolute
constant such that

Di(t0, t) = c′

√
t− t0
ρi

ln
ln t

δ
+
c′

ρi
ln

ln t

δ

satisfies the necessary concentration bounds (see Section C.2) for a single restart of Arbe-Gap. Now,
we have

3c′

√
t− t0
ρi

ln
ln t

δ
+

3c′

ρi
ln

ln t

δ
≥ c′

√
t− t0
ρi

ln
(ln t)9

δ9
+
c′

ρi
ln

(ln t)3

δ3

≥ c′
√
t− t0
ρi

ln
(ln t)3

δ
+
c′

ρi
ln

(ln t)3

δ

≥ c′
√
t− t0
ρi

ln
ln t
δ

ln2 t

+
c′

ρi
ln

ln t
δ

ln2 t

≥ c′
√
t− t0
ρi

ln
ln t
δ
n2

+
c′

ρi
ln

ln t
δ
n2

where the last step holds because the number of calls n to Arbe-Gap due to a change in candidate
policy at round t is bounded as ln(t). Hence, with this choice of constant, we can ensure that the
statement of Lemma 29 holds with probability at least 1−poly(M)δ jointly for all calls of Arbe-Gap
(for the remaining i? ≤M restarts possible due to elimination of a base learner, we apply a standard
union bound).

40

Now, just as in the proof of Theorem 4, we write the regret of Arbe-Gap using t̄s =
max{min{τs, t} − τs−1, 0} as

RegM(t,ΠM)

=

ln(t)+i?∑
i=1

Reg([τi−1 + 1,min{τi, t}],ΠM)

=

ln(t)+i?∑
i=1

O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t̄i ln

t

δ
+M ln

ln t

δ

)
(Lemma 29)

= O

(MR(Π̃i?) +
R(Π̃i?)2

R(Π̃1)

√
i?

)√√√√(ln(t) + i?)

ln(t)+i?∑
i=1

t̄i ln
t

δ

+O

(
M(ln(t) + i?) ln

ln t

δ

)
(Jensen’s inequality)

= O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t(ln(t) + i?) ln

t

δ

)

+O
(
M(ln(t) + i?) ln

ln t

δ

)
(
∑
s t̄s ≤ t)

= O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t(ln(t) + i?) ln

t

δ

)
(t ≥ 2i? by assumption)

This concludes the proof.

D.2.2 Stochastic Guarantees

As a first step, we show that Arbe-Gap always maintains valid confidence bounds on the gap of the
candidate policy in a stochastic environment:

Lemma 31 (Confidence bounds on the gap). Consider a run of Algorithm 2 with inputs n = 1, t0 = 0,
arbitrary policy policy π̂ ∈ ΠM and M base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤ R(Π̃2) ≤
· · · ≤ R(Π̃M) where Π̃i is the extended version of policy class Πi with (M + 1 − i) additional
actions. Assume the environment B is stochastic and there is a policy π? with gap ∆ > 0. Then with
probability at least 1− poly(M)δ in all rounds t ∈ N

∆̂t ≤ ∆π̂ ≤ ∆̂t + 2W(t0, t)

where W(t0, t) is the term used in the definition of ∆̂t in the algorithm with

W(t0, t) = Θ

R(Π̃M)
√
ρM

√
ln n(t−t0)

δ

t− t0
+

1

ρM

ln n ln(t−t0)
δ

t− t0

 ,

and t0 and n are the time and number of the last restart and before t and ∆π̂ = 1 {π̂ = π?}∆ is the
gap of the candidate policy π̂ in round t.

Proof. First, consider a single restart of Arbe-Gap. We note that both base learner AM and
AM+1 are h-stable on their respective policy classes Π̃M and Π̃M+1 by assumption (removing
a single policy usually does not impede h-stability, see e.g. Appendix B). Further, denote by
πi? = argminπ∈Π̃i

Ea∼π,x∼D[r(a, x)] a best policy in policy class Π̃i. We can use these insights

and definition to derive the following lower-bound on C̃Rewi(t0, t) for i ∈ {M,M + 1} that holds

41

uniformly with probability at least 1− poly(M)δ

C̃Rewi(t0, t)

≥
t∑

`=t0+1

r`(a
i
`, x`)−O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(Lemma 23)

≥ max
π′∈Π̃i

t∑
`=t0+1

Ea∼π′ [r`(a, x`)]−O
(
R(Π̃i)

√
t− t0
ρi

ln
t− t0
δ

+
1

ρi
ln

ln(t− t0)

δ

)
(h-stability of Ai)

≥
t∑

`=t0+1

Ea∼πi? [r`(a, x`)]−O
(
R(Π̃i)

√
t− t0
ρi

ln
t− t0
δ

+
1

ρi
ln

ln(t− t0)

δ

)
(πi? ∈ Π̃i)

≥
t∑

`=t0+1

Ea∼πi?,x∼D[r(a, x)]−O
(
R(Π̃i)

√
t− t0
ρi

ln
t− t0
δ

+
1

ρi
ln

ln(t− t0)

δ

)

−O

(√
(t− t0) ln

ln t

δ

)
(Lemma 43)

=

t∑
`=t0+1

Ea∼πi?,x∼D[r(a, x)]−O
(
R(Π̃i)

√
t− t0
ρi

ln
t− t0
δ

+
1

ρi
ln

ln(t− t0)

δ

)
.

Conversely, using similar concentration arguments, we can derive the following upper-bound for
C̃Rewi(t0, t) for i ∈ {M,M + 1} that holds uniformly with probability at least 1− poly(M)δ:

C̃Rewi(t0, t)

≤
t∑

`=t0+1

r`(a
i
`, x`) +O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(Lemma 23)

≤
t∑

`=t0+1

Ea∼πi` [r`(a, x`)] +O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(Lemma 23)

≤
t∑

`=t0+1

Ea∼πi`,x∼D[r(a, x)] +O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(Lemma 43)

≤
t∑

`=t0+1

Ea∼πi?,x∼D[r(a, x)] +O

(√
t− t0
ρi

ln
ln(t− t0)

δ
+

1

ρi
ln

ln(t− t0)

δ

)
(def. of πi?)

Note that ∆π̂ = Ea∼πM? ,x∼D[r(a, x)]− Ea∼πM+1
? ,x∼D[r(a, x)] which is either ∆ if π̂ = π? or 0 if

π̂ 6= π?. Combining the bounds on C̃Rewi with a union bound, we can derive the following deviation
bound

−O

(R(Π̃M)
√
ρM

+
1

√
ρM+1

)√
ln t−t0

δ

t− t0
+

(
1

ρM
+

1

ρM+1

)
ln ln(t−t0)

δ

t− t0

≤ C̃RewM (t0, t)− C̃RewM+1(t0, t)

t− t0
−∆π̂ ≤

+O

(R(Π̃M+1)
√
ρM+1

+
1
√
ρM

)√
ln t−t0

δ

t− t0
+

(
1

ρM
+

1

ρM+1

)
ln ln(t−t0)

δ

t− t0

 .

We can further simplify those bounds by noting thatR(Π̃M+1) ≤ R(Π̃M) and thus also ρM+1 ≥ ρM
since Π̃M is identical to Π̃M+1 but contains two more policies. Thus, we can bound the magnitude

42

of the upper and lower bound further by

O

R(Π̃M)
√
ρM

√
ln t−t0

δ

t− t0
+

1

ρM

ln ln(t−t0)
δ

t− t0

 .

We now rebind δ by δ
n2 and apply a union bound over all restarts of Arbe-Gap. Thus, we can choose

a constant in the definition of

W(t0, t) = Θ

R(Π̃M)
√
ρM

√
ln n(t−t0)

δ

t− t0
+

1

ρM

ln n ln(t−t0)
δ

t− t0

large enough so that

−W(t0, t) ≤
C̃RewM (t0, t)− C̃RewM+1(t0, t)

t− t0
−∆π̂ ≤W(t0, t)

holds for all t in all possible restarts of Arbe-Gap with the desired 1− poly(M)δ probability.

The lemma above immediately implies the correctness of the first phase, in the sense that if the
algorithm moves on to the second phase in a stochastic environment, the candidate policy has to be
optimal and the gap estimate is accurate up to a multiplicative factor:
Corollary 32. Consider a run of Algorithm 2 with inputs n = 1, t0 = 0, arbitrary policy policy
π̂ ∈ ΠM andM base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤ R(Π̃2) ≤ · · · ≤ R(Π̃M) where Π̃i is
the extended version of policy class Πi with (M + 1− i) additional actions. Assume the environment
B is stochastic and there is a policy π? with gap ∆ > 0. Then with probability at least 1− poly(M)δ

the policy π̂ and gap estimate ∆̂ passed to Arbe-GapExploit satisfy

π̂ = π? and ∆̂ ≤ ∆ ≤ 2∆̂.

Proof. The statement follows from Lemma 31 and the condition in Line 14 of Algorithm 2. First,
note that the test cannot trigger when π̂ 6= π? since ∆̂t ≤ 0 in this case. Second, since ∆̂ satisfies
2W (t0, t) ≤ ∆̂ and ∆̂ ≤ ∆ ≤ ∆̂ + 2W (t0, t) when the test triggers, we have

∆̂ ≤ ∆ ≤ ∆̂ + 2W (t0, t) ≤ 2∆̂ ,

as claimed.

We now move on to show that if there is a policy with a gap, the alorithm has to identify it within a
certain number of rounds:
Lemma 33 (Arbe-Gap selects the right candidate policy). Consider a run of Algorithm 2 with inputs
t0 = 0, arbitrary policy policy π̂ ∈ ΠM and M base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤
R(Π̃2) ≤ · · · ≤ R(Π̃M) where Π̃i is the extended version of policy class Πi with (M + 1 − i)
additional actions. Assume the environment B is stochastic and there is a policy π? with gap ∆ > 0.
Then with probability at least 1− poly(M)δ the number of rounds until π? is always chosen as the
candidate policy π̂ is bounded as

O

((
M2 +

R(Π̃i?)2

R(Π̃1)2
i?

)
R(Π̃i?)2i?

∆2
ln2 MR(Π̃i?)

∆δ

)
.

Proof. By Lemma 30, with probability at least 1− poly(M)δ the regret of Arbe-Gap is bounded for
all rounds t ∈ [2i?, tgap] as

RegM(t,ΠM) = O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t(ln(t) + i?) ln

t

δ

)

= O

((
MR(Π̃i?)

√
i? +

R(Π̃i?)2

R(Π̃1)
i?

)
√
t ln

t

δ

)
.

43

By the concentration argument in Lemma 42, the same bound can be established for the pseudo-regret

PseudoRegM(t,ΠM) ≤ c

(
MR(Π̃i?)

√
i? +

R(Π̃i?)2

R(Π̃1)
i?

)
√
t ln

t

δ
(32)

for some sufficiently large absolute constant c. Now denote γ = c
(
MR(Π̃i?)

√
i? +

R(Π̃i?)2

R(Π̃1)
i?

)
and

consider the value

t′ =
162γ2

∆2
ln2 8γ

∆δ
.

Then by the properties of ln(t)√
t

investigated in Lemma 52, we can bound for t ≥ t′

PseudoRegM(t,ΠM) ≤ γ
√
t ln

t

δ
(Equation 32)

= γt
ln(t/δ)√

t
≤ γt ∆

4γ
(Lemma 52)

=
t

4
∆ .

We have shown that the adversarial regret rate implies that the pseudo-regret for rounds t ≥ t′ has to
be bounded by t

4∆. Since each policy but π? incurs a pseudo-regret at least ∆ per round, Arbe-Gap
has to select π? in at least 3

4 t among all t rounds to satisfy this pseudo-regret bound. As a result,
a switch of the candidate policy to π? would be triggered if it is not already the candidate policy.
Further, no other policy can be selected more than a quarter of the times, thus the candidate policy
has to be π? in all rounds t ≥ t′.

Lemma 34 (Number of Rounds in the First Phase). Consider a run of Algorithm 2 with inputs
t0 = 0, n = 1, arbitrary policy π̂ ∈ ΠM and M base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤
R(Π̃2) ≤ · · · ≤ R(Π̃M) where Π̃i is the extended version of policy class Πi with (M + 1 − i)
additional actions. Assume the environment B is stochastic and there is a policy π? with gap ∆ > 0.
Then with probability at least 1 − poly(M)δ the number of rounds until the algorithm enters the
second phase by calling ArbeGap-Exploit is bounded as

O

((
R(Π̃M)4

R(Π̃1)2
+MR(Π̃i?)2

)
Mi?
∆2

ln2 MR(Π̃i?)

∆δ

)
.

Proof. By Lemma 33, after a certain number of rounds tpol, the candidate policy has to be π? at all
rounds. Hence, there can be no restarts due to candidate policy switches anymore. According to
Lemma 28, there can only be up to i? restarts after round tpol due to elimination of a base learner. We
will in the following show that if ArbeGap has been (re)started with candidate policy π? and there
are no other restarts in the meantime, it has to switch to the second phase within a certain number of
rounds k. The total number of rounds in the first phase, is then bounded by

tpol + i? · k .

We will now show a bound on k. By Lemma 31, we have at all times that ∆̂t ≤ ∆ (since π̂ = π? by
assumption) and the algorithm moves on to the second phase as soon as 2W (t0, t) ≤ ∆̂t. Note that
the condition of ∆̂t ≤ ∆ ≤ 1 ≤ R(Π̃M)2 is always satisfies in stochastic environments. Hence,the
algorithm cannot stay in the first phase if 2W (t0, t) ≤ ∆ or, plugging in the definition of W (t0, t)
with an appropriate absolute constant c

cR(Π̃M)
√
ρM

√
ln n(t−t0)

δ

t− t0
+

c

ρM

ln n ln(t−t0)
δ

t− t0
≤ ∆.

Hence, we can obtain an value for the bound k by identifying a value that satisfies

ln k
δ/n

k
≤ ∆ρM

2c
and

ln k
δ/n

k
≤ ∆2ρM

4c2R(Π̃M)2
.

44

Since ∆ ∈ (0, 1] and c,R(Π̃M) ≥ 1 without loss of generality, it is sufficient to only consider the
condition on the right. By Lemma 53, we can set k as

k =
16c2R(Π̃M)2

∆2ρM
ln

(
2n

δ

4c2R(Π̃M)2

∆2ρM

)
= O

(
MR(Π̃M)4

R(Π̃1)2∆2
ln
R(Π̃M)

δ∆

)
,

where we used the fact that n ≤ ln tpol + i? = O
(
R(Π̃M)
δ∆

)
. Hence, the total length of the first phase

can be at most

tpol + i? · k = O

(
i?MR(Π̃M)4

R(Π̃1)2∆2
ln
R(Π̃M)

∆δ
+

(
M2 +

R(Π̃i?)2

R(Π̃1)2
i?

)
R(Π̃i?)2i?

∆2
ln2 MR(Π̃i?)

∆δ

)

= O

((
R(Π̃M)4

R(Π̃1)2
+MR(Π̃i?)2

)
Mi?
∆2

ln2 MR(Π̃i?)

∆δ

)

= O

(
M2i?R(Π̃M)4

R(Π̃1)2∆2
ln2 MR(Π̃M)

∆δ

)
,

as claimed.

Lemma 35 (Pseudo-Regret of the First Phase). Consider a run of Algorithm 2 with inputs t0 =

0, n = 1, arbitrary policy π̂ ∈ ΠM and M base learners A1, . . . ,AM with 1 ≤ R(Π̃1) ≤ R(Π̃2) ≤
· · · ≤ R(Π̃M) where Π̃i is the extended version of policy class Πi with (M + 1 − i) additional
actions. Assume the environment B is stochastic and there is a policy π? with gap ∆ > 0. Let tgap
be the round where ArbeGap-Exploit was called. Then with probability at least 1− poly(M)δ, the
pseudo-regret in all rounds t ∈ [2i?, tgap] is bounded as

PseudoRegM(t,ΠM) = O

(
R(Π̃i?)2R(Π̃M)2

R(Π̃1)2

M2i?
∆

ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)
.

Proof. First, we bound the pseudo-regret by regret through a simple concentration argument in
Lemma 42

PseudoRegM(t,ΠM) ≤ RegM(t,ΠM) +O

(√
t ln

ln t

δ

)
.

Next, we bound the regret by Lemma 30 which holds for any environment (adversarial but also
stochastic). This yields

PseudoRegM(t,ΠM) = O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)√
t(ln(t) + i?) ln

t

δ

)
and finally, we use the bound on t ≤ tgap, the length of the first phase from Lemma 34 to replace
t(ln(t) + i?) above which gives

PseudoRegM(t,ΠM)

= O

((
MR(Π̃i?) +

R(Π̃i?)2

R(Π̃1)

√
i?

)
R(Π̃M)2

R(Π̃1)

M
√
i?

∆
ln

(
MR(Π̃M)

∆δ

)√
(ln(t) + i?) ln

t

δ

)

= O

((
M +

R(Π̃i?)

R(Π̃1)

√
i?

)
Mi?R(Π̃i?)R(Π̃M)2

R(Π̃1)∆
ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)

= O

(
M2i?R(Π̃i?)2R(Π̃M)2

R(Π̃1)2∆
ln

(
MR(Π̃M)

∆δ

)
ln
t

δ

)
,

as claimed.

45

D.3 Analysis of Arbe-GapExploit

In this section we prove the following result:
Lemma 36 (Guarantee for Second Phase). Let A be an h-stable learner with policy class ΠA. Then
the regret of Algorithm 4 against ΠA ∪ {π̂} is bounded with probability at least 1 − O(δ) for all
rounds t > t0 that the algorithm has not terminated yet as

RegM([t0 + 1, t],ΠA ∪ {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
.

Further, if the environment is stochastic with an optimal policy π? that has a gap ∆ compared to the
best policy in ΠA and the inputs satisfy π̂ = π? and ∆̂ ≤ ∆ ≤ 2∆̂, then with probability at least
1−O(δ) the pseudo-regret of Algorithm 4 is bounded in all rounds t > t0 as

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) = O
(
R(ΠA)2

∆

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆δ

))
and the algorithm never terminates.

D.3.1 Guarantees for stochastic environments

Lemma 37 (Algorithm 4 does not terminate in stochastic environemnts). Assume the environment
is stochastic and there is an optimal policy π? with a gap ∆ compared to the best policy in ΠA. If
Algorithm 4 is called with inputs π̂ = π? and ∆̂ ≤ ∆ ≤ 2∆̂, then with probability at least 1−O(δ)
it never terminates.

Proof. Let e be an arbitrary epoch. By following the steps of Lemma 23, we can show that with
probability at least 1−O(δe) for all time steps in epoch e∣∣∣∣∣C̃Rew1(te + 1, t)−

t∑
`=te+1

r`(a
1
` , x`)

∣∣∣∣∣ ≤ O
(√

t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)
∣∣∣∣∣C̃Rew0(te + 1, t)−

t∑
`=te+1

r`(a
0
` , x`)

∣∣∣∣∣ ≤ O
(√

t− te
1− ρe

ln
ln(t− te)

δe
+

1

1− ρe
ln

ln(t− te)
δe

)
and for i ∈ {0, 1}∣∣∣∣∣

t∑
`=te+1

r`(a
i
`, x`)−

t∑
`=te+1

Ea∼πi` [r`(a, x`)

∣∣∣∣∣ ≤ O
√(t− te) ln

ln(t− te)
δe

 .

Combining these bound together with Lemma 42, we have with π?,A being the best policy in ΠA

C̃Rew0(te + 1, t)− C̃Rew1(te + 1, t)

≤
t∑

`=te+1

[
Ea∼π0

` ,x∼D[r(a, x)]− Ea∼π1
` ,x∼D[r(a, x)]

]

+O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)

=

t∑
`=te+1

[
Ea∼π?,x∼D[r(a, x)]− Ea∼π?,A,x∼D[r(a, x)]

]
+O

(√
t− te
ρe

ln
ln(t− te)

δe

)

+

t∑
`=te+1

[
Ea∼π?,A,x∼D[r(a, x)]− Ea∼π1

` ,x∼D[r(a, x)]
]

+O
(

1

ρe
ln

ln(t− te)
δe

)

= ∆(t− te) + PseudoRegA([te + 1, t],ΠA) +O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)

46

≤ ∆(t− te) + RegA([te + 1, t],ΠA) +O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)
(Lemma 42)

≤ ∆(t− te) +O
(
R(ΠA)

√
t− te
ρe

ln
t− te
δe

+
1

ρe
ln

ln(t− te)
δe

)
(A is h-stable)

≤ 2∆̂(t− te) +O
(
R(ΠA)

√
t− te
ρe

ln
t− te
δe

+
1

ρe
ln

ln(t− te)
δe

)
(∆ ≤ 2∆̂)

where we used the fact that ρe ≤ 1/2 ≤ 1 − ρe by the choice of constants (see Lemma 39). This
chain of inequalities holds with probability 1 − O(δe). Combining this with a union bound, this
implies that with this probability at least 1−O(δ), the test Line 16 never triggers. Similarly, we can
lower-bound the same term as

C̃Rew0(te + 1, t)− C̃Rew1(te + 1, t)

≥
t∑

`=te+1

[
Ea∼π0

` ,x∼D[r(a, x)]− Ea∼π1
` ,x∼D[r(a, x)]

]

−O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)

≥
t∑

`=te+1

[
Ea∼π?,x∼D[r(a, x)]− Ea∼π?,A,x∼D[r(a, x)]

]
(π0
` = π?)

−O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)

≥ ∆(t− te)−O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)

≥ ∆̂(t− te)−O

(√
t− te
ρe

ln
ln(t− te)

δe
+

1

ρe
ln

ln(t− te)
δe

)
(∆̂ ≤ ∆)

Hence, after combining these statements with a union bound, this implies that with this probability
at least 1−O(δ), the test Line 14 never triggers. A final union bound for both tests completes the
proof.

Lemma 38 (Pseudo-regret of Algorithm 4). Assume the environment is stochastic and there is an
optimal policy π? with a gap ∆. If Algorithm 4 is called with inputs π̂ = π? and ∆̂ = Θ(∆), then
the pseudo-regret of the algorithm is bounded with probability at least 1−O(δ) as

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) = O
(
R(ΠA)2

∆

(
ln
R(ΠA)

∆δ
+ ln(t) ln

t

δ

))
for all rounds t ≥ t0 where the algorithm has not terminated.

Proof. The pseudo-regret of Algorithm 4 can be decomposed into the regret in each epoch as

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) =

j(t)∑
e=0

PseudoRegM([te + 1, t′e], {π̂} ∪ΠA)

47

where t′e = min{te+1, t} and j(t) = min{e ∈ N : te+1 ≥ t} is the epoch at time t. We consider the
regret in each epoch separately as

PseudoRegM([te + 1, t′e], {π̂} ∪ΠA)

=

t′e∑
`=te+1

(Ea∼π?,x∼D[r(a, x)]− Ea∼πt,x∼D[r(a, x)])

=

t′e∑
`=te+1

b`

(
Ea∼π?,x∼D[r(a, x)]− Ea∼π1

` ,x∼D[r(a, x)]
)

(π̂ = π?)

≤
t′e∑

`=te+1

b`

(
∆ + Ea∼π?A ,x∼D[r(a, x)]− Ea∼π1

` ,x∼D[r(a, x)]
)

where π?A is the best policy in ΠA which incurs a pseudo-regret of at most ∆ per round. We now apply a
concentration argument. Denote Y` = 1 {` > te}

(
∆ + Ea∼π?A ,x∼D[r(a, x)]− Ea∼π`,x∼D[r(a, x)]

)
and let F` be the sigma-field that includes {π1

t }`t>t0 , {bt}`−1
t>t0 and te. Note that Y` is F`-measurable

and
∑t′e
`=te+1(b` − ρe)Y` is a martingale difference sequence w.r.t. F`. Since |(b` − ρe)Y`| ≤ 2 and

the sequence of conditional variance is bounded as V` =
∑t′e
`=te+1 ρ

e(1− ρe)Y` ≤
∑t′e
`=te+1 ρ

eY`,
we can apply Lemma 47 and get with probability at least 1− δe for all rounds te ≤ t̃ ≤ te+1

t̃∑
`=te+1

(b` − ρe)Y` ≤ O

√√√√ t̃∑
`=te+1

ρeY` ln
ln(t̃− te)

δe
+ ln

ln(t̃− te)
δe

≤

t̃∑
`=te+1

ρeY`+ ≤ O
(

ln
ln(t̃− te)

δe

)
(AM-GM inequality)

This holds in particular for t̃ = t′e and with shorthand k′e = t′e − te, this gives

PseudoRegM([te + 1, t′e], {π̂} ∪ΠA)

≤ 2ρe
t′e∑

`=te+1

(
∆ + Ea∼π?A ,x∼D[r(a, x)]− Ea∼π`,x∼D[r(a, x)]

)
+O

(
ln

ln(k′e)

δe

)
= 2ρek′e∆ + ρe PseudoRegA([te + 1, t′e],ΠA) +O

(
ln

ln(k′e)

δe

)

≤ 2ρek′e∆ + ρe RegA([te + 1, t′e],ΠA) +O

ρe√k′e ln
ln(k′e)

δe
+ ln

ln(k′e)

δe

 (Lemma 42)

≤ 2ρek′e∆ +O

(
ρeR(ΠA)

√
k′e
ρe

ln
k′e
δe

+ ln
ln(k′e)

δe

)
(A is h-stable)

≤ 2ρek′e∆ +O

(
R(ΠA)

√
ρek′e ln

k′e
δe

+ ln
ln(k′e)

δe

)

≤ O

(
R(ΠA)2∆

∆̂2
ln
ke
δe

+R(ΠA)

√
R(ΠA)2

∆̂2
ln

(
ke
δe

)
ln
k′e
δe

+ ln
ln(k′e)

δe

)
(definition of ρe and k′e ≤ ke)

≤ O
(
R(ΠA)2

∆
ln
ke
δe

)
(∆̂ = Θ(∆))

48

Now, we can combine this pseudo-regret bound across all epochs and get

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) ≤
j(t)∑
e=0

O
(
R(ΠA)2

∆
ln
ke
δe

)
≤ O

(
j(t)

R(ΠA)2

∆
ln
tj(t)

δ

)
= O

(
R(ΠA)2

∆
ln(t) ln

t

δ

)
(j(t) = O(ln(t)))

when j(t) ≥ 1 since ke ≤ kj(t) ≤ 2t in this case. In the other case, where j(t) = 0, we have

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) ≤ O
(
R(ΠA)2

∆
ln
k0

δ0

)
≤ O

(
R(ΠA)2

∆
ln
R(ΠA)

∆δ

)
.

Hence, combining both cases gives the final bound

PseudoRegM([t0 + 1, t], {π̂} ∪ΠA) = O
(
R(ΠA)2

∆

(
ln
R(ΠA)

∆δ
+ ln(t) ln

t

δ

))
.

D.3.2 Exploitation Subroutine Guarantees for Adversarial Environments

Lemma 39. Assume the absolute constant in the length of the initial epoch k0 of Algorithm 4 is
chosen large enough. Then the regret of Algorithm 4 against ΠA is bounded with probability at least
1−O(δ) for all rounds t that the algorithm has not terminate yet as

RegM([t0 + 1, t],ΠA) = O(∆̂k0).

Proof. Consider any round t > t0 before the test in Line 14 or 16 triggers. The total reward in relevant
rounds can be decomposed into epochs e = 0, . . . , j(t) as follows where j(t) = max{e ∈ N : te < t}
is the epoch of round t and t′e = min{te+1, t}.

t∑
`=t0+1

r`(a`, x`) =

j(t)∑
e=0

t′e∑
`=te+1

r`(a`, x`)

Further, let k′e = t′e − te be the number of rounds in the e-th epoch and consider now a single epoch
e. We can write

t′e∑
`=te+1

r`(a`, x`)

= ρeC̃Rew1(te + 1, t′e) + (1− ρe)C̃Rew0(te + 1, t′e)

≥ ρeC̃Rew1(te + 1, t′e) + (1− ρe)
(

C̃Rew1(te + 1, t′e) + ∆̂k′e − V (t′e)k
′
e

)
(first test did not trigger)

≥ C̃Rew1(te + 1, t′e) + (1− ρe)
(

∆̂k′e − V (t′e)k
′
e

)
≥

t′e∑
`=te+1

r`(a
1
` , x`) + (1− ρe)

(
∆̂k′e − V (t′e)k

′
e

)
−O

(√
k′e
ρe

ln
ln(k′e)

δe
+

1

ρe
ln

ln(k′e)

δe

)
(see proof of Lemma 37)

≥ max
π∈ΠA

t′e∑
`=te+1

Ea∼π[r`(a, x`)]−O

(
R(ΠA)

√
k′e
ρe

ln
k′e
δe

+
1

ρe
ln

ln(k′e)

δe

)
+ (1− ρe)

(
∆̂k′e − V (t′e)k

′
e

)
(A is h-stable)

49

≥ max
π∈ΠA

t′e∑
`=te+1

Ea∼π[r`(a, x`)] + (1− ρe)∆̂k′e −O

(
R(ΠA)

√
k′e
ρe

ln
k′e
δe

+
1

ρe
ln

ln(k′e)

δe

)
(definition of V (t′e))

Hence, by rearranging terms, we get that the regret in a single epoch is bounded as

RegM([te + 1, t′e],ΠA) ≤ (ρe − 1)∆̂k′e +O

(
R(ΠA)

√
k′e
ρe

ln
k′e
δe

+
1

ρe
ln

ln(k′e)

δe

)
.

To further upper-bound these terms, we first derive useful expression for the inverse probability
of playing A. Here, we make the constants in the definition of the initial epoch length k0 explicit.
Specifically, we assume that k0 = c0R(ΠA)2

∆̂2
ln 2c0R(ΠA)

∆̂δ
where c0 is the absolute constant. We have

1

ρe
=

ke∆̂
2

cρR(ΠA)2 ln ke
δe

Plugging this bound on the inverse probability back into the expression for the regret per epoch above,
we get with c as the constant in the O notation

RegM([te + 1, t′e],ΠA) ≤ (ρe − 1)∆̂k′e + ∆̂

√
6ck′eke
cρ

+
6c∆̂2ke
c0R(ΠA)2

= ∆̂k′e

(
−1 + ρe +

√
6cke
cρk′e

+
6c∆̂ke

k′ecρR(ΠA)2

)

≤ ∆̂

2

(
−k′e +

√
12c

cρ
kek′e +

12c

cρ

∆̂

R(ΠA)
ke

)
. (ρe ≤ 1/2)

In the last step, we used ρe ≤ ρ0 ≤ 1/2 which we can establish by choosing the constants cρ and c0
in the definition of ρ and k0 appropriately. Specifically,

ρe ≤ ρ0 = cρ
R(ΠA)2 ln k0

δ0

∆̂2k0

=
cρ
c0

ln k0

δ0

ln R(ΠA)

δ∆̂

≤ cρ
c0

ln c0R(ΠA)3

δ2∆̂3

ln c0R(ΠA)

δ∆̂

≤ 3
cρ
c0
.

Thus, choosing c0 ≥ 6cρ is sufficient to ensure ρe ≤ 1/2. Summing now the bound above over
epochs gives

RegM([t0 + 1, t],ΠA) ≤ ∆̂

2

−t+ t0 +

√
12c

cρ

j(t)∑
e=0

√
kek′e +

12c

cρ

∆̂

R(ΠA)

j(t)∑
e=0

ke

 .

We now distinguish between two cases. First consider the case where j(t) ≥ 1 and assume that
cρ ≥ 9 · 12c. Since in this case, the number of rounds t− t0 is at least half the sum of epoch lengths,∑j(t)
e=0 ke, we have

RegM([t0 + 1, t],ΠA) ≤ ∆̂

2

−t+ t0 +
1

3

j(t)∑
e=0

√
kek′e +

1

9

j(t)∑
e=0

ke

≤ ∆̂

2

−t+ t0 +
4

9

j(t)∑
e=0

ke

 ≤ ∆̂

2

(
−t+ t0 +

8

9
(t− t0)

)
≤ 0 .

In the other case, when j(t) = 0, we have

RegM([t0 + 1, t],ΠA) ≤ ∆̂

2

(
−k′0 +

√
12c

cρ

√
k0k′0 +

12c

cρ

∆̂

R(ΠA)
k0

)
= O(∆̂k0).

Hence, the regret against ΠA is always bounded as

RegM([t0 + 1, t],ΠA) = O(∆̂k0).

50

Lemma 40. The regret of Algorithm 4 against π̂ is bounded with probability at least 1−O(δ) for
all rounds t that the algorithm has not terminated yet as

RegM([t0 + 1, t], {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
.

Proof. Consider any round t > t0 before the test in Line 14 or 16 triggers. The total reward in relevant
rounds can be decomposed into epochs e = 0, . . . , j(t) as follows where j(t) = max{e ∈ N : te < t}
is the epoch of round t and t′e = min{te+1, t}.

t∑
`=t0+1

r`(a`, x`) =

j(t)∑
e=0

t′e∑
`=te+1

r`(a`, x`)

Further, let k′e = t′e − te be the number of rounds in the e-th epoch and consider now a single epoch
e. We can write

t′e∑
`=te+1

r`(a`, x`)

= (1− ρe)C̃Rew0(te + 1, t′e) + ρeC̃Rew1(te + 1, t′e)

≥ (1− ρe)C̃Rew0(te + 1, t′e) + ρe
(

C̃Rew0(te + 1, t′e)− 4∆̂k′e − V (t′e)k
′
e

)
(second test did not trigger)

≥ C̃Rew0(te + 1, t′e)− ρe
(

4∆̂k′e + V (t′e)k
′
e

)
≥

t′e∑
`=te+1

r`(a
1
` , x`)− ρe

(
4∆̂k′e + V (t′e)k

′
e

)
−O

(√
k′e

1− ρe
ln

ln(k′e)

δe
+

1

1− ρe
ln

ln k′e
δe

)
(see proof of Lemma 37)

≥
t′e∑

`=te+1

Ea∼π̂[r`(a, x`)]− ρe
(

4∆̂k′e + V (t′e)k
′
e

)
−O

(√
k′e

1− ρe
ln

ln(k′e)

δe
+

1

1− ρe
ln

ln k′e
δe

)
.

The last step here follows since ρek′eV (t′e) ≤ O(R(ΠA)
√
ρek′e ln

k′e
δe

+ ln
ln k′e
δe

) By rearranging
terms, we can bound the regret against π̂ in epoch e as

RegM([te + 1, t′e], {π̂})

≤ O

(
ρek′e(∆̂ + V (t′e)) +

√
k′e

1− ρe
ln
k′e
δe

+
1

1− ρe
ln

ln k′e
δe

)

≤ O

(
R(ΠA)2

∆̂
ln
ke
δe

+

√
k′e

1− ρe
ln
k′e
δe

+
1

1− ρe
ln

ln k′e
δe

)
(definition of ρe, V (t′e) and ke ≥ k′e)

≤ O

(
R(ΠA)2

∆̂
ln
ke
δe

+

√
k′e

1− ρe
ln
k′e
δe

+
1

1− ρe
ln

ln k′e
δe

)

≤ O

(
R(ΠA)2

∆̂
ln
ke
δe

+

√
k′e ln

k′e
δe

+ ln
ln k′e
δe

)
(ρe ≤ 1/2)

≤ O

(
R(ΠA)2

∆̂
ln
ke
δe

+

√
k′e ln

k′e
δe

)
.

51

Note that ρe ≤ 1/2 holds for appropriate constants in the definition of k0 and ρe (see Lemma 39).
We can now sum the regret over all epochs e and get

RegM([t0 + 1, t], {π̂}) ≤
j(t)∑
e=0

O

(
R(ΠA)2

∆̂
ln
ke
δe

+

√
k′e ln

k′e
δe

)

≤
j(t)∑
e=0

O

(
R(ΠA)2

∆̂
ln

(j(t) + 1)kj(t)

δ
+

√
k′e ln

(j(t) + 1)kj(t)

δ

)

≤ O

(
(j(t) + 1)

R(ΠA)2

∆̂
ln

(j(t) + 1)kj(t)

δ
+

√
(j(t) + 1)(t− t0) ln

(j(t) + 1)kj(t)

δ

)
.

We now distinguish between two cases. First, j(t) = 0, in which case

RegM([t0 + 1, t], {π̂}) = O

(
R(ΠA)2

∆̂
ln
R(ΠA)

∆δ
+

√
k0 ln

R(ΠA)

∆̂δ

)

= O
(
R(ΠA)2

∆̂
ln
R(ΠA)

∆̂δ

)
and the case where j(t) > 0, where j(t) = O(ln(t− t0)) = O(ln(t)) and kj(t) ≤ 2(t− t0)

RegM([t0 + 1, t], {π̂}) = O

(
R(ΠA)2

∆̂
ln(t− t0) ln

t− t0
δ

+

√
(t− t0) ln(t− t0) ln

t− t0
δ

)

= O

(
R(ΠA)2

∆̂
ln(t) ln

t

δ
+

√
(t− t0) ln(t) ln

t

δ

)
.

Combining both cases gives

RegM([t0 + 1, t], {π̂}) = O
(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ̂

)
.

Lemma 41 (Regret in adversarial environments). Assume the absolute constant in the length of the
initial epoch k0 and sampling probabilities ρe of Algorithm 4 is chosen large enough. Then the regret
of Algorithm 4 against ΠA ∪ {π̂} is bounded with probability at least 1−O(δ) for all rounds t that
the algorithm has not terminated yet as

RegM([t0 + 1, t],ΠA ∪ {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
.

Proof. By combining Lemma 39 and Lemma 40, we have

RegM([t0 + 1, t],ΠA ∪ {π̂})

= O

(
∆̂k0 +

R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
and by plugging in the definition of k0, we get

RegM([t0 + 1, t],ΠA ∪ {π̂}) = O

(
R(ΠA)2

∆̂

(
ln(t) ln

t

δ
+ ln

R(ΠA)

∆̂δ

)
+

√
(t− t0) ln(t) ln

t

δ

)
.

52

D.4 Concentration Bounds in Stochastic Environments

Lemma 42. In stochastic environments, the regret and pseudo-regret of any algorithm A against a
policy class Π′ satisfy with probability at least 1− δ for all rounds t ∈ N

PseudoRegA(t,Π′)− RegA(t,Π′) = O

(√
t ln

ln t

δ

)
. (33)

Proof. Let π? ∈ argmaxπ∈Π′ Ea∼π,x∼D[r(a, x)] be the best policy in Π′. Then

PseudoRegA(t,Π′)− RegA(t,Π′)

=

t∑
`=1

Ea∼π?,x∼D[r(a, x)]−
t∑
`=1

Ea∼π`,x∼D[r(a, x)]

−

(
max
π′∈Π′

t∑
`=1

Ea∼π′ [r`(a, x`)]−
t∑
`=1

r`(a`, x`)

)

=

t∑
`=1

r`(a`, x`)−
t∑
`=1

Ea∼π`,x∼D[r(a, x)]

+

t∑
`=1

Ea∼π?,x∼D[r(a, x)]− max
π′∈Π′

t∑
`=1

Ea∼π′ [r`(a, x`)]

≤
t∑
`=1

r`(a`, x`)−
t∑
`=1

Ea∼π`,x∼D[r(a, x)]

+

t∑
`=1

Ea∼π?,x∼D[r(a, x)]−
t∑
`=1

Ea∼π? [r`(a, x`)] (π? ∈ Π′)

≤ 2× 1.44

√
max(2t, 2)

(
1.4 ln ln

(
2

(
max

(
2t

2
, 1

)))
+ ln

5.2

δ

)
(Lemma 46)

= O

(√
t ln

ln t

δ

)
.

Here, the last main step is to apply the time-uniform Hoeffding bound from Lemma 46 to the the
two differences individually. Both are martingale sequences that are bounded, i.e., r`(a`, x`) −
Ea∼π`,x∼D[r(a, x)] ∈ [−1, 1] and Ea∼π?,x∼D[r(a, x)]− Ea∼π? [r`(a, x`)] ∈ [−1, 1].

Lemma 43. Let t0 ∈ N be a possibly random time and let {π`}`≥t0 be a possibly random sequence of
policies π` : X → ∆A so that for all ` ≥ t0, π` is independent of {(rj , xj)}j≥` and t0 is independent
of {(rj , xj)}j≥t0 . Then with probability at least 1− 2δ∣∣∣∣∣

t∑
`=t0+1

[Ea∼π` [r`(a, x`)]− Ea∼π`,x∼D[r(a, x)]]

∣∣∣∣∣ = O

(√
(t− t0) ln

ln(t− t0)

δ

)
.

Proof. Define the sigma-algebra F` = σ({rj , xj , πj}j≤` ∪ {π`, t0}) and let

Z` =

{
0 if ` ≤ t0
Ea∼π` [r`(a, x`)]− Ea∼π`,x∼D[r(a, x)] otherwise.

53

The sequence {Z`}`∈N is a martingale difference sequence w.r.t. F` and Z` ∈
[−1 {` > t0} ,+1 {` > t0}]. As a result, we can apply Lemma 46 and get that

t∑
`=t0+1

[Ea∼π` [r`(a, x`)]− Ea∼π`,x∼D[r(a, x)]] =

t∑
`=1

Zt

≤ 1.44

√
max(2(t− t0), 2)

(
1.4 ln ln

(
2

(
max

(
2(t− t0)

2
, 1

)))
+ ln

5.2

δ

)

= O

(√
(t− t0) ln

ln(t− t0)

δ

)
holds for all t with probability at least 1− δ. Applying the same argument to −Z` and a union bound
completes the proof.

Notice that, because contexts are i.i.d., a simple anytime Hoeffding bound implies the random variable
MaxRew(t) (recall this quantity is defined as the maximum sum of pseudo-expectations over realized
contexts) is larger than tEa∼π?(·|x),x∼D [r(a, x)] (up to a factor of Õ(

√
t)).

Lemma 44. If the environment B is stochastic then with probability at least 1− δ

tEa∼π?(·|x),x∼D [r(a, x)] ≤ max
π∈Π

t∑
`=1

Ea∼π [r`(a, x`)] +O

(√
t ln

t

δ

)
for all t ∈ N.

Proof. Consider the martingale sequence {Z`}∞`=1 defined as Z` = Ea∼π?(·|x),x∼D [r(a, x)] −
Ea∼π?(·|xt) [r(a, x)|xt]. By definition |Z`| ≤ 2 for all `. Therefore by an anytime Hoeffding bound
(Lemma 46 in Appendix E), with probability at least 1− δ,

t∑
`=1

Z` = O

(√
t ln

t

δ

)
for all t ∈ N. Thus,

tEa∼π?(·|x),x∼D [r(a, x)] ≤
t∑
`=1

Ea∼π? [r`(a, x`)] +O

(√
t ln

t

δ

)

≤ max
π∈Π

t∑
`=1

Ea∼π [r`(a, x`)] +O

(√
t ln

t

δ

)

Lemma 44 implies that an algorithm that an algorithm that competes with MaxRew(t) in turn can
compete against tEa∼π?(·|x),x∼D [r(a, x)]. This fact will help us argue that an adversarial algorithm
has good performance in a stochastic environment.

Let’s show that when the contexts are i.i.d., the counterfactual reward of any algorithm that decides

what policy to play before the context is revealed is (up to a
√
t ln t

δ factor) upper bounded by
tEa∼π?(·|x),x∼D [r(a, x)],
Lemma 45. If the environment is stochastic with i.i.d. contexts and the algorithm decides on its
policy πt before observing context xt then with probability at least 1− δ,

t∑
`=1

Ea∼π`(·|x`) [r(a, x`)|x`] ≤ tEa∼π?(·|x),x∼D [r(a, x)] +O

(√
t ln

t

δ

)
for all t ∈ N.

54

Proof. Similar to the proof of Lemma 44, consider the martingale sequence {Z`}∞`=1 defined as
Z` = Ea∼π`(·|x`) [r(a, x`)|x`]− Ea∼π`(·|x),x∼D [r(a, x)] . By definition |Z`| ≤ 2. Therefore by the
anytime Hoeffding bound of Lemma 46, with probability at least 1− δ

t∑
`=1

Z` =

t∑
`=1

Ea∼π`(·|x`) [r(a, x`)|x`]−
t∑
`=1

Ea∼π`(·|x),x∼D [r(a, x)] = O

(√
t ln

t

δ

)
for all t ∈ N. By definition π? is the policy satisfying π? = argmaxπ Ea∼π,x∼D [r(a, x)] and
therefore for any π`, the inequality Ea∼π`,x∼D [r(a, x)] ≤ Ea∼π?,x∼D [r(a, x)] holds.

Lemma 45 implies that in the case of i.i.d. contexts a learner that selects a policy based on historical
data (that is the learner selects a policy to play before the context is revealed) cannot do substantially
better than playing π? = argmaxπ∈Π Ea∼π(·|x),x∼D [r(a, x)] during all timesteps. This will prove
helpful when deriving bounds for the gap estimation phase.

E Additional Technical Lemmas

Lemma 46 (Time-uniform Hoeffding bound). Let St =
∑t
i=1 Yt be a martingale sequence w.r.t.

some sigma algebra Ft and let Yt ∈ [at, bt] almost surely for at, bt measurable in Ft. Then with
probability at least 1− δ for all t ∈ N

St ≤ 1.44

√
max(Wt,m)

(
1.4 ln ln

(
2

(
max

(
Wt

m
, 1

)))
+ ln

5.2

δ

)
where Wt =

∑t
i=1

(bi−ai)2

4 and m > 0 arbitrary but fixed.

Proof. By entry “Hoeffding I” in Table 3 of Howard et al. [18], St is a sub-ψN process with variance
process Wt. Further, by Proposition 2 in Howard et al. [19], this implies that it is also a sub-ψP
process with c = 0. We now apply Lemma 48 to achieve the desired result.

Lemma 47 (Time-uniform Bernstein bound). Let St =
∑t
i=1 Yi be a martingale sequence w.r.t. a

sigma algebra Ft and let Yt ≤ c a.s. for some parameter c > 0. Then with probability at least 1− δ
for all t ∈ N

St ≤ 1.44

√
max(Wt,m)

(
1.4 ln ln

(
2

(
max

(
Wt

m
, 1

)))
+ ln

5.2

δ

)
+ 0.41c

(
1.4 ln ln

(
2

(
max

(
Wt

m
, 1

)))
+ ln

5.2

δ

)
where Wt =

∑t
i=1 E[Y 2

i |Fi] and m > 0 is arbitrary but fixed.

Proof. By entry “Bennett” in Table 3 of Howard et al. [18], St is a sub-ψP process with variance
process Wt and parameter c = 0. We now apply Lemma 48 to achieve the desired result.

Lemma 48 (General concentration result). In the terminology of Howard et al. [18], let St =∑t
i=1 Yi be a sub-ψP process with parameter c = 0 and variance process Wt. Then with probability

at least 1− δ for all t ∈ N

St ≤ 1.44

√
max(Wt,m)

(
1.4 ln ln

(
2

(
max

(
Wt

m
, 1

)))
+ ln

5.2

δ

)
+ 0.41c

(
1.4 ln ln

(
2

(
max

(
Wt

m
, 1

)))
+ ln

5.2

δ

)
where m > 0 is arbitrary but fixed.

Proof. This bound follows from Howard et al. [18] Theorem 1 with Equation 10 in that paper by
setting s = 1.4 and η = 2.

55

Lemma 49. Suppose {Xt}∞t=1 is a martingale difference sequence with |Xt| ≤ b. Let

Var`(X`) = Var(X`|X1, · · · , X`−1)

Let Vt =
∑t
`=1 Var`(X`) be the sum of conditional variances of Xt. Then we have that for any

δ′ ∈ (0, 1) and t ∈ N

P

(
t∑
`=1

X` > 2
√
VtAt + 3bA2

t

)
≤ δ′ ,

where At =
√

2 ln ln
(
2
(
max

(
Vt
b2 , 1

)))
+ ln 6

δ′ .

Proof. We are in a position to use 47 (with c = b). Let St =
∑t
`=1Xt and Wt =

∑t
`=1 Var`(X`).

Let’s set m = b2. It follows that with probability 1− δ′ for all t ∈ N

St ≤ 1.44

√
max(Wt, b2)

(
1.4 ln ln

(
2

(
max

(
Wt

b2
, 1

)))
+ ln

5.2

δ′

)
+ 0.41b

(
1.4 ln ln

(
2

(
max

(
Wt

b
, 1

)))
+ ln

5.2

δ′

)
≤ 2

√
max(Wt, b2)

(
2 ln ln

(
2

(
max

(
Wt

b2
, 1

)))
+ ln

6

δ′

)
+ b

(
2 ln ln

(
2

(
max

(
Wt

b2
, 1

)))
+ ln

6

δ′

)
= 2 max(

√
Wt, b)At + bA2

t

≤ 2
√
WtAt + 2bAt + bA2

t

(i)

≤ 2
√
WtAt + 3bA2

t ,

where At =
√

2 ln ln
(
2
(
max

(
Wt

b2 , 1
)))

+ ln 6
δ′ . Inequality (i) follows because At ≥ 1.

Setting Vt = Wt we conclude the proof.

In turn, a corollary of the previous lemma is the following.

Lemma 50. Suppose {Xt}∞t=1 is a martingale difference sequence with |Xt| ≤ bt with bt a non-
decreasing deterministic sequence. Let

Var`(X`) = Var(X`|X1, · · · , X`−1)

Let Vt =
∑t
`=1 Var`(X`) be the sum of conditional variances of Xt. Then for any δ ∈ (0, 1) and

t ∈ N we have

P

(
t∑
`=1

X` > 2
√
VtAt + 3BtA

2
t

)
≤ δ ,

where At(δ) = 2
√

ln 12t2

δ .

Proof. For any t define a martingale difference sequence {X(t)
` }∞`=1 as follows:

X
(t)
` =

{
X` if ` ≤ t
0 otherwise

We apply Lemma 49 with parameter δ′ = δ
2t2 and b = Bt, and then overapproximate. A union bound

over t ∈ N gets the desired result.

56

Lemma 51. Suppose {Xt}∞t=1 is a martingale difference sequence with |Xt| ≤ bt with bt a non-
decreasing deterministic sequence. Let

Var`(X`) = Var(X`|X1, · · · , X`−1)

Let Vt =
∑t
`=1 Var`(X`) be the sum of conditional variances of Xt. Then we have that for any

δ ∈ (0, 1) and t ∈ N

P

(
t∑
`=1

X` > 4

√
Vt ln

12t2

δ
+ 12bt ln

12t2

δ

)
≤ δ ,

Proof. Notice that by definition Vt(a) ≤ tb2t . Therefore max(Vt(a)
b2t

, 1) ≤ t and

At(δ
′) ≤

√
2 ln ln 2t+ ln

12t2

δ′
≤ 2

√
ln

12t2

δ′
:= Ãt(δ

′) .

Substituting this upper bound in the statement of Lemma 50 yields the result.

Lemma 52. Let c, δ ∈ (0, 1] and t ≥ 16
c2 ln2 2

cδ . Then

ln t
δ√
t
≤ c

Proof. The function f(t) =
ln t
δ√
t

is non-increasing on (e2δ,∞). Thus, it is sufficient to show that the

inequality holds for t = 16
ln2 2

cδ

c2 . Since ln(x) ≤ x
2 for all x ∈ R+, we can upper-bound this value of

t as

t ≤ 16

c4δ2
.

This implies

ln
t

δ
≤ ln

16

c4δ4
= 4 ln

2

cδ
= c

√
16

ln2(2/c/δ)

c2
= c
√
t

which proves the claim.

Lemma 53. Let c, δ ∈ (0, 1] and t ≥ 4
c ln 2

cδ . Then

ln t
δ

t
≤ c

Proof. The function f(t) =
ln t
δ

t is non-increasing on (eδ,∞). Thus, it is sufficient to show that the

inequality holds for t = 4
ln 2
cδ

c . Since ln(x) ≤ x
2 for all x ∈ R+, we can upper-bound this value of t

as

t ≤ 4

c2δ
.

This implies

ln
t

δ
≤ ln

4

c2δ2
= 2 ln

2

cδ
=
c

2
t ≤ ct

which proves the claim.

57

	Lower Bound on Model Selection for Stochastic Environments
	Examples of h-Stability and Extendability
	Geometric Hedge for Adversarial Linear Bandits
	h-Stability
	Extendability
	Removing an Individual Policy For Best of Both Worlds Regret
	Proofs

	Exp4 algorithm for finite policy classes

	Adversarial Regret Balancing and Elimination
	Proof of Lemma 21
	Concentration Bounds on Reward Sequences

	Adversarial Regret Balancing and Elimination with Best of Both Worlds Regret
	Description of the Second Phase: Gap Exploitation
	Analysis of the First Phase
	Adversarial Guarantees
	Stochastic Guarantees

	Analysis of Arbe-GapExploit
	Guarantees for stochastic environments
	Exploitation Subroutine Guarantees for Adversarial Environments

	Concentration Bounds in Stochastic Environments

	Additional Technical Lemmas

