
A Proof of Lemma 11

Proof. Given the number of clean samples n, for any learner f ∈ F , the accuracy of f on x0 is:2

Pr[fDn
(x0) = y0] =Pr[(x0, y0) ∈ Dn] · Pr[fDn

(x0) = y0 | (x0, y0) ∈ Dn]

+ Pr[(x0, y0) /∈ Dn] · Pr[fDn
(x0) = y0 | (x0, y0) /∈ Dn], (1)

where Pr[(x0, y0) ∈ Dn] = 1− (1− 1/k)n and Pr[(x0, y0) /∈ Dn] = (1− 1/k)n.3

Since the bijection g is unknown to the learner f , when (x0, y0) /∈ Dn, by symmetry the optimal4

prediction is predicting an arbitrary label that is not in Dn, thus5

Pr[fDn(x0) = y0 | (x0, y0) /∈ Dn]

≤Pr[E | (x0, y0) /∈ Dn] · 1 + Pr[¬E | (x0, y0) /∈ Dn] ·
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where E denotes the event that all other k − 1 labels appear in the training set Dn. Above, what6

we do is to divide the probability into two cases and bound them separately. Case 1 is when7

E happens, where we simply upper bound the probability that fDn
(x0) = y0 by 1. Case 2 is8

when E does not happen, meaning that there is some y1 ̸= y0 that does not appear in Dn. By9

Definition 1, we have Pr[fDn(x0) = y0] = Pr[fTy0↔y1
(Dn)(x0) = y1] = Pr[fDn(x0) = y1] thus10

Pr[fDn
(x0) = y0] ≤ 1

2 .11

With Equation 1, we have12

Pr[fDn(x0) = y0] ≤Pr[(x0, y0) ∈ Dn] · 1 + Pr[(x0, y0) /∈ Dn] ·
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Thus Pr[fDn
(x0) = y0] ≥ τ ⇒

(
1− 1

k

)n ·
(
1− 1

k−1

)n

≤ 2− 2τ ⇒ n ≥ log(2−2τ)
log(1−2/k) = Θ(k).13

The intuition behind the proof: If the training set contains (x0, y0), the learner can obviously predict14

correctly; Otherwise, the best it can do is to guess a label that is not in the training set.15

B Proof of Lemma 216

Proof. Given x0, for any N and any learner f , one of following two cases must be true:17

Case 1: If Pr[fDN
(x0) = y0] ≤ 1

|Y | , using the identity transform T (D) = D for all D ∈ ΩN, we18

have Pr[fT (DN )(x0) = y0] ≤ 1
|Y | and E[|T (DN )−DN |] = 0.19

Case 2: If Pr[fDN
(x0) = y0] >

1
|Y | , since

∑
y∈Y Pr[fDN

(x0) = y] = 1, there exists y1 ̸= y020

such that Pr[fDN
(x0) = y1] ≤ 1

|Y | . Let T = Ty0↔y1
be a transform swapping labels y0 and y1,21

i.e. T (D) is the same as D except that every (x, y0) ∈ D will becomes (x, y1) ∈ T (D) and every22

(x, y1) ∈ D will becomes (x, y0) ∈ T (D). Since T = Ty0↔y1
is a transform swapping labels y023

and y1 in the training set, E[|T (DN )−DN |] is in fact the expected number of samples with a label24

of y0 or y1, which is 2N
k . Thus we have Pr[fT (DN )(x0) = y0] = Pr[fDN

(x0) = y1] ≤ 1
|Y | and25

E[|T (DN )−DN |] = 2N
k = Θ( 1k ) ·N .26
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In both cases, we have a transform T that minimize the accuracy of f while in expectation altering27

no more than Θ(1/k) of the training set and therefore the proof completes. Note the underlying28

assumption used in case 2 is that the Bijection g is unknown to learners in a sense that the output29

distributions of f change accordingly when labels are permuted.30

C Proof of Lemma 331

Proof. Given the number of clean samples n, for any learner f ∈ F , the accuracy of f on x0 is:32

Pr[fDn
(x0) = y0] =Pr[(x0, y0) ∈ Dn] · Pr[fDn

(x0) = y0 | (x0, y0) ∈ Dn]

+ Pr[(x0, y0) /∈ Dn] · Pr[fDn
(x0) = y0 | (x0, y0) /∈ Dn], (2)

where Pr[(x0, y0) ∈ Dn] = 1− (1− 1/m)n and Pr[(x0, y0) /∈ Dn] = (1− 1/m)n.33

Since g is a mapping that assigns labels independently to different inputs and it is unknown to learners,34

we have Pr[fDn
(x0) = y0 | (x0, y0) /∈ Dn] ≤ 1

k and therefore with Equation 2, we have35

Pr[fDn
(x0) = y0] ≤Pr[(x0, y0) ∈ Dn] · 1 + Pr[(x0, y0) /∈ Dn] ·

1

k

=1− Pr[(x0, y0) /∈ Dn] · (1−
1

k
)

=1−
(
1− 1

m

)n

·
(
1− 1

k

)
.

Thus Pr[fDn(x0) = y0] ≥ τ ⇒
(
1− 1

m

)n ≤ k(1−τ)
k−1 ⇒ n ≥ log(1−τ)+log(1+1/(k−1))

log(1−1/m) = Θ(m).36

The intuition behind the proof: If the training set contains (x0, y0), the most data-efficient learner37

will memorize it to predict correctly; Otherwise it can do nothing but guess an arbitrary label.38

D Proof of Lemma 439

Proof. Given x0, for any N and any learner f , we let T be a transform that obtain the poisoned40

training set T (D) by removing all (x0, y0) from the clean training set D. By definition of Instance41

Memorization, there is no information regarding y0 contained in T (DN ) and therefore we have42

Pr[fT (DN )(x0) = y0] =≤ 1
|Y | given that the mapping g is unknown to learners. Meanwhile, we43

have E[|T (DN )−DN |] = N
m = Θ( 1

m ) ·N .44

E Proof of Theorem 145

Proof. First we introduce Coupling Lemma as a tool.46

Coupling Lemma [19]: For two distributions U and V over Ω, a coupling W is a distribution over47

Ω× Ω such that the marginal distributions are the same as U and V, i.e. U(u) =
∫
v∈Ω

W (u, v)dv48

and V (v) =
∫
u∈Ω

W (u, v)du. The lemma states that for two distributions U and V , there exists a49

coupling W such that Pr(u,v)∼W [u ̸= v] = δ(U, V ).50

Intuitively, Coupling Lemma suggests there is a correspondence between the two distributions U and51

V , such that only the mass within their difference δ(U, V ) will correspond to different elements.52

Through coupling lemma, there is a coupling W with Pr(u,v)∼W [u ̸= v] = δ(U, V ).53

ED∼Un [f(D)]− ED∼V n [f(D)] =E(∀1≤i≤n) (ui,vi)∼W [f({ui}ni=1)− f({vi}ni=1)]

≤Pr(∀1≤i≤n) (ui,vi)∼W [(∃i) ui ̸= vi]

≤
n∑

i=1

Pr(ui,vi)∼W [ui ̸= vi]

=n · δ(U, V ).
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The second line in the above inequalities is derived as follows: When ui = vi for all i, we have54

f({ui}ni=1) − f({vi}ni=1) = 0; When there exists ui ̸= vi for some i, we have f({ui}ni=1) −55

f({vi}ni=1) ≤ 1 because the output of f is {0, 1}.56

For the third line, we use the union bound. The probability that for at least one i we have ui ̸= vi is57

upper bounded by the sum of probability that ui ̸= vi for all i.58

59

F Proof of Theorem 260

Proof. Through coupling lemma, there is a coupling W with Pr(u,v)∼W [u ̸= v] = δ(U, V ). We61

define the mapping T as follows: For any D = (u1, . . . , uN ) ∈ ΩN , the output T (D) = (v1, . . . , vN )62

is obtained by drawing vi from W (v | u) independently for i = 1 . . . N .63

For i = 1 . . . N , we have P (vi) =
∫
ui∈Ω

W (vi | ui)U(ui)dui =
∫
ui∈Ω

W (vi | ui)W (ui) = V (vi)64

and T (UN ) is the same distribution as V N , meaning that ED∼UN [f(T (D))] − ED∼V N [f(D)] =65

0; Meanwhile, given Pr(u,v)∼W [u ̸= v] = δ(U, V ), we have ED∼UN [|T (D) − D|] =66 ∑N
i=1 Pru∼U,v∼W (v|u)[u ̸= v] =

∑N
i=1 Pr(u,v)∼W [u ̸= v] = δ(U, V ) ·N .67

G Proof of Lemma 668

Proof. We will use Theorem 1. In order to have Pr[fDn
(x0) = y0] ≥ τ , there must be some69

g : ΩN → {0, 1} discriminating U = N (µ1, I) and V = N (µ′
1, I) with confidence larger than a70

constant τ ′ using in expectation n/k samples, where µ′
1 = µ1 + (d2 − d1)/d1 · (1 + ϵ)(µ1 − x0) for71

some ϵ > 0. Note that ||µ′
1 − µ1|| = (1 + ϵ)(d2 − d1) and ||µ′

1 − x0|| > d2. Taking ϵ → 0, we have72

n/k ≥ Θ(1/δ(U, V )) = Θ(1/∆) ⇒ n ≥ Θ(k/∆) using Theorem 1.73

H Proof of Lemma 774

Proof. We will use Theorem 2. Given x0, for any N and any learner f , let µ′
2 = µ2 − (d2 − d1)/d2 ·75

(1 + ϵ)(µ2 − x0) for some ϵ > 0, as shown in Figure 1(b). With Theorem 2, there is a transform T ′76

making U = N(µ2, I) and V = N(µ′
2, I) indistinguishable. We define a transform T by applying T ′77

to the inputs of all samples from class 2 while others remain unchanged.78

Note that f ∈ F and T (P ) is also a plausible distribution (in a sense that it can be expressed in79

the same form as Equation 1). Since ||µ′
2 − x0|| < d1, we have Pr[fT (DN )(x0) = y0] ≤ 1/k. In80

addition, since ||µ2 − µ′
2|| = (1 + ϵ)(d2 − d1) and there are in expectation N/k samples from class81

2, we have E[|T (DN )−DN |] ≤ δ(U, V )/k = Θ(∆/k) by taking ϵ → 0.82

Intuition for taking ϵ → 0: When ϵ is actually 0, the distributions we construct for different classes83

will be ‘symmetric’ to x0, meaning that there will be a tie in defining the maximum likelihood84

prediction. For any ϵ > 0, the tie will be broken. By letting ϵ → 0, we find the tightest bound of the85

number of poisoned samples needed from our construction.86

3


	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 6
	Proof of Lemma 7

