Supplementary Material

All code and data are available at

https://github.com/cshjin/cert_ogw

A Proofs and detailed algorithms

A.1 Discussion on commute time

The commute time between node ¢ and j is 7 times their resistance distance, where 7 is the volume of
the graph defined as 7 := 1T A1. We can treat 7 as a constant, because it is equal to 1T A1+ 17 X1,
and we can enumerate the value of 17 X1 for optimization over X. When we only allow adding
edges, this corresponds exactly to the global budget of new edges to add. Overall, the range of 17 X1
is narrow because the global budget is low.

A.2 Projection to X
Lets;; = 1if H;; =0, and s;; = —1if H;; = 1. Set s;; = 0. It is easy to show that
X = {X € R™*™ . X = 0, Xij + Hij c [O, ].], tI‘(SX) < 259} 39

To project an X (!) € R™*" to X, we alternate between two projections:

1. Project to

{X c R™*" . X =0, Xij + Hij S [0, 1]} (40)
Denote the projection image as Z. Then Z;; to 0, and
Z;; = median(X ), —Hij, 1 — Hy;). 1)
2. Project Z to
{X eR"": X;; =0, tr(SX) < 20,}. (42)
The resulting XP is
A i <
o _ Z . if tr(S'Z) <24, . 43)
Z —||S||7° (tr(SZ) — 264)S  otherwise

We can terminate the alternating between 1 and 2 when HX proj _ X (*) || falls below some threshold.
Usually 20 rounds will be sufficient.

A.3 Closed-form Solution for 7 in (37)
We copy (37) for convenience:

. T _ * T _ *
Jhex max  min tr(U' (A4 X)) —M*(U)+tr(¥' Cz) — a2 (¥ /) (44)

—abo +VF*(Z) +vF(Ly + 2117) —ytr(BZ) +v  (45)
Given (v, 7y, U, ), the optimization over Z is

: -1 T * o
s tr(V' Cz) + F*(Z) —tr(BZ). (46)

It is easy to see that C'z is linear in Z (not only affine):

CZ = _Zii — ij + QZU (47)
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So we can define a linear operator A as A(Z) = Cz, and then tr(¥ " Cy) = tr(A*(®)Z), where
A* is a adjoint of .4 and can be derived as follows for a symmetric &:

20,5 ifi#j
A*(U) = L e (48)
( ) {—QZJ\I/” lflzj
So clearly A*(¥)1 = 0. By the definition of B in Section 3.2, we also derive B1 = 0.
We next use Lagrangian multiplier 1 to enforce Z1 = —1. To ensure symmetry, we equivalently
enforce Z1 + Z "1 + 21 = 0. Letting J = B — v~ ' A*(¥), the Lagrangian of (46) becomes
max min v Mt (VA(Z) + F*(Z) —tr(BZ) — ' (Z1+ Z 71 +21) (49)
uoZ=
= —minmax {tr((J +pl" +1p")2) - F*(Z) + 21" p} (50)
n Z=<0
= —min{F(J+p1" +1p")+217p}. (51)
I

The optimal Z is
J+plT + 1" =VF(Z)= -2} = Z=—(J+pmT+1x")" (52)
To solve p, notice J1 = 0. Taking the derivative of (51) with respect to u, we get

—2(J+p1T +1") 1 4+21=0 = p= 51 (53)

This implies that the optimal Z is
Zr=—-(J+in") = —(B-ytAN(T)+ Lt117)7 N (54)

B More Experimental Results

B.1 Results of certificate and attack from other datasets than MUTAG

As part of Section 5.3, the certificate and attack results for BZR, COX2 and PTC-MR are shown in
Figure 6 to 8. They corroborate and reinforce the conclusions in Section 5.3. Due to the variance of
characteristics in different datasets, we fixed §; = 5, 5, 1 for the datasets BZR, COX2 and PTC-MR,
respectively.

B.2 Computational complexity

We measured the wall-clock time of certificate from the MUTAG dataset. Figure 9a shows the runtime
of each iteration for graphs with different orders. As described in Section 4.1 and Appendix A.2 and
A.3, the per-iteration cost of the optimization is O(n?3). Figure 9b further shows the total time taken
to find a certificate, i.e., a positive value from our dual objective (44), noting that we can early-stop
once a positive value is reached. Overall, the cost is mild.

We implemented the algorithm in Python with wrapped L-BFGS-B algorithm from Scipy, and ran the
experiments on a machine with Intel CPU i9-9900X.

C Reachable graphs given specific budgets

Without the constraints of local and global budget, checking all the reachable graphs essentially finds
all possible perturbations under the budget dq on €2, which is (NP) hard. Alternatively, we examined
the €2 value on the real dataset MUTAG by extracting all the graphs with 12 nodes, and then presented
their pairwise 2 distance (first line in each cell) and d, (second line) in Figure 10.

To better visualize the result, Figure 11 and 12 set the budget dq to 0.5 and 1 respectively, and a
darker shade represents a higher value of 2. A cell is marked with two numbers (red for €2 and black
for #perturbed-edge) computed from a pair of reachable graphs, if its {2 value falls below the dq
budget. In Figure 11, we observe that in the first row, the columns 5, 10, 11, 12, 13 exhibit high values
of #perturbed-edge, but their (2 value is 0. In these cases the pair of graphs are isomorphic, although
their topology differs a lot. We also see a block of four isomorphic graphs in the bottom-right corner.
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Figure 6: Certificate and attack on BZR (9; = 5)
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Figure 7: Certificate and attack on COX2 (§; = 5)
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Figure 8: Certificate and attack on PTC-MR (6; = 1)
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Figure 9: Running time for certification (MUTAG)



Comparing Figure 12 with Figure 11, clearly more pairs of graphs become reachable thanks to the
increase in dq.

Similarly, Figure 13 and 14 set the threshold of d, to 4 and 8 respectively, and a darker shade
represents a higher value of #perturbed-edge. A cell is marked with two numbers (red for #perturbed-
edge and black for €2) computed from a pair of reachable graphs, if its #perturbed-edge falls below
the o, budget.
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Figure 10: Pairwise €2 distance and d,
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Figure 11: Reachable graphs given g = 0.5
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Figure 12: Reachable graphs given g = 1
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Figure 13: Reachable graphs given J, = 4
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Figure 14: Reachable graphs given d, = 8
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D Plots for Better Turned Hyperparameter
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Figure 15: Fraction of robust and vulnerable graphs on MUTAG (with tuned hyperparameter)
E Comparison of Classification Performance

Table 3: Performance of Classification
Dataset Vanilla-GCN  Robust-GCN MLP MemGNN FactorGCN

BZR 81.8 80.3 79.9 84.7 82.4
COX2 79.9 78.6 78.2 79.0 81.9
MUTAG 69.5 67.4 65.0 77.8 82.6
PTC_MR 57.8 57.8 57.3 59.8 54.6

We compared the performance of our vanilla and robust one-layer GCN model with a MLP model
with node feature only, and two other models, namely MemGNN [58] and FactorGCN [59]. To
be consistent with our setting, we split the training, validation and test sets into 30, 20, and 50%
respectively. All the other hyperparameters followed the standard setting from the papers. Table 3
reports the average accuracy on the test set with 5 runs, where most times the robust model sacrifices
only a slight amount of accuracy compared with our vanilla model.
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