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Abstract

A new line of research for feature selection based on neural networks has recently
emerged. Despite its superiority to classical methods, it requires many training
iterations to converge and detect informative features. The computational time
becomes prohibitively long for datasets with a large number of samples or a very
high dimensional feature space. In this paper, we present a new efficient unsuper-
vised method for feature selection based on sparse autoencoders. In particular, we
propose a new sparse training algorithm that optimizes a model’s sparse topology
during training to pay attention to informative features quickly. The attention-based
adaptation of the sparse topology enables fast detection of informative features
after a few training iterations. We performed extensive experiments on 10 datasets
of different types, including image, speech, text, artificial, and biological. They
cover a wide range of characteristics, such as low and high-dimensional feature
spaces, and few and large training samples. Our proposed approach outperforms
the state-of-the-art methods in terms of selecting informative features while re-
ducing training iterations and computational costs substantially. Moreover, the
experiments show the robustness of our method in extremely noisy environments1.

1 Introduction

Feature selection plays a crucial role in data mining and machine learning tasks with the explosion in
the size and dimensionality of real-world data [68; 10; 30; 44; 23]. It aims to efficiently select a subset
of the features that are most informative and remove the irrelevant or redundant ones. It is useful
for alleviating the curse of dimensionality, interpretability of model-driven decisions, generalization
of downstream tasks, reducing the prohibitive memory and computational costs, and avoiding the
expensive costs of collecting the full set of features as in biological studies [11; 38; 31; 52].

Many methods have been proposed for feature selection in supervised, semi-supervised, and un-
supervised settings [75; 10; 60; 51; 19; 1]. Recently, using neural networks for feature selection
has received increasing attention due to its power to learn non-linear dependencies among input
features [39]. One limitation of current neural network-based methods is that they are computationally
expensive. The computational costs result from training dense models for many training iterations
until informative features are recognized. The costs increase for datasets with a very large number of
training samples or high dimensional feature space. This limitation is recently addressed in [4] by
utilizing sparse networks with dynamic sparsity for feature selection. An autoencoder is trained with

1Code is available at https://github.com/GhadaSokar/WAST.
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the sparse training algorithm SET [54], which explores different sparse topologies during training by
dropping a portion of the connections and growing the same portion randomly. The importance of an
input feature is estimated after convergence based on its outgoing sparse connections. Training sparse
networks from scratch decreases memory and computational costs compared to previous dense-based
methods. Yet, the random exploration of sparse topologies requires many training iterations to
identify informative features.

In this paper, we propose an efficient unsupervised method for feature selection. We introduce a
new sparse training algorithm for autoencoders that quickly detects the informative input features.
Specifically, we optimize the sparse topology to learn Where to pay Attention during Sparse Training.
We named our method WAST. WAST exploits the information from the reconstruction loss and the
weights of sparse connections to guide the topological search. It redistributes the sparse connections
to spot informative features quickly. We evaluate our proposed approach on ten datasets from various
domains, including image, speech, text, artificial, and biological. Through extensive experiments,
we find that WAST identifies the informative features after a few training iterations and outperforms
state-of-the-art unsupervised feature selection methods. Our main contributions are:

• We propose a new efficient unsupervised method for feature selection, named WAST. WAST
optimizes the sparse topology of an autoencoder to detect the informative features quickly.

• We perform extensive experiments on 10 benchmarks that cover various types and character-
istics. Experimental results show the effectiveness of our method over the state-of-the-art
methods in terms of selecting the informative features.

• WAST reduces the computational time compared to neural network-based methods substan-
tially by reducing training iterations and employing highly sparse neural networks.

• We illustrate the robustness of our method in extremely noisy environments and its effective-
ness for datasets with very high dimensional feature space and a few training samples.

2 Related Work

2.1 Feature Selection

Many feature selection methods were introduced for the supervised, semi-supervised, and unsuper-
vised settings depending on whether the data is labeled, partially labeled, or unlabeled, respectively
[75; 10; 60; 1]. Typically, feature selection methods are divided into three categories: filter, wrapper,
and embedded methods. Filter methods are independent of the learning algorithms. They use ranking
techniques for providing scores to the features, such as Laplacian score [26]. Despite being fast, they
do not consider the relationship between the features, which may result in the selection of redundant
features [11]. In the supervised setting, filter methods consider the relation between the feature and
the class label, such as fisher_score [22], CIEF [41], and ICAP [33]. Wrapper methods exploit the
performance of a predictive model to evaluate the quality of a subset of the features [70; 12; 74].
They are more effective than filter methods, yet they are computationally expensive [39]. Embedded
methods incorporate feature selection into the learning phase of another algorithm. Multi-Cluster
Feature Selection (MCFS) [9] uses regularization to select the best features that keep the multi-cluster
structure of the data. Unsupervised Discriminative Feature Selection (UDFS) [72] uses l2,1 regu-
larization and discriminative analysis to select the most discriminative features. Similarly, in the
supervised setting, RFS [56] and L1_L21 [45] exploit l2,1-norm to introduce feature sparsity.

Another direction under the embedded category has recently emerged. It uses neural networks
to perform feature selection by learning the non-linear dependencies among input features [40].
The success of autoencoders as a tool for feature extraction encourages unsupervised methods to
explore their power for feature selection [7; 6; 67; 25; 18]. AutoEncoder Feature Selector (AEFS)
[25] combines autoencoder regression and group lasso tasks. Concrete Autoencoder (CAE) [5]
learns a concrete selector layer (encoder) that selects stochastic linear combinations of input features
during training. After training, it converges to the target number of features. Despite the high
performance of these methods, the large number of iterations required to train dense models increases
the computational costs significantly. The conceptually closest work to ours is the recent work, Quick
Selection (QS) [4]. It trains a sparse autoencoder from scratch. During training, different sparse
topologies are explored using the SET method [54]. After each training epoch (i.e., pass on the
full data), a fraction of the connections with the least magnitude is dropped, and the same fraction
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Figure 1: An overview of our proposed method WAST for unsupervised feature selection. A sparse
autoencoder is initialized with uniformly distributed sparse connections. During sparse training, the
connections are redistributed in the most important neurons at iteration t during the “drop-and-grow”
cycle. After convergence, neurons with the highest importance are selected as the most informative
features.

is randomly regrown. Few works based on multi-layer perceptron networks are proposed for the
supervised setting [37; 61; 71]. In section 4, we denote non Neural Network-based (NN-based)
methods as classical methods.

2.2 Sparse Training

Sparse training with dynamic sparsity, also known as Dynamic Sparse Training (DST), is a recent
research direction that aims at accelerating the training of neural networks without sacrificing
performance [27; 54; 47]. A neural network is initialized with a random sparse topology from scratch.
The sparse topology (connectivity) and the weights are jointly optimized during training. During
training, the sparse topology is changed periodically through a drop-and-grow cycle, where a fraction
of the parameters are dropped, and the same portion is regrown among different neurons. An update
schedule determines the frequency of topology updates. Many works have been proposed, focusing on
improving the performance of sparse training for supervised image classification tasks by introducing
different criteria for connection regrowth [20; 34; 59; 49; 73; 50]. DST demonstrated its success in
other fields as well, such as continual learning [62], feature selection [4], ensembling [46], federated
learning [77; 8], adversarial training [57], and deep reinforcement learning [63].

3 Where to pay Attention in Sparse Training (WAST)?

Problem Formulation. Let D be a dataset with samples {x(j)}n1 , where x(j) ∈ Rm, and m and n
are the number of features and samples, respectively. The goal is to select a subset of the features of a
size K in an unsupervised manner, which is most representative of the whole feature space m.

WAST is a new sparse training method for neural network-based unsupervised feature selection. The
basic idea of WAST is to pay attention to input features based on their estimated importance during
training to detect the most informative features quickly. An overview of WAST is shown in Figure
1. We use a sparse autoencoder with a single hidden layer of h neurons. Let fW be an autoencoder
model parameterized by sparse weights W ={W(1), W(2)}. The network is initialized with a certain

sparsity level s = 1− ∥
W(1)∥

0

m×h , where ∥.∥0 is the L0 norm. The sparsity level is kept fixed during
training. Initially, the sparse weights are uniformly distributed on the neurons. During training,
besides weights optimization, the sparse topology is optimized such that the sparse connections are
gradually redistributed on the most informative features. To achieve this goal, we propose new criteria
to update the sparse topology and a new update schedule, as we will explain next.

Training. An autoencoder model is trained to minimize the reconstruction loss. We use mean squared
error to measure the loss between an input sample x and the reconstructed one x̃ as follows:

L = ∥x̃− x∥22 , (1)

where x̃ = fW(x) = σ(xW(1))W(2), and σ is a non-linear activation function. After each weight
update using a batch of the data, we adapt the sparse topology. The effect of the update schedule on
performance is shown in Appendix E. The sparse topology is updated through a drop-and-grow cycle.
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Algorithm 1 WAST

1: Input: Autoencoder network fW with one hidden layer of size h, Dataset D with m features
2: Input: Learning rate η, target number of features K, sparsity level s, λ, α
3: Output: Indices of selected features from the m features (R)
4: Initialize W = {W(1),W(2)} with sparsity level s
5: IIi ← 0 IOi

← 0 ∀i ∈ {1, ...,m}
6: for each training step t do
7: Sample a Batch Bt ∼ D with size b

8: x̃(j) ← fW(x(j)), ∀x(j) ∈ Bt

9: L← 1
b

∑b
j=0

∥∥∥x̃(j) − x(j)
∥∥∥2
2

10: W←W− η∇WL

11: IOi
← IOi

+ λ| ∂L∂x̃i |+ (1− λ)
∑h

k=1 |W
(2)
ki | ∀i ∈ {1, ...,m}

12: IIi ← IIi + λ| ∂L∂x̃i |+ (1− λ)
∑h

k=1 |W
(1)
ik | ∀i ∈ {1, ...,m}

13: W(l) ← Drop (|W(l)|, IO, II , α) ∀l ∈ {1, 2}
14: W(l) ← Grow (IO, II , α) ∀l ∈ {1, 2}
15: end for
16: R← top(II ,K)

A fraction α of the connections with the least importance is dropped from each layer {W(1),W(2)},
and the same portion of new connections are regrown. New connections are initialized to zero.

The main contribution of this work lies in where the new connections are regrown. Different from the
previous method (QS) [4], where the connections are randomly regrown, we optimize the topology to
pay fast attention to informative features during training. To this end, we measure the importance of
each neuron in the input and output layers by leveraging the information available during training.
The importance of a neuron is estimated by its impact on the reconstructed loss and the magnitude of
its connected weights.

Specifically, we measure how sensitive the reconstruction loss L is to changes in the reconstructed
output x̃. The first-order approximation for the change in loss with respect to a small perturbation
δ = {δi} in the output x̃ = {x̃i} can be written as a sum of its individual components as follows:

L(x̃ + δ)− L(x̃) ≈
m∑
i=1

∂L

∂x̃i
δi, (2)

where ∂L
∂x̃i is the gradient of the loss with respect to the output neuron x̃i. We define the importance

of a neuron i in the output layer at training iteration t as:

I(t)Oi
= I(t−1)

Oi
+ λ| ∂L

∂x̃i
|+ (1− λ)

h∑
j=1

|W(2)
ji |, (3)

where |W(2)
ji | is the magnitude of the incoming connection from neuron j to neuron i and λ is a

hyperparameter coefficient to balance the two components (See Appendix A). The same criterion
is applied for the input neurons (I(t)Ii

), except that the magnitude of input weights (|W(1)|) is used
instead of the output weights. This criterion considers two cases: the information from large gradients,
especially at the beginning of the training, and the large weights resulting from the optimization
at later stages. The new connections in the input and output layers are regrown on the neurons
with the highest importance. For instance, the new connections in the input layer are given by
top

i ̸∈W̃(1)(II × I⊤H , r), where top(Q, k) gives the indices of the top-k elements in a matrix Q, IH

is the importance of the hidden neurons, W̃
(1)

is the set of remaining weights after the drop phase,
and r is the number of regrown connections based on the fraction α. We consider the neurons in the
hidden layer to be equally important.
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Table 1: The characteristics of datasets.
Type Dataset #Features #Classes #Samples #Train #Test

Artificial Madelon [24] 500 2 2600 2000 600

Image

UPSP [32] 256 10 9298 7438 1860
COIL-20 [55] 1024 20 1440 1152 288
MNIST [36] 784 10 70000 60000 10000
Fashion MNIST [69] 784 10 70000 60000 10000

Speech Isolet [21] 617 26 7737 6237 1560
Time Series HAR [2] 516 6 10299 7352 2947
Text PCMAC [35] 3289 2 1943 1544 389

Biological SMK-CAN-187 [64] 19993 2 187 149 38
GLA-BRA-180 [65] 49151 4 180 144 36

During the drop phase, the importance of a connection w in the input (output) layer is estimated by
its magnitude and the importance of its connected input (output) neuron (I(t)i ) as follows:

I(t)w = |w|I(t)i , (4)

where I(t)i takes the value of I(t)Ii
and I(t)Oi

for the input and output layers, respectively. The effect
of each component in the neuron and connection importance criteria is studied in Section 5.3. The
periodic update of the sparse topology redistributes the connections on the effective features.

Feature Selection. After training, we select the top-K neurons with the highest importance from the
input layer as the most informative K features. The details of WAST are provided in Algorithm 1.

4 Experiments

4.1 Baselines

We compared our method with several autoencoder-based (QS [4], CAE [5], AEFS [25]) and classical
methods (lap_score [26], MCFS [9], DUFS [42]) for unsupervised feature selection. On top of that,
we include comparisons with seven state-of-the-art supervised feature selection methods. Although
the latter is not the focus of this paper and not a typical comparison in the literature, we prefer to show
that WAST performs competitively also with the supervised methods while being computationally
efficient and applicable for cases where labels are not available or expensive to collect.

4.2 Datasets

We evaluate our method on 10 publicly available datasets, including image, speech, text, time series,
biological, and artificial data. They have a variety of characteristics, such as low and high-dimensional
features and a small and large number of training samples. Details are in Table 1.

4.3 Experimental Settings

Evaluation Metrics. An efficient feature selection method should have high learning accuracy with
less memory and computational costs [10]. Hence, we evaluate multiple metrics. (1) Classification
Accuracy: It is typically evaluated by a machine learning model [10]. We trained a classifier using the
K selected features by the studied methods. Here, we use one of the most popular classifiers, support
vector machines (SVM) [14]. Other classifiers could be used. Yet, we choose to use a non-NN-based
classifier for evaluation to avoid any biased advantages towards the NN-based baselines over the
others. We studied the performance of 6 different values of the number of selected features (K). We
report the average accuracy of the test data over 5 seeds. (2) Memory cost: We calculate the number
of network parameters (#params) used by each NN-based method. (3) Computational cost: We
calculate the number of Floating-point operations (FLOPs) consumed to train a neural network. See
Appendix A.2 for details.

Implementation. We implemented WAST and QS [4] with PyTorch [58] (see Appendix H). For CAE
[5] and AEFS [25], we used the code provided by the authors of CAE with MIT license2. For DUFS

2https://github.com/mfbalin/Concrete-Autoencoders
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Table 2: Classification accuracy (%) (↑) using unsupervised and supervised feature selection methods.
50 features are selected for all datasets except Madelon, where 20 features are used. The best
performer from the unsupervised methods is indicated in bold font, while the best performer from the
supervised methods is in blue.

Method Madelon USPS COIL-20 MNIST FashionMNIST

Unsupervised

Classical
lap_score [26] 49.50±0.00 70.54±0.00 78.12±0.00 23.94±0.00 27.07±0.00
MCFS [9] 51.83±0.00 93.33±0.00 97.22±0.00 - -
DUFS [42] 52.57±1.35 95.62±0.54 97.43±1.22 62.09± 0.00 74.69±1.86

NN-based

AEFS [25] 60.16±4.61 95.86±0.48 99.48±0.41 93.22±1.38 80.88±0.71
CAE [5] 80.90±2.86 95.04±0.59 94.54±2.92 96.20±0.14 84.66±0.16
QS [4] 82.07±1.10 95.88±0.31 99.17±0.42 94.07±0.04 82.65±0.38
WAST (ours) 83.27±0.63 96.69±0.27 99.58±0.14 95.27±0.26 82.16±0.57

Supervised
Classical

Fisher_score [22] 75.67±0.00 91.02±0.00 88.89±0.00 86.11±0.00 67.85±0.00
L1_L21 [45] 49.33±0.00 86.99±0.00 92.01±0.00 62.26±0.00 69.57±0.00
CIFE [41] 54.50±0.00 61.29±0.00 59.38±0.00 89.30±0.00 66.86±0.00
ICAP [33] 78.00±0.00 95.22±0.00 99.31±0.00 89.03±0.00 59.52±0.00
RFS [56] 83.00±0.00 95.32±0.00 66.32±0.00 - -

NN-based LassoNet [37] 79.50±1.22 95.80±0.12 95.83±1.18 94.38±0.12 82.63±0.23
STG [71] 59.53±1.90 95.78±0.60 97.57±1.70 92.53±0.86 83.32±0.45

Method Isolet HAR PCMAC SMK GLA

Unsupervised

Classical
lap_score [26] 75.71±0.00 82.80±0.00 49.87±0.00 81.58±0.00 66.67±0.00
MCFS [9] 81.41±0.00 80.29±0.00 53.47±0.00 78.95±0.00 75.00±0.00
DUFS [42] 85.62±2.53 86.90±1.06 57.79±3.18 81.05±3.07 70.83±1.39

NN-based

AEFS [25] 80.94±2.02 89.54±0.44 60.40±2.37 79.48±3.07 67.76±6.21
CAE [5] 78.90±1.24 86.26±2.41 55.08±0.00 78.94±2.37 70.56±4.50
QS [4] 74.62±2.12 89.68±0.38 55.78±3.25 81.58±3.72 68.89±4.78
WAST (ours) 85.33±1.39 91.20±0.16 60.51±2.53 84.74±1.05 75.56±4.08

Supervised
Classical

Fisher_score [22] 75.64±0.00 83.68±0.00 86.38±0.00 73.68±0.00 63.89±0.00
L1_L21 [45] 55.90±0.00 81.30±0.00 53.98±0.00 84.21±0.00 69.44±0.00
CIFE [41] 59.81±0.00 84.15±0.00 75.84±0.00 81.58±0.00 58.33±0.00
ICAP [33] 75.06±0.00 88.70±0.00 87.66±0.00 73.68±0.00 72.22±0.00
RFS [56] 77.31±0.00 88.23±0.00 67.61±0.00 76.32±0.00 -

NN-based LassoNet [37] 85.70±0.38 93.93±0.15 86.53±1.25 77.37± 3.57 76.67±2.22
STG [71] 89.38±1.19 91.75±0.59 56.04±1.90 81.05±1.29 71.11±2.83

[42], LassoNet [37], and STG [71], we used the official codes with MIT license345. For classical
baselines, we used the Scikit-Feature library with GNU General Public license [39]6. NN-based and
classical methods are trained on Nvidia GPUs and CPUs, respectively. We consider a 12 hours limit
on the running time of each experiment. Experiments that exceed this limit are not considered.

Implementation Details. For all NN-based methods except CAE [5], we use a single hidden layer
of 200 neurons. The architecture of CAE consists of two layers. The size of the hidden layers is
dependent on the chosen K; [K, 3

2K]. For WAST and QS, we use a sparsity level of 0.8. Following
[4], we report the accuracy of NN-based baselines after 100 epochs unless stated otherwise. Note
that some baselines reported a higher number of epochs (e.g., CAE [5] uses 200 epochs for some
datasets). Yet, we keep 100 epochs for all cases for a fair comparison. For WAST, we train the model
for 10 epochs. Following [4], we add a Gaussian noise with a factor of 0.2 to the input in WAST and
QS [4]. Details of the hyperparameters are in Appendix A.1.

4.4 Results

Accuracy. Table 2 shows the classification accuracy of the studied datasets. Here, we report the
challenging case where a few best informative features have to be selected. We use a K of 50 for all
datasets except for Madelon, where a K of 20 is used as the remaining 480 features are pure noise.
Experiments with various values for K ∈ {25, 50, 75, 100, 150, 200} can be found in Appendix B,
with a summary provided next.

Unsupervised NN-based methods outperform the classical ones on all datasets except one, where
the performance difference is marginal. WAST outperforms unsupervised NN-based methods on

3https://github.com/Ofirlin/DUFS
4https://github.com/lasso-net/lassonet
5https://github.com/runopti/stg
6https://jundongl.github.io/scikit-feature/
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Table 3: Memory and computational costs (↓) estimated by the #params and FLOPs (1012), respec-
tively, for NN-based methods. Unlike other methods, the architecture of CAE [5] is dependent on the
value of K. Here, we report the costs for K = 50.

(Fashion)MNIST USPS COIL-20 Isolet
Method Type #params FLOPs #params FLOPs #params FLOPs #params FLOPs
AEFS[25] Dense 313600 11.28 102400 0.45 409600 0.28 246800 0.92
CAE[5] Dense 101750 3.66 35750 0.15 131750 0.09 80875 0.30
QS[4] Sparse 62720 2.25 20480 0.09 81920 0.05 49360 0.18
WAST Sparse 62720 0.22 20480 0.009 81920 0.005 49360 0.01

HAR PCMAC SMK GLA
AEFS[25] Dense 206400 0.91 1315600 1.22 7997200 0.71 19660400 1.69
CAE[5] Dense 68250 0.30 414875 0.38 2502875 0.22 6147625 0.53
QS[4] Sparse 41280 0.18 263120 0.24 1599440 0.14 3932080 0.33
WAST Sparse 41280 0.01 263120 0.02 1599440 0.01 3932080 0.03

25 50 75 100 150 200
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cept Madelon at different
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all datasets except MNIST and Fashion MNIST, where CAE is the best performer. It is worth
emphasizing that the superior performance of WAST is achieved with a 90% reduction in the number
of training iterations. Supervised baselines outperform the classical supervised ones in 6 cases.
Interestingly, WAST achieves a competitive performance to the supervised baselines. It outperforms
the best-supervised performer in 5 cases.

Memory and Computational Costs. Table 3 shows the memory and computational costs consumed
by each unsupervised NN-based method. The high memory and computational costs are caused
by the high number of training samples, as in MNIST, or the high-dimensional feature space, as in
GLA. Training a sparse model from scratch, as in WAST and QS, reduces these costs substantially.
QS reduces the computational cost by 80%. Interestingly, besides the reduction resulting from
using sparse neural networks, WAST reduces the computational cost further to 98% due to the fast
identification of the informative features. Both WAST and QS reduce the network size by 80%.

The network size of CAE is dependent on the target value of K. This has two limitations: training
the model for every target K and the increase of the memory and computational costs with higher
values for K. On the other hand, WAST derives the importance of each feature with a single training
run independently of the target K. This is illustrated in Figure 2. The figure shows the accumulated
FLOPs for all datasets except Madelon at each value of the studied K.

Overall Performance. To give a holistic view of the performance of each method across all
dimensions (accuracy, memory cost, and computational cost) on all datasets and all studied values
of K, we calculate the performance in each case. Figure 3 illustrates the normalized performance
using min-max scaling for all cases. The “score” metric represents the number of times a method
is the best performer in terms of accuracy. Details are provided in Appendix A.2. CAE has a
higher score than AEFS, while the former is the best only for image datasets with a large number of
samples (i.e., MNIST and Fashion MNIST), as shown in Figure 4. AEFS has the highest memory
and computational costs. QS improves the memory and computational costs but has a lower score.
WAST has the highest score and spans more dataset types with different characteristics (e.g., high
dimensional data) than the baselines (Figure 4). The performance gain is accompanied by a significant
improvement in memory and computational efficiency. Detailed results are provided in Appendix B.
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Figure 5: The performance of different methods at the early stages of the training. The test accuracy
is reported for at first 10 training epochs using K of 50 for all datasets except Madelon, where K of
20 is used.

5 Analysis

5.1 Effect of Fast Attention During Training

To analyze the impact of attention to the informative features in WAST during training, we study
the learning behavior of all unsupervised NN-based methods on the test data for the first 10 epochs.
Since CAE has a parameter that is dependent on the max number of epochs, we performed ten
separate runs and varied the max number of epochs each time. Figure 5 shows the accuracy using
K of 50 for all datasets except Madelon, where K of 20 is used. The analysis reveals the following
findings: (1) Robustness to noisy environments: The results on Madelon illustrate the robustness of
WAST against the noisy features (480 out of 500). The figure shows the performance gap between
WAST and the baseline methods starting from epoch 1. After 10 epochs, WAST outperforms the
second-best performer by 22%. More experiments on noisy enviroments can be found in Appendix G.
(2) Performance on datasets with a large number of samples: WAST outperforms CAE by 3.6%
and 1.6% on MNIST and FashionMNIST, respectively, although CAE was the best performer on these
datasets after training it for a larger number of epochs (Table 2). (3) Consistency across different
dataset types and characteristics: We observe that some baselines achieve high performance in
some domains while being worse in others. WAST has the highest consistency on different dataset
types and characteristics, outperforming all baselines after 10 epochs (Appendix C). (4) Stability:
WAST is more stable at the early stage of the training. This is represented by the standard deviation
across different training runs (shaded region).

5.2 Visualization

Figure 6 illustrates how the sparse topology changes during training in WAST and QS. We performed
this analysis on MNIST, where handwritten digits are centered in 28× 28 grayscale images (Figure
6a). Initially, the sparse connections are uniformly distributed on the input neurons. With the guided
adaptation of a sparse topology via attention, WAST detects the informative features quickly after one
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Figure 6: Visualization. (a) Samples of the MNIST dataset. Each sample is 28 × 28, and the
informative pixels are centered in the middle. The distribution of the sparse connections during
training (i.e., the number of outgoing connections from each input neuron) on MNIST using WAST
(b) and the QS method [4] (c). WAST has faster attention to the informative features after one epoch.

Table 4: Ablation study. Effect of each component in the criteria of neuron importance and connection
importance. The accuracy (%) is reported using K of 20 and 50 on Madelon and others, respectively.

Criteria # Method Madelon USPS HAR PCMAC SMK
Neuron 1 “w/o |∂L∂x̃ |” 55.50±2.45 95.91±0.64 87.88±1.79 55.58±2.78 84.21±3.16
Neuron 2 “w/o |W|” 82.47±0.75 95.56±0.18 92.20±0.50 58.66±4.18 75.26±2.11
Neuron 3 “w/o momentum” 81.60±1.06 96.60±0.40 90.74±0.94 58.30±4.80 78.95±3.33
Connection 4 “w/o Ii” 83.27±0.63 96.54±0.17 90.11±0.52 55.53±3.07 84.74±1.05

WAST (ours) 83.27±0.63 96.69±0.27 91.20±0.20 60.51±2.53 84.74±1.05

epoch. On the other hand, the random growth of the connections in QS requires more training epochs.
The effect of increasing the frequency of topological exploration in QS is studied in Appendix F.

5.3 Ablation Study

We performed an ablation study to assess the contribution of each component in the proposed criteria
of neuron and connection importance in the performance of WAST.

Neuron Importance. (#1) “w/o |∂L∂x̃ |”: Using only the magnitude of connected weights to determine
the importance of a neuron (i.e., λ = 0), (#2) “w/o |W|”: Using only the sensitivity of the neuron to
the change in the loss (i.e., λ = 1), and (#3) “w/o momentum”: The importance of a neuron is based
only on the current estimate of its sensitivity to the loss and currently connected weights.

Connection Importance. (#4) “w/o Ii”: The importance of a connection is estimated by its
magnitude without considering the importance of its connected neuron Ii.
We performed this analysis on datasets of different types. The results are summarized in Table 4. We
observe that removing the sensitivity of a neuron to the loss (#1) has the biggest effect on performance.
It has the highest impact on noisy environments, where it reduces the performance by 27.77% on
Madelon. On the other datasets, it results in a 0.53− 4.93% reduction in the performance. Excluding
the magnitude of the weights (#2) affects mainly the datasets with few training samples (e.g., SMK).
Neglecting the neuron importance in the previous training iterations (#3) reduces the performance by
0.09 − 5.79%. Aligned with many prior works [20; 54; 27], we find that the weight magnitude is
an effective metric for estimating the connection importance (#4). Moreover, our results show that
enhancing it with the importance of its connected neuron improves the performance even further on
some datasets without diminishing it on the others.
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Figure 7: The performance of WAST using different sparsity levels for the autoencoder model. The
test accuracy is reported using K of 50 except on Madelon, where K = 20.

5.4 Effect of the Sparsity Level

We further study the effect of the sparsity level of the auto-encoder model on the performance of
WAST. We evaluated 5 different sparsity levels {20%, 40%, 60%, 80%, 90%}. All other settings are
the same as the ones stated in Appendix A.

Figure 7 illustrates the classification accuracy using K = 20 for Madelon and K=50 for other datasets.
We observe the performance of WAST is robust to the sparsity level. Yet, we mostly care about the
performance at high sparsity levels, as the goal is to achieve high performance at a low computational
cost.

6 Discussion

Conclusion. In this paper, we propose WAST, a new efficient neural network-based method for
unsupervised feature selection. We train a sparse autoencoder from scratch and optimize the sparse
topology during training to detect the informative features quickly. We performed extensive exper-
iments in which we evaluated 55 cases on various datasets and different values of the number of
selected features. WAST achieves the best performance on 19 cases, while the second-best unsuper-
vised performer has a score of 11 cases. More interestingly, the superior performance is achieved
with a few training iterations. WAST reduces the memory and computational costs by 80% and
98%, respectively. Moreover, we show the robustness of WAST towards very noisy environments,
outperforming the state-of-the-art methods by 22% with limited training iterations. Finally, we show
that WAST performs competitively with supervised-based methods, outperforming them on image
datasets. This demonstrates the promise of adapting WAST in the supervised setting and motivates
new sparse training algorithms for supervised and unsupervised feature selection.

Limitations. This work is a step toward exploiting the power of neural networks for feature selection
in a computationally efficient manner. Besides the improvement in the accuracy of selecting the
informative feature, fast attention to the important features during training reduces the number of
training iterations substantially. Yet, like most sparse training methods in the literature, this proof-of-
concept does not fully utilize the memory and computational advantages of sparse neural networks.
This is due to the lack of hardware support for sparsity and the higher focus of the community on
the algorithmic side [27]. Nevertheless, there is recent growing attention to hardware and software
support for sparsity [28; 76; 66; 48; 15; 3; 13] (See Appendix H for discussion). This enables the
pure sparse implementation of the method in the future.

Societal Impacts. With the emergence of big data, systems that can quickly select informative
features and remove redundant ones become crucial. Besides the performance gain that could be
achieved in the downstream tasks by removing irrelevant features, reducing the number of features
improves memory and computational efficiency significantly. This enables providing energy-efficient
systems. Moreover, it is useful for improving the interpretability of model-driven decisions. The
unsupervised selection of the informative features is effective in cases where labeled data is limited
or very expensive to collect. We do not expect that there is a negative societal impact.
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