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A Proof of Lemma/(ll

Proof. Given the number of clean samples n, for any learner f € F, the accuracy of f on x is:
Pr(fp, (zo) = yo] =Pr((z0,y0) € Dn] - Pr(fp, (z0) = yo | (z0,90) € Dy]
+ Pr((xo,y0) ¢ Dnl - Pr(fp, (z0) = yo | (z0,y0) ¢ Dnl, (1)
where Pr[(xo,y0) € Dp] =1— (1 —1/k)™ and Pr{(zo,y0) ¢ Dn] = (1 —1/k)™.

Since the bijection ¢ is unknown to the learner f, when (xq,yo) ¢ D,,, by symmetry the optimal
prediction is predicting an arbitrary label that is not in D,,, thus

Prifp,(®0) = yo | (x0,%0) & Du]
<Pr[E | (z0,90) ¢ Dn] -1+ Pr[=E | (z0,y0) & Dn] -

=PrE| (s0,u0) ¢ Dl -5 + 5

(-(-29) 1)
()

where F denotes the event that all other £ — 1 labels appear in the training set D,,. Above, what
we do is to divide the probability into two cases and bound them separately. Case 1 is when
E happens, where we simply upper bound the probability that fp, (x9) = yo by 1. Case 2 is
when E does not happen, meaning that there is some y; # yo that does not appear in D,,. By
Definition 1, we have Pr{fp, (z0) = vo| = Pr{fr, ., (p.)(®0) = y1] = Pr(fp, (x0) = y1] thus
Pr(fp,(zo0) =yl < 3

With Equation[I] we have

|~

1

Prlfio,(a0) = o] <Prl(eos o) € Dol 14 PriGan o) € Dul- (1= (1= 121) +3)

k-1

\" 1 \" 1
() )

Thus Pr(fp, (o) =yo] > 7= (1—3)"- (1 — ﬁ) <2-2r = n> 2B — Ok).

1= Pl # D) (1- 55 ) 5

The intuition behind the proof: If the training set contains (zo, yo), the learner can obviously predict
correctly; Otherwise, the best it can do is to guess a label that is not in the training set. O

B Proof of Lemma

Proof. Given xq, for any N and any learner f, one of following two cases must be true:

Case 1: If Pr{fp, (z0) = yo] < IYI , using the identity transform T'(D) = D for all D € QN, we
have P’I"[fT(DN)(Io) = yo] |7 Ild EHT DN) DN” =0.

Y

Case 2: If Pr[fp, (x0) = yo] > \Tlf| since -, oy Pr{fpy(zo) = y| = 1, there exists y1 # yo
such that Pr[fp, (zo) = 1] < IY\ Let T' = Ty, be a transform swapping labels yo and y,
i.e. T(D) is the same as D except that every (z,y9) € D will becomes (x,y;) € T(D) and every
(x,y1) € D will becomes (x,y0) € T(D). Since T' = Ty, ,y, is a transform swapping labels yo
and y; in the training set, E[|T(Dy) — Dy/] is in fact the expected number of samples with a label
of yo or y1, 2N Thus we have Pr(fr(py)(®o) = yo] = Pr(fpy (x0) = y1] < \Yl and

E[|T(Dy) — Dn|] = TN =0(3)-N.
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In both cases, we have a transform 7" that minimize the accuracy of f while in expectation altering
no more than ©(1/k) of the training set and therefore the proof completes. Note the underlying
assumption used in case 2 is that the Bijection g is unknown to learners in a sense that the output
distributions of f change accordingly when labels are permuted. O

C Proof of Lemma[3

Proof. Given the number of clean samples n, for any learner f € F, the accuracy of f on x is:
Pr(fp,(zo0) = yol =Pr((z0,y0) € Du] - Pr(fp, (x0) = yo | (x0,%0) € Dn]
+ Pr((xo,90) ¢ Dnl - Pr(fp, (z0) = yo | (z0,0) ¢ Dnl, 2
where Pr{(zo,y0) € Dn] =1— (1 —1/m)"™ and Pr[(zo,yo) ¢ Dn] = (1 —1/m)™.

Since g is a mapping that assigns labels independently to different inputs and it is unknown to learners,
we have Pr(fp, (x0) = yo | (x0,y0) ¢ Dn] < + and therefore with Equation we have

Prlfi (o) = o] <Prl(z0,30) € Dal -1+ Prl(wo,10) ¢ Dl -
=1 = Prl(zo,0)  Dal - (1 - )

A8y D)

Thus Prlfp, (a0) = o] > 7 (1= )" < 4572 = n > LU HEO-0) _ o).

The intuition behind the proof: If the training set contains (xg, o), the most data-efficient learner
will memorize it to predict correctly; Otherwise it can do nothing but guess an arbitrary label. [

D Proof of Lemma 4

Proof. Given zg, for any N and any learner f, we let T" be a transform that obtain the poisoned
training set 7'(D) by removing all (¢, yo) from the clean training set D. By definition of Instance
Memorization, there is no information regarding yo contained in 7'(Dy ) and therefore we have
Prifrpy)(zo) = yo] =< \Yl given that the mapping g is unknown to learners. Meanwhile, we

have E[|T(Dn) — Dn|] = £ = ©(%) - N. O

E Proof of Theorem[l

Proof. First we introduce Coupling Lemma as a tool.

Coupling Lemma [[19]: For two distributions U and V over €}, a coupling W is a distribution over
QxQ such that the margmal distributions are the same as U and V, i.e. U(u f ca W (u,v)dv
and V(v f ca W (u,v)du. The lemma states that for two distributions U and V, there exists a
couplmg W such that PT(U}U)Nw[u #v] =46(U, V).

Intuitively, Coupling Lemma suggests there is a correspondence between the two distributions U and
V', such that only the mass within their difference §(U, V') will correspond to different elements.

Through coupling lemma, there is a coupling W with Pr, ,)~w[u # v] = 6(U, V).
Ep~un[f(D)] = Epave [f(D)] =E(vi<i<n) (uion)~w [f{uitiz)) = f({vi}is,)]
<Prvi<i<n) (uivi)~w[(31) ui # vi]
< Z Pr(ui,m)NW[ui 7é 1)1-}

i=1

=n-§(U, V).
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The second line in the above inequalities is derived as follows: When u; = v; for all ¢, we have
Fui}y) — f{vi},) = 0; When there exists u; # v; for some i, we have f({u;}" ;) —
f({vi};) <1 because the output of fis {0,1}.

For the third line, we use the union bound. The probability that for at least one 7 we have u; # v; is
upper bounded by the sum of probability that u; # v; for all 4.

O

F Proof of Theorem 2]

Proof. Through coupling lemma, there is a coupling W with Pr, ,y.w([u # v] = §(U, V). We
define the mapping T as follows: Forany D = (uy,...,uy) € Q¥ the output T(D) = (vy,...,vN)
is obtained by drawing v; from W (v | u) independently fori =1... N.

Fori=1...N, we have P(v;) = fuieQ W (v; | wi)U (u)du; = fuieQ W (v | ug)W(u;) = V()
and T(U"V) is the same distribution as V¥, meaning that Ep,y~ [f(T(D))] — IEDNV [f(D)]

0; Meanwhile, given Prg, ,wu # v] = 0(U,V), we have Ep y~[|T(D) — D[] =

N N
Zi:l PTUNU,’UNW(Ulu) [u 7& U] = Zi:l Pr(u,v)NW[u 7& ’U} - 6(Ua V) - N.

O

G Proof of Lemma

Proof. We will use Theorem [I} In order to have Pr[fp, (xo) = yo] > 7, there must be some
g : QN — {0, 1} discriminating U = N(u1,1) and V = N(u}, I) with confidence larger than a
constant 7/ using in expectation n/k samples, where 1y = p1 + (da — dq)/dy - (1 + €) (1 — z0) for
some € > 0. Note that ||} — u1|| = (1 +€)(da — dy) and ||p) — 20| > da. Taking € — 0, we have
n/k >0O(1/6(U,V)) =0O(1/A) = n > O(k/A) using Theorem |1} O

H Proof of Lemma /7

Proof. We will use Theorem Given 1z, for any N and any learner f, let p = g — (do — dy)/ds -
(1 + €)(p2 — o) for some € > 0, as shown in Figure[L(b)] With Theorem [2} there is a transform 7"
making U = N(us, I) and V = N(u), I) indistinguishable. We define a transform 7" by applying 7’
to the inputs of all samples from class 2 while others remain unchanged.

Note that f € F and T'(P) is also a plausible distribution (in a sense that it can be expressed in
the same form as Equation . Since ||y — xo|| < di, we have Pr[fr(py)(zo) = yo] < 1/k. In
addition, since ||z — ph]| = (1 + €)(d2 — dq) and there are in expectation N/k samples from class
2, we have E[|T(Dy) — D] < 6(U,V)/k = ©(A/k) by taking € — 0. O

Intuition for taking ¢ — 0: When ¢ is actually 0, the distributions we construct for different classes
will be ‘symmetric’ to xp, meaning that there will be a tie in defining the maximum likelihood
prediction. For any € > 0, the tie will be broken. By letting ¢ — 0, we find the tightest bound of the
number of poisoned samples needed from our construction.
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