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A Continuation of Related Work

Benchmarks in machine learning are an ubiquitous feature of the field. In recent years, their design
and implementation has become a research area of its own right. Easily accessible and widely used
image classification benchmarks such as MNIST and ImageNet are widely credited with accelerating
progress in machine learning. Various domains in machine learning have widely influential datasets:
In time series forecasting there are the Makridakis competitions [36], in reinforcement learning there
is the OpenAI Gym [5]. Generic classification problems use, for example, the Penn Machine Learning
Benchmark [43].

Closely related to the chosen Scientific ML baselines is the problem of directly differentiating through
the numerical solver, which can itself be used in training an approximating model, or to directly solve
some optimization or control problem of interest. Differentiable direct PDE solvers are increasingly
available, e.g. [37] and frequently built upon neural network technology stacks [13, 3, 18].

Recent efforts have attempted to unify Scientific ML surrogates for PDEs under a single interface. For
example, NVIDIA’s MODULUS/SimNet [17] implements a variety of methods in a single framework,
although unfortunately under onerous intellectual property restrictions and an opaque contribution
process. The DeepXDE project [34] is available under an open license and provides an impressive
range of capabilities, but is largely restricted to PINN and DeepONet methods [47].

B Detailed metrics description

The classic loss metrics we use are (1) root-mean-squared-error (RMSE), (2) normalized RMSE
(nRMSE), (3) maximum error. These measure the emulating model’s global performance but neglect
local performance. Thus we include extra metrics to measure specific failure modes: (4) RMSE of the
conserved value (cRMSE), (5) RMSE at boundaries (bRMSE), (6) RMSE in Fourier space (fRMSE)
constrained to low, middle, and high-frequency regions.

The normalized RMSE is a variant of the RMSE to provide scale-independent information defined as:

nRMSE ⌘

s
||upred � utrue||2

||utrue||2
, (4)

where ||u||2 is the L2-norm of a (vector-valued) variable u, and utrue, upred are true and predicted
value, respectively. The maximum error measures the model’s worst prediction, which quantifies
both local performance and models’ stability of their prediction. cRMSE is defined as nRMSE ⌘
||
P

upred �
P

utrue||2/N , which measure the deviation of the prediction from some physically
conserved value. bRMSE measures the error at the boundary, indicating if the model understand
the boundary condition properly. Finally, fRMSE measures the error in low/middle/high-frequency
ranges defined as qPkmax

kmin
|F(upred)� F(utrue))|2

kmax � kmin + 1
, (5)

where F is a discrete Fourier transformation, and kmin, kmax are the minimum and maximum indices
in Fourier coordinates. In our paper, we define the low/middle/high-frequency regions as Low:
kmin = 0, kmax = 4, Middle: kmin = 5, kmax = 12, and High: kmin = 13, kmax = 1. This allows
a quantitative discussion of the model performance’s dependence on the wavelength. In the multi-
dimensional cases, we first integrate the angular coordinate direction of |F [upred � utrue](k)|2, and
take the sum along the k-coordinate.

B.1 Inverse Problem Metrics

For the inverse problem setup, we selected various metrics. The major difference with respect to the
forward metrics is that we have two main quantities to measure:
10 PDEBENCH repository https://github.com/pdebench/PDEBench.
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• the error of the quantity we want to estimate, in our case the initial condition u0:
L(u0, û0)

where û0 is the estimated value;
• the error of the prediction based on the estimated initial condition u(t, x|u0),

L (u(t, x|u0), u(t, x|û0))

In general, we expect a larger error when we measure the error in the estimated quantity w.r.t. the
predicted quantity. This is mainly due to the early decay of high frequencies of the PDE. We evaluated
the error of the prediction at a specific instant in time t = T , that has been selected as T = 15 for all
the tested datasets, expect T = 5 for the CFD dataset.

The metrics that we used for the inverse problem are: 1) MSE 2) the normalized `2 norm (L2), 3)
the normalized `3 norm (L3); 4) the FFT MSE, the FFT L2 and 5) the FFT L3. For the frequency
metrics we investigated the low frequency (between 0 and 1/4 of the max frequency), the middle
frequency (between 1/4 and 3/4) and high frequency (between 3/4 and the maximum frequency)
ranges. In Fig.12, the right figure shows the frequency power density, where we see that the largest
error is found in the middle frequency range.

C Training Protocol and Hyperparameters

The model was trained for 500 epochs with the Adam optimizer [24] as per the protocol of the
original FNO. The initial learning rate was set as 10�3 and reduced by half after each 100 epochs.
The datasets are split into 90% training and 10% validation and testing. For the PINNs, we use
DeepXDE [34] implementation. The training was performed for 15,000 epochs with the Adam
optimizer, with the learning rate set to 10�3. As with the example problems from that library we use
a fully-connected network of depth 6 with 40 neurons each. In contrast to the other surrogate models,
the PINN baseline can be trained and tested only on a single sample, and is valid only for a specific
initial and boundary condition. To get more reliable error bounds, we thus chose to train the PINN
baseline for 10 different samples per dataset and average the resulting error metrics.

C.1 Inverse problem

For testing the power of surrogate models to solve inverse problems, we consider a simplified scenario
where the machine learning model directly predicts a specific time in the future t = T . When
training to predict a specific time in the future, we reduce the training time and avoid to consider
the effect of training approaches (as discussed in the temporal analysis section subsection 4.3) in
evaluating the surrogate models. We trained over Nepoch = 20 epochs and we selected as final time
step T = 15 for all tested datasets, expect for the CFD dataset where we selected T = 5. We used
similar parameters used in the forward training, while we selected 64 hidden values to be estimated
for the initial condition and 100 samples to test and 0.2 as learning rate for the gradient method. The
loss function for the gradient computation is the MSE.

D Detailed Problem Description

In this section, we provide more detailed descriptions of each PDE and its applications. Note that
PDE is the basic mathematical tool to describe the evolution of the system in physics. Interested
readers are referred to representative textbooks of physics, for example, [12].

D.1 1D Advection Equation

The advection equation models pure advection behavior without non-linearity whose expression is
given as:

@tu(t, x) + �@xu(t, x) = 0, x 2 (0, 1), t 2 (0, 2], (6)
u(0, x) = u0(x), x 2 (0, 1), (7)

where � is a constant advection speed. Note that the exact solution of the system is given as:
u(t, x) = u0(x� �t).
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1D Advection (� = 0.4) 1D Reaction-Diffusion (⌫ = 0.5, ⇢ = 1)

Figure 6: Visualization of the time evolution of 1D Advection equation and Reaction-Diffusion
equation.

In our dataset, we only considered the periodic boundary condition. As an initial condition, we use a
super-position of sinusoidal waves as:

u0(x) =
X

ki=k1,...,kN

Ai sin(kix+ �i), (8)

where ki = 2⇡{ni}/Lx are wave numbers whose {ni} are integer numbers selected randomly in
[1, nmax], N is the integer determining how many waves to be added, Lx is the calculation domain
size, Ai is a random float number uniformly chosen in [0, 1], and �i is the randomly chosen phase
in (0, 2⇡). In 1D-advection case, we set kmax = 8 and N = 2. After calculating Equation 8, we
randomly operate the absolute value function with random signature and the window-function with
10% probability, respectively.

The numerical solution was calculated with the temporally and spatially 2nd-order upwind finite
difference scheme.

D.2 1D Diffusion-Reaction Equation

Here, we consider a one-dimensional diffusion-reaction type PDE, that combines a diffusion process
and a rapid evolution from a source term [27]. The equation is expressed as:

@tu(t, x)� ⌫@xxu(t, x)� ⇢u(1� u) = 0, x 2 (0, 1), t 2 (0, 1], (9)
u(0, x) = u0(x), x 2 (0, 1). (10)

Note that the variable u develops at potentially exponential rate because of the force term which
depends on u. measure the ability to capture very rapid dynamics.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 8
as the initial condition. To avoid an ill-defined initial condition, we also applied the absolute value
function and a normalization operation, dividing the initial condition by the maximum value. The
numerical solution was calculated with the temporally and spatially 2nd-order central difference
scheme. For the source term part, we use the piecewise-exact solution (PES) method [20].

D.3 Burgers equation

The Burgers’ equation is a PDE modeling the non-linear behavior and diffusion process in fluid
dynamics as

@tu(t, x) + @x(u
2(t, x)/2) = ⌫/⇡@xxu(t, x), x 2 (0, 1), t 2 (0, 2], (11)

u(0, x) = u0(x), x 2 (0, 1), (12)

where ⌫ is the diffusion coefficient, which is assumed constant in our dataset.

Note that setting R ⌘ ⇡uL/⌫ describes the system’s evolution as the Reynolds number of the Navier-
Stokes equation (2); R > 1 means the strong non-linear case support forming shock phenomena, and
R < 1 means the diffusive case.

Similar to the 1D advection equation case, we use the periodic boundary condition and Equation 8
as the initial condition. The numerical solution was calculated with the temporally and spatially
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1D Burgers (⌫ = 0.01) 2D Darcy Flow (� = 1.0)

Figure 7: Visualization of the time evolution of 1D Burgers equation and 2D Darcy Flow.

2nd-order upwind difference scheme for the advection term, and the central difference scheme for the
diffusion term.

D.4 Darcy Flow

We experiment with the steady-state solution of 2D Darcy Flow over the unit square, whose viscosity
term a(x) is an input of the system. The solution of the steady-state is defined by the following
equation

�r(a(x)ru(x)) = f(x), x 2 (0, 1)2, (13)

u(x) = 0, x 2 @(0, 1)2. (14)

In this paper, the force term f is set as a constant value �, changing the scale of the solution u(x).
Instead of directly solving Equation 13, we obtained the solution by solving a temporal evolution
equation:

@tu(x, t)�r(a(x)ru(x, t)) = f(x), x 2 (0, 1)2, (15)

with random field initial condition, until reaching a steady state. The numerical calculation was
performed the same as the case of the 1D Diffusion-Reaction equation.

D.5 Compressible Navier-Stokes equation

Figure 8: Visualization of the time evolution of the density in the case of 2D Compressible Navier-
Stokes equations (inviscid, M = 0.1).

The compressible fluid dynamic equations describe a fluid flow,

@t⇢+r · (⇢v) = 0, (16a)
⇢(@tv + v ·rv) = �rp+ ⌘4v + (⇣ + ⌘/3)r(r · v), (16b)

@t


✏+

⇢v2

2

�
+r ·

✓
✏+ p+

⇢v2

2

◆
v � v · �0

�
= 0, (16c)

where ⇢ is the mass density, v is the velocity, p is the gas pressure, ✏ = p/(� � 1) is the internal
energy, � = 5/3, �0 is the viscous stress tensor, and ⌘, ⇣ are the shear and bulk viscosity, respectively.

PDEBENCH provides the following training datasets for the compressible Navier-Stokes equations:
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Nd initial field boundary condition (⌘, ⇣,M)

1D random field periodic (10�8, 10�8, �)
1D random field periodic (10�2, 10�2, �)
1D random field periodic (10�1, 10�1, �)
1D random field out-going (10�8, 10�8, �)
1D shock-tube out-going (10�8, 10�8, �)

2D random field periodic (10�8, 10�8, 0.1)
2D random field periodic (10�2, 10�2, 0.1)
2D random field periodic (10�1, 10�1, 0.1)
2D random field periodic (10�8, 10�8, 1.0)
2D random field periodic (10�2, 10�2, 1.0)
2D random field periodic (10�1, 10�1, 1.0)
2D turbulence periodic (10�8, 10�8, 0.1)
2D turbulence periodic (10�8, 10�8, 1.0)

3D random field periodic (10�8, 10�8, 1.0)
3D random field periodic (10�2, 10�2, 1.0)

where Nd is the number of spatial dimensions, M = |v|/cs is the Mach number, cs =
p
�p/⇢ is

the sound velocity. The outgoing boundary condition is copying the neighbor cell to the boundary
region which allows waves and fluid to escape from the computational domain, and is popular for
astrohydrodynamics simulations [52]. The random field initial condition is applying Equation 8
which is extended to higher dimensions for the 2D and 3D cases. Note that density and pressure
are prepared by adding a uniform background to the perturbation field Equation 8. The turbulence
initial condition considers turbulent velocity with uniform mass density and pressure. The velocity is
calculated similarly to Equation 8 as

v(x, t = 0) =
nX

i=1

Ai sin(kix+ �i), (17)

where n = 4 and Ai = v̄/|k|d, and d = 1, 2 when considering 2D and 3D, respectively. v̄ is
determined by the initial Mach number as v̄ = csM . To reduce the compressibility effect, we
subtracted the compressible field from Equation 17 by the Helmholtz-decomposition in the Fourier
space.

The shock-tube initial field is composed as Q(x, t = 0) = (QL, QR), where Q = (⇢,v, p) and
QL, QR are randomly determined constant values. The location of the initial discontinuity is also
randomly determined. This problem is called the "Riemann problem", and the initial discontinuity
generates shocks and rarefaction depending on the values of QL, QR, which are very difficult to
obtain without solving the PDEs. This scenario can be used for a rigorous test if ML models fully
understand Equation 16a - Equation 16c. The numerical solution was calculated with the temporally
and spatially 2nd-order HLLC scheme [57] with the MUSCL method [59] for the inviscid part, and
the central difference scheme for the viscous part.

D.6 Inhomogenous, incompressible Navier-Stokes

A popular simplification of the Navier-Stokes equation is the incompressible version, commonly used
to model dynamics supposed to be far lower than the speed of propagation of waves in the medium,

r · v = 0, ⇢(@tv + v ·rv) = �rp+ ⌘4v. (18)

These simplify the compressible Navier-Stokes equations Eq. (2), by substituting the first term in
Eq. (18) instead of the first term in (16), from which we can eliminate several elements in the second
terms of Eq. (18). Additionally, we have introduced the assumption that the fluid is homogeneous
(i.e. not a fluid comprising two or more substances of different density or viscosity).

We employ an augmented form of (18) which includes a vector field forcing term u,

⇢(@tv + v ·rv) = �rp+ ⌘4v + u. (19)
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Figure 9: Visualization of the time evolution of the 2D shallow-water equations data.

Non-periodic conditions are included to challenge models which perform well upon periodic domains,
such as the FNO [32]. The forcing term poses challenges based upon spatially heterogeneous
dynamics. Firstly, this allows us to see if the prediction methods can successfully learn to predict in
the presence of heterogeneity. Secondly, this permits us to use the spatially varying random field as a
target for inverse inference.

Initial conditions v0 and inhomogeneous forcing parameters u are each drawn from isotropic Gaussian
random fields with truncated power-law decay ⌧ of the power spectral density and scale �, where
⌧v0 = �3,�v0 = 0.15, ⌧u = �1,�u = 0.4. The variation in the resulting field is due to the alteration
in the random seed. We set the domain to the unit square ⌦ = [0, 1]2, the viscosity to ⌫ = 0.01.
Simulations are implemented using Phiflow [18]. Boundary conditions are Dirichlet, clamping field
velocity to null at the perimeter.

D.7 2D Shallow-Water Equations

The shallow-water equations, derived from the general Navier-Stokes equations, present a suitable
framework for modelling free-surface flow problems. In 2D, these come in the form of the following
system of hyperbolic PDEs,

@th+ @xhu+ @yhv = 0 , (20a)

@thu+ @x

✓
u2h+

1

2
grh

2

◆
= �grh@xb , (20b)

@thv + @y

✓
v2h+

1

2
grh

2

◆
= �grh@yb , (20c)

with u, v being the velocities in horizontal and vertical direction, h describing the water depth and b
describing a spatially varying bathymetry. hu, hv can be interpreted as the directional momentum
components and gr describes the gravitational acceleration.

The specific simulation we include in our benchmark for the shallow-water equations problem as
introduced in D.7 is a 2D radial dam break scenario. On a square domain ⌦ = [�2.5, 2.5]2 we
initialize the water height as a circular bump in the center of the domain

h(t = 0, x, y) =

(
2.0, for r <

p
x2 + y2

1.0, for r �
p
x2 + y2

(21)

with the radius r randomly sampled from U(0.3, 0.7). For generating the datasets we simulate this
problem using the PyClaw [23] Python package which offers a comprehensive finite volume solver.
A time evolution visualization of the equation is shown in Figure 9.

D.8 Diffusion-Sorption Equation

The diffusion-sorption equation models a diffusion process which is retarded by a sorption process.
The equation is written as

@tu(t, x) = D/R(u)@xxu(t, x), x 2 (0, 1), t 2 (0, 500]. (22)
where D is the effective diffusion coefficient, R is the retardation factor representing the sorption that
hinders the diffusion process. Note that R is dependent on the variable u. This equation is applicable
to real world scenarios, one of the most prominent being groundwater contaminant transport.
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Figure 10: Visualization of the time evolution of the 1D diffusion-sorption equations data.

This equation is retarded by the retardation factor R which is dependent on u based on the Freundlich
sorption isotherm [33]:

R(u) = 1 +
1� �

�
⇢sknfu

nf�1, (23)

where � = 0.29 is the porosity of the porous medium, ⇢s = 2880 is the bulk density, k = 3.5⇥10�4

is the Freundlich’s parameter, nf = 0.874 is the Freundlich’s exponent, and the effective diffusion
coefficient D = 5⇥ 10�4. The initial condition is generated with a uniform distribution u(0, x) ⇠
U(0, 0.2) for x 2 (0, 1). We provide datasets discretized into Nx = 1024 and Nt = 501, as
well as the temporally downsampled version for the models training with Nt = 101. The spatial
discretization is performed using the finite volume method [39] and the time integration using the
built-in fourth order Runge-Kutta method in the scipy package [60].

This particular example is interesting because of a few things. First, the diffusion coefficient becomes
non-linear with dependency on u. And based on Equation 23, it is clear that there is a singularity
when u = 0. Second, it is highly applicable to a real-world problem, namely the groundwater
contaminant transport [41]. To date, application of machine learning to real-world physics problems
is still rare. Third, we employ boundary conditions that are not the usual zero or periodic conditions
that can be easily padded in models with a convolutional structure. Here, we use u(t, 0) = 1.0 and
u(t, 1) = D@xu(t, 1). The second boundary condition is particularly challenging since it uses a
derivative instead of a constant value. For generating the datasets we simulate this problem using a
standard finite volume solver. A time evolution visualization of the equation is shown in Figure 10.

D.9 2D Diffusion-Reaction Equation

In addition to the 1D diffusion-reaction equation, which involves only a single variable, we also
consider extending the application to a 2D domain, with two non-linearly coupled variables, namely
the activator u = u(t, x, y) and the inhibitor v = v(t, x, y). The equation is written as

@tu = Du@xxu+Du@yyu+Ru, @tv = Dv@xxv +Dv@yyv +Rv , (24)

where Du and Dv are the diffusion coefficient for the activator and inhibitor, respectively, Ru =
Ru(u, v) and Rv = Rv(u, v) are the activator and inhibitor reaction function, respectively. The
domain of the simulation includes x 2 (�1, 1), y 2 (�1, 1), t 2 (0, 5]. This equation is applicable
most prominently for modeling biological pattern formation.

The reaction functions for the activator and inhibitor are defined by the Fitzhugh-Nagumo equation
[25], written as:

Ru(u, v) = u� u3 � k � v, (25)
Rv(u, v) = u� v, (26)

where k = 5⇥ 10�3, and the diffusion coefficients for the activator and inhibitor are Du = 1⇥ 10�3

and Dv = 5 ⇥ 10�3, respectively. The initial condition is generated as standard normal random
noise u(0, x, y) ⇠ N (0, 1.0) for x 2 (�1, 1) and y 2 (�1, 1). We provide datasets discretized into
Nx = 512, Ny = 512 and Nt = 501, as well as the downsampled version for the models training
with Nx = 128, Ny = 128, and Nt = 101. As in the 1D diffusion-sorption equation, the spatial
discretization is performed using the finite volume method [39], and the time integration is performed
using the built-in fourth order Runge-Kutta method in the scipy package [60].
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Figure 11: Visualization of the time evolution of the 2D diffusion-reaction equations data.

We included the 2D diffusion-reaction equation as an example because it serves as a challenging
benchmark problem. First, there are two variables of interest, namely the activator and inhibitor,
which are non-linearly coupled. Second, it also has applicability in real-world problems, namely
biological pattern formation [58]. Third, we also employ a no-flow Neumann boundary condition,
meaning that Du@xu = 0, Dv@xv = 0, Du@yu = 0, and Dv@yv = 0 for x, y 2 (�1, 1)2. For
generating the datasets we simulate this problem using a standard finite volume solver. A time
evolution visualization of the equation is shown in Figure 11.

Figure 12: Inverse problem for the 1d advection equation with � = 0.1. The spectra density where
most of the error is concentrated in the higher frequencies is depicted on the right.

D.10 Gradient-Based Inverse Method

The inverse problem aims at solving an inverse inference by minimising the prediction loss[7, 40],

L(u(t = T, x|u0), u(t = T, x|û0))

where û0 ⇠ p✓(u0|u(t = T, x)) .

The generation process p✓(u0|u(t = T, x)) is a deterministic function, whose parameters ✓ use a
bilinear interpolation to recover the initial condition [35].

Figure 12 shows the solution of the inverse problem for the 1d advection equation. On the left, we see
the true and estimated initial condition, and on the right the power density in the frequency domain.
As we can see, the error is concentrated in the mid-high frequencies. In the middle we have the true
and predicted value at time t = T . The error is smaller then in the plot on the left.

Table 2, Table 3 and Table 4 show the error in the spatial and frequency domain of 4 datasets and
using FNO and U-Net as surrogate models. In Fig.12, the left figure visualizes the true and the
estimated initial condition, while the middle figure is the predicted and the true value. As shown in
the figure on the right, the largest error is in the higher frequencies. This effect is also visible from
the frequency metrics of Tab.3 and Tab.4. In the experiment we use the same initial and boundary
conditions of the forward problem.
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Forward model

PDE Metric FNO U-Net

Advection_beta4

MSE 2.4⇥ 10�3 ± 3.4⇥ 10�3 1.0⇥ 10+0 ± 5.6⇥ 10�2

nL2 3.9⇥ 10�2 ± 2.9⇥ 10�2 1.0⇥ 10+0 ± 2.8⇥ 10�2

nL3 4.4⇥ 10�2 ± 3.3⇥ 10�2 1.0⇥ 10+0 ± 2.9⇥ 10�2

MSE’ 2.9⇥ 10�4 ± 5.8⇥ 10�4 9.9⇥ 10�1 ± 2.5⇥ 10�2

nL2’ 1.4⇥ 10�2 ± 1.1⇥ 10�2 1.0⇥ 10+0 ± 8.0⇥ 10�3

nL3’ 1.6⇥ 10�2 ± 1.3⇥ 10�2 1.0⇥ 10+0 ± 8.4⇥ 10�3

Burgers_Nu1

MSE 1.0⇥ 10+0 ± 2.2⇥ 10�1 1.3⇥ 10+0 ± 2.3⇥ 10�1

nL2 1.0⇥ 10+0 ± 1.0⇥ 10�1 1.1⇥ 10+0 ± 1.0⇥ 10�1

nL3 1.0⇥ 10+0 ± 1.0⇥ 10�1 1.1⇥ 10+0 ± 1.1⇥ 10�1

MSE’ 1.3⇥ 10�4 ± 2.8⇥ 10�4 2.5⇥ 10�3 ± 1.9⇥ 10�3

nL2’ 7.0⇥ 10�1 ± 4.6⇥ 10�1 1.6⇥ 10+1 ± 2.0⇥ 10+1

nL3’ 7.0⇥ 10�1 ± 4.4⇥ 10�1 1.7⇥ 10+1 ± 2.1⇥ 10+1

CFD_Shock_Trans

MSE 3.4⇥ 10+0 ± 5.3⇥ 10�1 1.1⇥ 10+2 ± 2.0⇥ 10+1

nL2 1.8⇥ 10+0 ± 1.4⇥ 10�1 1.0⇥ 10+1 ± 1.1⇥ 10+0

nL3 1.9⇥ 10+0 ± 2.7⇥ 10�1 1.1⇥ 10+1 ± 1.6⇥ 10+0

MSE’ 1.0⇥ 10�1 ± 5.9⇥ 10�2 4.2⇥ 10�1 ± 9.2⇥ 10�1

nL2’ 3.3⇥ 10�1 ± 8.5⇥ 10�2 5.8⇥ 10�1 ± 3.9⇥ 10�1

nL3’ 3.6⇥ 10�1 ± 9.6⇥ 10�2 6.0⇥ 10�1 ± 4.0⇥ 10�1

ReacDiff_Nu1_Rho2

MSE 1.7⇥ 10+0 ± 2.1⇥ 10�1 2.0⇥ 10+0 ± 3.8⇥ 10�1

nL2 1.3⇥ 10+0 ± 8.4⇥ 10�2 1.4⇥ 10+0 ± 1.3⇥ 10�1

nL3 1.3⇥ 10+0 ± 8.1⇥ 10�2 1.5⇥ 10+0 ± 1.3⇥ 10�1

MSE’ 5.4⇥ 10�2 ± 1.2⇥ 10�1 6.4⇥ 10�1 ± 3.5⇥ 10�1

nL2’ 1.2⇥ 10�1 ± 1.2⇥ 10�1 7.3⇥ 10�1 ± 5.1⇥ 10�2

nL3’ 1.2⇥ 10�1 ± 1.2⇥ 10�1 7.3⇥ 10�1 ± 5.0⇥ 10�2

Table 2: Error of the inverse problem. The prime indicates the error of the predition, for example
MSE’ is the MSE at time t = T . The MSE for example in the first row is one order of magnitude
lower. nL2 and nL3 are the normalized L2 and L3 norm error, nLp = ||ŷ � y||p/||y||p, p = 2, 3.
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Forward model

PDE Metric FNO U-Net

Advection_beta4

fMSE 3.04⇥10�1 1.29⇥10+2

fMSE low 5.56⇥10�1 1.29⇥10+2

fMSE mid 5.26⇥10�2 1.29⇥10+2

fMSE high 3.03⇥10�1 1.29⇥10+2

fMSE’ 3.67⇥10�2 9.92⇥10�1

fMSE’ low 1.60⇥10�2 9.92⇥10�1

fMSE’ mid 5.74⇥10�2 9.92⇥10�1

fMSE’ high 3.68⇥10�2 9.92⇥10�1

fL2 3.91⇥10�2 1.00⇥10+0

fL2 low 3.75⇥10�2 1.01⇥10+0

fL2 mid 1.41⇥10+1 0.00⇥10+0

fL2 high 3.90⇥10�2 0.00⇥10+0

Burgers_Nu1

fMSE 1.29⇥10+2 1.59⇥10+2

fMSE low 2.58⇥10+2 1.59⇥10+2

fMSE mid 1.19⇥10�1 1.59⇥10+2

fMSE high 1.29⇥10+2 1.59⇥10+2

fMSE’ 1.67⇥10�2 2.46⇥10�3

fMSE’ low 3.36⇥10�2 2.46⇥10�3

fMSE’ mid 9.26⇥10�7 2.46⇥10�3

fMSE’ high 1.66⇥10�2 2.46⇥10�3

fL2 9.98⇥10�1 1.11⇥10+0

fL2 low 9.98⇥10�1 1.11⇥10+0

fL2 mid 3.50⇥10+0 0.00⇥10+0

fL2 high 9.98⇥10�1 0.00⇥10+0

CFD_Shock_Trans

fMSE 4.37⇥10+2 1.40⇥10+4

fMSE low 4.37⇥10+2 1.40⇥10+4

fMSE mid 4.37⇥10+2 1.40⇥10+4

fMSE high 4.37⇥10+2 1.40⇥10+4

fMSE’ 1.28⇥10+1 2.19⇥10+2

fMSE’ low 3.21⇥10+1 2.19⇥10+2

fMSE’ mid 1.13⇥10+0 2.19⇥10+2

fMSE’ high 8.98⇥10+0 2.19⇥10+2

fL2 1.84⇥10+0 1.04⇥10+1

fL2 low 1.51⇥10+0 9.95⇥10+0

fL2 mid 0.00⇥10+0 0.00⇥10+0

fL2 high 0.00⇥10+0 0.00⇥10+0

ReacDiff_Nu1_Rho2

fMSE 2.17⇥10+2 2.55⇥10+2

fMSE low 6.10⇥10+2 2.55⇥10+2

fMSE mid 1.48⇥10�2 2.55⇥10+2

fMSE high 1.28⇥10+2 2.55⇥10+2

fMSE’ 6.94⇥10+0 6.35⇥10�1

fMSE’ low 2.77⇥10+1 6.35⇥10�1

fMSE’ mid 1.14⇥10�5 6.35⇥10�1

fMSE’ high 1.29⇥10�4 6.35⇥10�1

fL2 1.30⇥10+0 1.41⇥10+0

fL2 low 1.54⇥10+0 1.60⇥10+0

fL2 mid 7.45⇥10+0 0.00⇥10+0

fL2 high 1.00⇥10+0 0.00⇥10+0

Table 3: Frequency error of the inverse problem. fMSE, fL2 and fL3 are the frequency version of the
MSE, normalized L2 and L3 norm metrics. Low, mid and high is the range of frequencies. Prime is
used for the error in the prediction, without the error of the initial condition estimation. Normalised
metric are not well defined, when the original signal is zero.
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Forward model

PDE Metric FNO U-Net

Advection_beta4

fL2’ 1.36⇥10�2 1.13⇥10+1

fL2’ low 7.50⇥10�3 5.66⇥10+0

fL2’ mid 1.61⇥10+0 5.27⇥10+1

fL2’ high 1.36⇥10�2 8.01⇥10+0

fL3 3.14⇥10�2 1.00⇥10+0

fL3 low 3.12⇥10�2 1.00⇥10+0

fL3 mid 1.75⇥10+1 0.00⇥10+0

fL3 high 3.14⇥10�2 0.00⇥10+0

fL3’ 9.51⇥10�3 5.04⇥10+0

fL3’ low 5.62⇥10�3 3.18⇥10+0

fL3’ mid 1.47⇥10+0 2.77⇥10+1

fL3’ high 9.51⇥10�3 4.00⇥10+0

Burgers_Nu1

fL2’ 7.00⇥10�1 1.82⇥10+2

fL2’ low 7.99⇥10�1 6.28⇥10+1

fL2’ mid 1.03⇥10+2 5.84⇥10+5

fL2’ high 5.39⇥10�1 1.31⇥10+2

fL3 9.97⇥10�1 1.04⇥10+0

fL3 low 9.97⇥10�1 1.04⇥10+0

fL3 mid 3.58⇥10+0 0.00⇥10+0

fL3 high 9.97⇥10�1 0.00⇥10+0

fL3’ 7.21⇥10�1 4.88⇥10+1

fL3’ low 7.99⇥10�1 2.40⇥10+1

fL3’ mid 9.35⇥10+1 2.98⇥10+5

fL3’ high 5.39⇥10�1 3.92⇥10+1

CFD_Shock_Trans

fL2’ 3.34⇥10�1 2.12⇥10+0

fL2’ low 2.68⇥10�1 2.14⇥10+0

fL2’ mid 0.00⇥10+0 0.00⇥10+0

fL2’ high 0.00⇥10+0 0.00⇥10+0

fL3 1.26⇥10+0 9.41⇥10+0

fL3 low 1.11⇥10+0 9.36⇥10+0

fL3 mid 0.00⇥10+0 0.00⇥10+0

fL3 high 0.00⇥10+0 0.00⇥10+0

fL3’ 2.16⇥10�1 2.19⇥10+0

fL3’ low 1.96⇥10�1 2.20⇥10+0

fL3’ mid 0.00⇥10+0 0.00⇥10+0

fL3’ high 0.00⇥10+0 0.00⇥10+0

ReacDiff_Nu1_Rho2

fL2’ 1.23⇥10�1 1.18⇥10+1

fL2’ low 1.23⇥10�1 5.83⇥10+0

fL2’ mid 1.89⇥10+18 1.90⇥10+21

fL2’ high 9.03⇥10+18 3.93⇥10+21

fL3 1.27⇥10+0 1.29⇥10+0

fL3 low 1.45⇥10+0 1.47⇥10+0

fL3 mid 7.07⇥10+0 0.00⇥10+0

fL3 high 1.00⇥10+0 0.00⇥10+0

fL3’ 1.23⇥10�1 5.08⇥10+0

fL3’ low 1.23⇥10�1 3.18⇥10+0

fL3’ mid 1.07⇥10+18 7.25⇥10+20

fL3’ high 6.54⇥10+18 1.14⇥10+21

Table 4: Frequency error of the prediction of the inverse problem. fMSE, fL2 and fL3 are the
frequency version sof the MSE, normalized L2 and L3 norm metrics. Low, mid and high is the
range of the frequencies. Prime is used for the error in the prediction, without the error of the initial
condition estimation. Normalised metric are not well defined, when the original signal is zero.
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E Detailed Baseline Score

Table 5: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the diffusion-sorption, 2D diffusion-reaction, and
shallow-water equations.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Diffusion-sorption N/A

RMSE 5.8⇥ 10�2 5.9⇥ 10�4 9.9⇥ 10�2

nRMSE 1.5⇥ 10�1 1.7⇥ 10�3 2.2⇥ 10�1

max error 2.9⇥ 10�1 7.8⇥ 10�3 2.2⇥ 10�1

cRMSE 4.8⇥ 10�2 1.9⇥ 10�4 7.5⇥ 10�2

bRMSE 6.1⇥ 10�3 2.0⇥ 10�3 1.4⇥ 10�1

fRMSE low 1.9⇥ 10�2 1.5⇥ 10�4 3.5⇥ 10�2

fRMSE mid 4.7⇥ 10�3 5.0⇥ 10�5 5.2⇥ 10�3

fRMSE high 1.9⇥ 10�4 7.1⇥ 10�6 2.7⇥ 10�4

2D diffusion-reaction N/A

RMSE 6.1⇥ 10�2 8.1⇥ 10�3 1.9⇥ 10�1

nRMSE 8.4⇥ 10�1 1.2⇥ 10�1 1.6⇥ 10+0

max error 1.9⇥ 10�1 9.1⇥ 10�2 5.0⇥ 10�1

cRMSE 3.9⇥ 10�2 1.7⇥ 10�3 1.3⇥ 10�1

bRMSE 7.8⇥ 10�2 2.7⇥ 10�2 2.2⇥ 10�1

fRMSE low 1.7⇥ 10�2 8.2⇥ 10�4 5.7⇥ 10�2

fRMSE mid 5.4⇥ 10�3 7.7⇥ 10�4 1.3⇥ 10�2

fRMSE high 6.8⇥ 10�4 4.1⇥ 10�4 1.5⇥ 10�3

Shallow-water equation N/A

RMSE 8.6⇥ 10�2 4.5⇥ 10�3 1.7⇥ 10�2

nRMSE 8.3⇥ 10�2 4.4⇥ 10�3 1.7⇥ 10�2

max error 4.4⇥ 10�1 4.5⇥ 10�2 1.3⇥ 10�3

cRMSE 1.3⇥ 10�2 2.0⇥ 10�4 1.7⇥ 10�2

bRMSE 4.2⇥ 10�3 1.4⇥ 10�3 1.5⇥ 10�1

fRMSE low 2.0⇥ 10�2 2.6⇥ 10�4 5.9⇥ 10�3

fRMSE mid 7.0⇥ 10�3 3.1⇥ 10�4 1.9⇥ 10�3

fRMSE high 8.6⇥ 10�4 2.5⇥ 10�4 6.0⇥ 10�4
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Table 6: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the advection equation with different parameter values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Advection

� = 0.1

RMSE 3.8⇥ 10�2 4.9⇥ 10�3 7.8⇥ 10�1

nRMSE 6.0⇥ 10�2 9.3⇥ 10�3 9.1⇥ 10�1

max error 4.9⇥ 10�1 1.4⇥ 10�1 1.5⇥ 10+0

cRMSE 1.5⇥ 10�2 5.0⇥ 10�4 5.5⇥ 10�3

bRMSE 6.4⇥ 10�2 4.3⇥ 10�3 6.8⇥ 10�1

fRMSE low 1.2⇥ 10�2 4.1⇥ 10�4 1.8⇥ 10�1

fRMSE mid 5.6⇥ 10�3 4.4⇥ 10�4 4.9⇥ 10�4

fRMSE high 8.6⇥ 10�4 2.9⇥ 10�4 6.1⇥ 10�6

� = 0.4

RMSE 3.6⇥ 10�1 5.9⇥ 10�3 9.2⇥ 10�1

nRMSE 6.7⇥ 10�1 1.1⇥ 10�2 1.1⇥ 10+0

max error 1.7⇥ 10+0 2.0⇥ 10�1 1.7⇥ 10+0

cRMSE 2.6⇥ 10�1 4.6⇥ 10�4 1.9⇥ 10�3

bRMSE 3.7⇥ 10�1 5.5⇥ 10�3 7.7⇥ 10�1

fRMSE low 1.3⇥ 10�1 4.4⇥ 10�4 2.1⇥ 10�1

fRMSE mid 2.3⇥ 10�2 4.7⇥ 10�4 3.4⇥ 10�3

fRMSE high 2.3⇥ 10�3 3.4⇥ 10�4 9.8⇥ 10�6

� = 1.0

RMSE 1.2⇥ 10�2 3.5⇥ 10�3 4.0⇥ 10�1

nRMSE 2.0⇥ 10�2 5.9⇥ 10�3 4.7⇥ 10�1

max error 1.7⇥ 10�1 8.5⇥ 10�2 7.6⇥ 10�1

cRMSE 6.6⇥ 10�3 1.8⇥ 10�4 6.0⇥ 10�3

bRMSE 3.0⇥ 10�2 2.6⇥ 10�3 3.0⇥ 10�1

fRMSE low 3.8⇥ 10�3 1.7⇥ 10�4 9.7⇥ 10�2

fRMSE mid 1.5⇥ 10�3 2.1⇥ 10�4 1.2⇥ 10�3

fRMSE high 4.3⇥ 10�4 2.2⇥ 10�4 2.2⇥ 10�5

� = 4.0

RMSE 1.6⇥ 10�2 5.8⇥ 10�3 6.6⇥ 10�1

nRMSE 2.6⇥ 10�2 1.0⇥ 10�2 7.7⇥ 10�1

max error 1.4⇥ 10�1 1.1⇥ 10�1 1.0⇥ 10+0

cRMSE 8.1⇥ 10�3 3.9⇥ 10�4 2.0⇥ 10�2

bRMSE 3.0⇥ 10�2 5.1⇥ 10�3 5.5⇥ 10�1

fRMSE low 4.6⇥ 10�3 4.9⇥ 10�4 1.5⇥ 10�1

fRMSE mid 1.8⇥ 10�3 5.7⇥ 10�4 3.4⇥ 10�4

fRMSE high 4.7⇥ 10�4 2.9⇥ 10�4 1.5⇥ 10�5
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Table 7: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the Burgers’ equation with different parameter values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

Burgers’

⌫ = 0.001

RMSE 1.1⇥ 10�1 1.3⇥ 10�2 5.3⇥ 10�1

nRMSE 3.4⇥ 10�1 4.2⇥ 10�2 9.6⇥ 10�1

max error 5.7⇥ 10�1 2.8⇥ 10�1 8.2⇥ 10�1

cRMSE 5.9⇥ 10�2 8.5⇥ 10�4 5.1⇥ 10�1

bRMSE 1.0⇥ 10�1 9.3⇥ 10�3 5.2⇥ 10�1

fRMSE low 4.1⇥ 10�2 8.7⇥ 10�4 1.6⇥ 10�1

fRMSE mid 1.1⇥ 10�2 1.2⇥ 10�3 1.3⇥ 10�2

fRMSE high 1.5⇥ 10�3 7.7⇥ 10�4 4.7⇥ 10�4

⌫ = 0.01

RMSE 9.7⇥ 10�2 6.4⇥ 10�3 5.3⇥ 10�1

nRMSE 3.0⇥ 10�1 2.0⇥ 10�2 9.5⇥ 10�1

max error 5.4⇥ 10�1 1.5⇥ 10�1 7.5⇥ 10�1

cRMSE 4.0⇥ 10�2 7.2⇥ 10�4 4.7⇥ 10�1

bRMSE 9.7⇥ 10�2 7.6⇥ 10�3 4.8⇥ 10�1

fRMSE low 3.5⇥ 10�2 7.8⇥ 10�4 1.8⇥ 10�1

fRMSE mid 1.0⇥ 10�2 9.6⇥ 10�4 2.3⇥ 10�2

fRMSE high 9.6⇥ 10�4 5.2⇥ 10�4 1.2⇥ 10�3

⌫ = 0.1

RMSE 7.5⇥ 10�2 1.4⇥ 10�3 4.9⇥ 10�1

nRMSE 2.8⇥ 10�1 4.5⇥ 10�3 8.8⇥ 10�1

max error 4.6⇥ 10�1 3.0⇥ 10�2 6.6⇥ 10�1

cRMSE 3.0⇥ 10�2 4.5⇥ 10�4 4.7⇥ 10�1

bRMSE 1.0⇥ 10�1 2.5⇥ 10�3 3.4⇥ 10�1

fRMSE low 2.9⇥ 10�2 4.2⇥ 10�4 1.5⇥ 10�1

fRMSE mid 5.6⇥ 10�3 3.1⇥ 10�4 1.0⇥ 10�2

fRMSE high 8.4⇥ 10�4 5.4⇥ 10�5 5.1⇥ 10�4

⌫ = 1.0

RMSE 6.0⇥ 10�2 8.1⇥ 10�4 5.4⇥ 10�1

nRMSE 3.6⇥ 10�1 3.1⇥ 10�3 9.9⇥ 10�1

max error 3.9⇥ 10�1 5.9⇥ 10�3 7.1⇥ 10�1

cRMSE 6.4⇥ 10�2 2.4⇥ 10�4 5.3⇥ 10�1

bRMSE 6.6⇥ 10�2 8.6⇥ 10�4 6.1⇥ 10�1

fRMSE low 2.5⇥ 10�2 3.2⇥ 10�4 1.5⇥ 10�1

fRMSE mid 3.0⇥ 10�3 2.4⇥ 10�5 4.9⇥ 10�3

fRMSE high 5.9⇥ 10�4 4.9⇥ 10�6 2.6⇥ 10�4
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Table 8: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the Darcy flow equation with different parameter values.

Baseline model

PDE Parameter Metric U-Net FNO

DarcyFlow

� = 0.01

RMSE 4.0⇥ 10�3 8.0⇥ 10�3

nRMSE 1.1⇥ 10+0 2.5⇥ 10+0

max error 6.8⇥ 10�2 1.5⇥ 10�1

cRMSE 5.8⇥ 10�3 1.3⇥ 10�2

bRMSE 6.3⇥ 10�4 4.7⇥ 10�3

fRMSE low 2.5⇥ 10�3 5.2⇥ 10�3

fRMSE mid 1.3⇥ 10�4 1.5⇥ 10�4

fRMSE high 2.1⇥ 10�5 1.6⇥ 10�5

� = 0.1

RMSE 4.8⇥ 10�3 6.2⇥ 10�3

nRMSE 1.8⇥ 10�1 2.2⇥ 10�1

max error 7.0⇥ 10�2 8.9⇥ 10�2

cRMSE 6.0⇥ 10�3 7.7⇥ 10�3

bRMSE 8.6⇥ 10�4 5.0⇥ 10�3

fRMSE low 2.6⇥ 10�3 3.6⇥ 10�3

fRMSE mid 1.9⇥ 10�4 2.6⇥ 10�4

fRMSE high 4.4⇥ 10�5 4.5⇥ 10�5

� = 1.0

RMSE 6.4⇥ 10�3 1.2⇥ 10�2

nRMSE 3.3⇥ 10�2 6.4⇥ 10�2

max error 9.0⇥ 10�2 1.1⇥ 10�1

cRMSE 6.0⇥ 10�3 1.1⇥ 10�2

bRMSE 3.5⇥ 10�3 5.5⇥ 10�3

fRMSE low 3.0⇥ 10�3 5.2⇥ 10�3

fRMSE mid 3.4⇥ 10�4 5.1⇥ 10�4

fRMSE high 1.3⇥ 10�4 1.5⇥ 10�4

� = 10.0

RMSE 1.4⇥ 10�2 2.1⇥ 10�2

nRMSE 8.2⇥ 10�3 1.2⇥ 10�2

max error 2.4⇥ 10�1 3.2⇥ 10�1

cRMSE 9.9⇥ 10�3 1.5⇥ 10�2

bRMSE 9.4⇥ 10�3 1.6⇥ 10�2

fRMSE low 5.8⇥ 10�3 8.3⇥ 10�3

fRMSE mid 9.8⇥ 10�4 1.3⇥ 10�3

fRMSE high 3.6⇥ 10�4 5.7⇥ 10�4

� = 100.0

RMSE 7.3⇥ 10�2 1.1⇥ 10�1

nRMSE 4.4⇥ 10�3 6.4⇥ 10�3

max error 1.7⇥ 10+0 2.1⇥ 10+0

cRMSE 5.1⇥ 10�2 8.9⇥ 10�2

bRMSE 4.6⇥ 10�2 7.9⇥ 10�2

fRMSE low 2.9⇥ 10�2 4.6⇥ 10�2

fRMSE mid 5.3⇥ 10�3 7.6⇥ 10�3

fRMSE high 2.5⇥ 10�3 3.6⇥ 10�3
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Table 9: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at
the boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and
high frequency (fRMSE high) ranges applied to the 1d diffusion-reaction equation with different
parameter values.

Baseline model

PDE Parameter Metric U-Net FNO PINN

ReacDiff

⌫ = 0.5, ⇢ = 1.0

RMSE 3.1⇥ 10�3 6.3⇥ 10�4 4.5⇥ 10�2

nRMSE 6.0⇥ 10�3 1.4⇥ 10�3 8.0⇥ 10�2

max error 1.8⇥ 10�2 8.7⇥ 10�3 7.6⇥ 10�2

cRMSE 2.5⇥ 10�3 1.3⇥ 10�3 4.3⇥ 10�2

bRMSE 3.7⇥ 10�3 6.7⇥ 10�4 7.5⇥ 10�2

fRMSE low 1.1⇥ 10�3 4.1⇥ 10�4 1.4⇥ 10�2

fRMSE mid 1.8⇥ 10�4 9.1⇥ 10�6 2.4⇥ 10�4

fRMSE high 1.8⇥ 10�5 1.7⇥ 10�6 3.7⇥ 10�6

⌫ = 0.5, ⇢ = 10.0

RMSE 6.2⇥ 10�8 0.0⇥ 10+0 1.4⇥ 10�2

nRMSE 6.5⇥ 10�8 0.0⇥ 10+0 1.4⇥ 10�2

max error 6.2⇥ 10�8 0.0⇥ 10+0 2.6⇥ 10�2

cRMSE 6.2⇥ 10�8 0.0⇥ 10+0 6.2⇥ 10�3

bRMSE 6.2⇥ 10�8 0.0⇥ 10+0 2.3⇥ 10�2

fRMSE low 1.6⇥ 10�8 0.0⇥ 10+0 4.3⇥ 10�3

fRMSE mid 0.0⇥ 10+0 0.0⇥ 10+0 2.5⇥ 10�4

fRMSE high 0.0⇥ 10+0 0.0⇥ 10+0 2.9⇥ 10�6

⌫ = 2.0, ⇢ = 1.0

RMSE 2.3⇥ 10�3 2.9⇥ 10�4 3.9⇥ 10�1

nRMSE 4.5⇥ 10�3 7.0⇥ 10�4 7.3⇥ 10�1

max error 2.0⇥ 10�2 4.2⇥ 10�3 3.9⇥ 10�1

cRMSE 1.9⇥ 10�3 6.4⇥ 10�4 3.9⇥ 10�1

bRMSE 1.8⇥ 10�3 4.1⇥ 10�4 3.9⇥ 10�1

fRMSE low 7.7⇥ 10�4 1.9⇥ 10�4 9.7⇥ 10�2

fRMSE mid 1.7⇥ 10�4 9.2⇥ 10�6 6.2⇥ 10�5

fRMSE high 2.6⇥ 10�5 1.8⇥ 10�6 3.4⇥ 10�6

⌫ = 2.0, ⇢ = 10.0

RMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

nRMSE 3.2⇥ 10�8 6.5⇥ 10�8 3.3⇥ 10�2

max error 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

cRMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.2⇥ 10�2

bRMSE 3.1⇥ 10�8 6.2⇥ 10�8 3.1⇥ 10�2

fRMSE low 7.8⇥ 10�9 1.6⇥ 10�8 8.0⇥ 10�3

fRMSE mid 0.0⇥ 10+0 0.0⇥ 10+0 6.4⇥ 10�6

fRMSE high 0.0⇥ 10+0 0.0⇥ 10+0 2.7⇥ 10�7
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Table 10: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the 1d compressible Navier-Stokes equation with different
parameter values.

Baseline model

PDE Parameter Metric U-Net FNO

1DCFD

⌘ = ⇣ = 0.01 Rand
periodic

RMSE 9.9⇥ 10�1 2.7⇥ 10�1

nRMSE 3.6⇥ 10�1 9.5⇥ 10�2

max error 7.8⇥ 10+0 4.1⇥ 10+0

cRMSE 3.6⇥ 10�1 5.0⇥ 10�2

bRMSE 1.0⇥ 10+0 2.2⇥ 10�1

fRMSE low 3.6⇥ 10�1 7.3⇥ 10�2

fRMSE mid 1.2⇥ 10�1 5.5⇥ 10�2

fRMSE high 9.2⇥ 10�3 3.7⇥ 10�3

⌘ = ⇣ = 0.1 Rand
periodic

RMSE 6.6⇥ 10�1 9.3⇥ 10�2

nRMSE 7.2⇥ 10�1 6.8⇥ 10�2

max error 5.3⇥ 10+0 1.5⇥ 10+0

cRMSE 3.5⇥ 10�1 2.7⇥ 10�2

bRMSE 6.8⇥ 10�1 7.6⇥ 10�2

fRMSE low 2.5⇥ 10�1 2.8⇥ 10�2

fRMSE mid 5.7⇥ 10�2 1.3⇥ 10�2

fRMSE high 7.7⇥ 10�3 2.0⇥ 10�3

inviscid Rand periodic

RMSE 1.7⇥ 10+1 4.7⇥ 10�1

nRMSE 1.1⇥ 10+0 1.2⇥ 10�1

max error 2.0⇥ 10+1 7.1⇥ 10+0

cRMSE 1.7⇥ 10+1 6.7⇥ 10�2

bRMSE 1.6⇥ 10+1 3.5⇥ 10�1

fRMSE low 5.3⇥ 10�1 4.5⇥ 10+0

fRMSE mid 1.9⇥ 10�1 1.6⇥ 10�1

fRMSE high 2.1⇥ 10�2 2.6⇥ 10�3

inviscid Rand Outgoing

RMSE 1.6⇥ 10+0 2.6⇥ 10�1

nRMSE 1.1⇥ 10+1 6.7⇥ 10+0

max error 1.2⇥ 10+1 4.3⇥ 10+0

cRMSE 1.5⇥ 10+0 1.5⇥ 10�1

bRMSE 1.8⇥ 10+0 3.6⇥ 10�1

fRMSE low 6.8⇥ 10�1 9.0⇥ 10�2

fRMSE mid 1.2⇥ 10�1 4.5⇥ 10�2

fRMSE high 1.6⇥ 10�2 6.7⇥ 10�3

inviscid Shock
Outgoing

RMSE 4.1⇥ 10�1 1.6⇥ 10�1

nRMSE 1.7⇥ 10�1 4.7⇥ 10�2

max error 6.6⇥ 10+0 3.8⇥ 10+0

cRMSE 2.1⇥ 10�1 5.3⇥ 10�2

bRMSE 5.6⇥ 10�1 2.4⇥ 10�1

fRMSE low 1.4⇥ 10�1 3.7⇥ 10�2

fRMSE mid 5.3⇥ 10�2 2.6⇥ 10�2

fRMSE high 1.1⇥ 10�2 6.7⇥ 10�3
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Table 11: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with different
parameter values (first part).

Baseline model

PDE Parameter Metric U-Net FNO

2DCFD

M = 0.1, inviscid
Rand periodic

RMSE 4.0⇥ 10�1 2.6⇥ 10�1

nRMSE 6.6⇥ 10�1 2.8⇥ 10�1

max error 5.1⇥ 10+0 4.2⇥ 10+0

cRMSE 1.5⇥ 10�1 1.6⇥ 10�2

bRMSE 4.3⇥ 10�1 2.6⇥ 10�1

fRMSE low 1.1⇥ 10�1 4.5⇥ 10�2

fRMSE mid 4.8⇥ 10�2 4.4⇥ 10�2

fRMSE high 1.7⇥ 10�2 1.6⇥ 10�2

M = 0.1, ⌘ = ⇣ =
0.01 Rand periodic

RMSE 9.1⇥ 10�2 2.3⇥ 10�2

nRMSE 7.1⇥ 10�1 1.7⇥ 10�1

max error 1.1⇥ 10+0 4.0⇥ 10�1

cRMSE 3.6⇥ 10�2 5.3⇥ 10�3

bRMSE 1.1⇥ 10�1 2.2⇥ 10�2

fRMSE low 2.7⇥ 10�2 5.7⇥ 10�3

fRMSE mid 8.2⇥ 10�3 2.7⇥ 10�3

fRMSE high 2.6⇥ 10�3 6.3⇥ 10�4

M = 0.1, ⌘ = ⇣ = 0.1
Rand periodic

RMSE 4.7⇥ 10�2 4.9⇥ 10�3

nRMSE 5.1⇥ 10+0 3.6⇥ 10�1

max error 6.7⇥ 10�1 8.7⇥ 10�2

cRMSE 3.2⇥ 10�2 3.2⇥ 10�3

bRMSE 6.6⇥ 10�2 4.3⇥ 10�3

fRMSE low 1.3⇥ 10�2 1.4⇥ 10�3

fRMSE mid 4.2⇥ 10�3 4.3⇥ 10�4

fRMSE high 2.2⇥ 10�3 1.4⇥ 10�4

M = 1.0, inviscid
Rand periodic

RMSE 1.5⇥ 10+0 1.4⇥ 10+0

nRMSE 4.7⇥ 10�1 3.5⇥ 10�1

max error 1.6⇥ 10+1 1.6⇥ 10+1

cRMSE 4.8⇥ 10�1 1.6⇥ 10�1

bRMSE 1.5⇥ 10+0 1.3⇥ 10+0

fRMSE low 4.8⇥ 10�1 4.0⇥ 10�1

fRMSE mid 1.2⇥ 10�1 1.2⇥ 10�1

fRMSE high 3.9⇥ 10�2 3.9⇥ 10�2
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Table 12: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the 2d compressible Navier-Stokes equation with different
parameter values (second part).

Baseline model

PDE Parameter Metric U-Net FNO

2DCFD

M = 1.0, ⌘ = ⇣ =
0.01 Rand periodic

RMSE 3.4⇥ 10�1 1.2⇥ 10�1

nRMSE 3.6⇥ 10�1 9.6⇥ 10�2

max error 3.7⇥ 10+0 1.7⇥ 10+0

cRMSE 1.1⇥ 10�1 1.8⇥ 10�2

bRMSE 3.6⇥ 10�1 1.3⇥ 10�1

fRMSE low 1.1⇥ 10�1 3.3⇥ 10�2

fRMSE mid 2.7⇥ 10�2 1.5⇥ 10�2

fRMSE high 6.2⇥ 10�3 3.6⇥ 10�3

M = 1.0, ⌘ = ⇣ = 0.1
Rand periodic

RMSE 1.1⇥ 10�1 1.5⇥ 10�2

nRMSE 9.2⇥ 10�1 9.8⇥ 10�2

max error 1.3⇥ 10+0 2.4⇥ 10�1

cRMSE 4.8⇥ 10�2 4.8⇥ 10�3

bRMSE 1.5⇥ 10�1 1.7⇥ 10�2

fRMSE low 3.0⇥ 10�2 3.2⇥ 10�3

fRMSE mid 1.3⇥ 10�2 1.5⇥ 10�3

fRMSE high 4.3⇥ 10�3 8.9⇥ 10�4

M = 0.1, inviscid Turb
periodic

RMSE 3.3⇥ 10�1 2.8⇥ 10�1

nRMSE 1.9⇥ 10�1 1.6⇥ 10�1

max error 2.2⇥ 10+0 1.8⇥ 10+0

cRMSE 1.5⇥ 10�2 1.2⇥ 10�2

bRMSE 3.6⇥ 10�1 2.8⇥ 10�1

fRMSE low 6.5⇥ 10�2 5.0⇥ 10�2

fRMSE mid 3.2⇥ 10�2 3.1⇥ 10�2

fRMSE high 8.5⇥ 10�3 6.5⇥ 10�3

M = 1.0, inviscid
Turb periodic

RMSE 9.5⇥ 10�2 9.2⇥ 10�2

nRMSE 1.4⇥ 10�1 1.3⇥ 10�1

max error 8.2⇥ 10�1 7.9⇥ 10�1

cRMSE 6.5⇥ 10�3 4.3⇥ 10�3

bRMSE 1.1⇥ 10�1 9.7⇥ 10�1

fRMSE low 1.3⇥ 10�2 1.1⇥ 10�2

fRMSE mid 1.2⇥ 10�2 1.2⇥ 10�2

fRMSE high 5.2⇥ 10�3 5.2⇥ 10�3
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Table 13: Summary of the baseline models’ performance for different evaluation metrics: RMSE,
normalised RMSE (nRMSE), RMSE from conserved value (cRMSE), maximum error, RMSE at the
boundaries (bRMSE), RMSE in Fourier space at low (fRMSE low), medium (fRMSE mid), and high
frequency (fRMSE high) ranges applied to the 3d compressible Navier-Stokes equation with different
parameter values.

Baseline model

PDE Parameter Metric U-Net FNO

3DCFD

M = 1.0 inviscid
Rand periodic

RMSE 2.2⇥ 10+0 6.0⇥ 10�1

nRMSE 1.0⇥ 10+0 3.7⇥ 10�1

max error 9.0⇥ 10+0 3.6⇥ 10+0

cRMSE 2.3⇥ 10+0 8.1⇥ 10�2

bRMSE 2.1⇥ 10+0 6.0⇥ 10�1

fRMSE low 7.3⇥ 10�1 1.1⇥ 10�1

fRMSE mid 7.6⇥ 10�2 4.4⇥ 10�2

fRMSE high 2.3⇥ 10�2 9.3⇥ 10�3

M = 1.0 inviscid
Turb periodic

RMSE 8.1⇥ 10�2 8.2⇥ 10�2

nRMSE 2.3⇥ 10�1 2.4⇥ 10�1

max error 5.0⇥ 10�1 4.5⇥ 10�1

cRMSE 7.3⇥ 10�3 2.8⇥ 10�3

bRMSE 9.9⇥ 10�2 8.6⇥ 10�2

fRMSE low 1.1⇥ 10�2 7.2⇥ 10�3

fRMSE mid 8.0⇥ 10�3 9.4⇥ 10�3

fRMSE high 1.7⇥ 10�3 4.5⇥ 10�3
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F Detailed Runtime Comparison

In this section we present the detailed comparison of computation time between the PDE solver
used to generate the data and the baseline models used in this work, summarized in Table 15. The
system listed in Table 14 was used to run all timing measurements regarding the Diffusion-sorption,
2D diffusion-reaction and Shallow-water equation scenarios. PyClaw [23], a well-optimized finite-
volume Fortran code, is used as PDE solver for the shallow-water equation data generation. Note that
the experiment is only running on a single core due to its small size. Because the PINN model is
not discretized, the inference time includes evaluating the trained model at the same discretization
points of the reference simulation for the last 20 time steps of the data. E.g. the 2D diffusion-reaction
scenario is evaluated at 1282 ⇥ 20 discrete points. Additionally, autoregression is not required and
therefore, it leads to significantly faster computation time relative to FNO and U-Net.

Table 14: System configuration 1
CPU 2 ⇥ AMD EPYC 7742
GPU 1 ⇥ NVIDIA Volta V100

Software PyTorch@1.11, CUDA@11.3

Table 15: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net, and PINN. Training time of the baseline models for
one epoch are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time ( s
epoch ) Epochs Inference time (s)

Diffusion-
sorption 1 0241

PDE solver – – 59.83
FNO 97.52 500 0.32
U-Net 96.75 500 0.32
PINN 0.011 15 000 0.0027

2D diffusion-
reaction

1282
PDE solver – – 2.21
FNO 108.28 500 0.40
U-Net 83.19 500 0.61
PINN 0.022 100 0.0077

Shallow-water
equation 1282

PDE solver – – 0.62
FNO 105.16 500 0.37
U-Net 83.32 500 0.56
PINN 0.041 15 000 0.00673

As the case for 3D data, we also performed a similar experiment whose results are summarized in
Table 17. The used system information is listed in Table 16. Because of the severe memory usage, the
resolution was reduced to 643, though we provided a data with resolution 1283 in our official dataset.
Note that the training and inference time are shorter than the 2D cases in Table 15. This is because
the number of time-step and sample numbers are less than the 2D cases to reduce dataset size.

Table 16: System configuration 2
GPU 1 ⇥ NVIDIA GeForce RTX 3090

Software (ML methods) PyTorch@1.11, CUDA@11.3
Software (simulations) JAX@0.2.26, CUDA@11.3

G Resolution Sensitivity of Inference Time

Figure 13 plots the resolution dependence of the inference time of classical simulation and ML
methods for 2D/3D compressible Navier-Stokes equations cases. To calculate the inference times, we
used the same hardware resources to be a "fair" comparison as listed in Table 16.
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Table 17: Comparison of computation time between the PDE solver used to generate a single data
sample and single forward runs of FNO, U-Net. Training time of the baseline models for one epoch
are also presented in this table. The unit used for the time is seconds.

PDE Resolution Model Training time ( s
epoch ) Epochs Inference time (s)

3D CFD 643
PDE solver – – 60.07
FNO 24.77 500 0.14
U-Net 62.22 500 0.27

The figure clearly shows that the ML inference time is nearly 3-order of magnitude smaller than that
of the classical simulations. Concerning the resolution dependence, both of the ML models show a
similar dependence to the inviscid classical simulation method. Importantly, the inference time of ML
models is in general independent of the diffusion coefficient, such as viscosity. On the other hand,
the classical simulation methods increase their computation time with diffusion coefficient because
of the stability condition, known as Courant-Friedrich-Lewy (CFL) condition, �t / �x2/⌘ in the
case of the explicit method. Here �x,�t are time-step size and mesh size, respectively, and ⌘ is the
diffusion coefficient. This is much severer restriction than the inviscid case whose CFL condition
is �t / �x. Hence, we can conclude that ML methods could even be suitable for solving for the
problem with including strong-diffusive regime.

Figure 13: Plots inference time for 2D/3D CFD cases.

H Error Comparison with PDE Solver

To further assess the benefit of the trained baseline models, we generated the 2D diffusion-reaction
data using a PDE solver with higher resolution (512⇥512), and downsampled them to lower resolution
(128⇥128). These downsampled data were assumed as the ground truth (low discretization error) and
then were used to train the baseline models. The trained baseline model predictions were compared
against data that were generated using the same PDE solver but with coarser resolution (higher
discretization error). The error comparison is summarized in Table 18. We observed that generating
the data with lower resolution already accumulates high discretization error, relative to the baseline
model prediction error. However, further sensitivity analysis with regards to different resolutions is
required in future works to determine if the resolution is fine enough to be assumed as the ground
truth.

I Visualization of Model Predictions

In this section, we present visualizations of the baseline model predictions, compared against the
generated datasets for the diffusion-sorption equation (Figure 14), 2D diffusion-reaction equation
(Figure 15, Figure 16, and Figure 17), the shallow-water equation (Figure 18, Figure 19, and
Figure 20), 1D Advection equation Figure 21, 1D Burgers equation Figure 22, 1D Reaction-Diffusion
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Table 18: Error comparison between of U-Net, FNO, and PINN prediction, as well as low-resolution
PDE solver data, against the high-resolution PDE solver data (assumed as the ground truth) for the
2D diffusion-reaction scenario.

Error metric U-Net FNO PINN low-res PDE solver

RMSE 6.1⇥ 10�2 8.1⇥ 10�3 1.9⇥ 10�1 1.8⇥ 10�1

nRMSE 8.4⇥ 10�1 1.2⇥ 10�1 1.6⇥ 10+0 2.8⇥ 10+0

max error 1.9⇥ 10�1 9.1⇥ 10�2 5.0⇥ 10�1 8.9⇥ 10�1

cRMSE 3.9⇥ 10�2 1.7⇥ 10�3 1.3⇥ 10�1 4.9⇥ 10�2

bRMSE 7.8⇥ 10�2 2.7⇥ 10�2 2.2⇥ 10�1 2.1⇥ 10�1

fRMSE low 1.7⇥ 10�2 8.2⇥ 10�4 5.7⇥ 10�2 4.9⇥ 10�2

fRMSE mid 5.4⇥ 10�3 7.7⇥ 10�4 1.3⇥ 10�2 2.2⇥ 10�2

fRMSE high 6.8⇥ 10�4 4.1⇥ 10�4 1.5⇥ 10�3 3.4⇥ 10�3

Figure 14: Visualization of the diffusion-sorption equation (a) data, (b) FNO prediction, and (c)
U-Net prediction.

Figure 15: Visualization of the time evolution of the 2D diffusion-reaction equation data.

Figure 16: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
FNO.

equation Figure 23, 1D compressible NS equations Figure 24, 2D Darcy flow Figure 25, and 2D
compressible NS equations Figure 26.

J Visualization of Initial Conditions

In this section, we provide a collection of initial condition visualizations for each problem. Figure 27
shows different radius of the initial perturbation used as the initial condition for five different samples
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Figure 17: Visualization of the time evolution of the 2D diffusion-reaction equation predicted using
U-Net.

Figure 18: Visualization of the time evolution of the shallow water equation data.

Figure 19: Visualization of the time evolution of the shallow water equation predicted using FNO.

Figure 20: Visualization of the time evolution of the shallow water equation predicted using U-Net.

Figure 21: Plots of the predictions for 1D Advection equation.
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Figure 22: Plots of the predictions for 1D Burgers equation.

Figure 23: Plots of the predictions for 1D Reaction-Diffusion equation.

Figure 24: Plots of the predictions of density for 1D compressible NS equations.

Figure 25: Plots of the predictions for 2D Darcy Flow.
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Figure 26: Plots of the predictions of the density for 2D compressible NS equations at the final
time-step.

Figure 27: Visualization of the different radius of the initial perturbation used for the 2D shallow-
water equations data.

Figure 28: Visualization of the random uniform initial conditions used for the 1D diffusion-sorption
equations data.

Figure 29: Visualization of the random initial conditions used for the 2D diffusion-reaction equations
data.

of the 2D shallow-water equation data. Figure 28 shows different random uniform initial condition
used for five different samples of the 1D diffusion-sorption equation data. Figure 29 shows different
random noise used as the initial condition for five different samples of the 2D diffusion-reaction
equation data.

In Figure 30, we plotted the several samples of the initial condition for 1D Advection and Burgers
equations. Figure 31 is also the similar plot of the initial condition for 1D Diffusion-Reaction equation.
Note that in this case the value of the scalar function is limited between 0 to 1 because of the form of
the source term. Finally, we provided several samples of the 1D and 2D CFD cases in Figure 32 and
Figure 33.
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Figure 30: Visualization of the random initial conditions used for the 1D Advection/Burgers equations
data.

Figure 31: Visualization of the random initial conditions used for the 1D Reaction-Diffusion equations
data.

Figure 32: Visualization of the random initial conditions used for the 1D CFD data. The different
colors mean the different samples.

Figure 33: Visualization of the initial conditions of density used for the 2D CFD data.
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K PDEBENCH’s Data Sheet

In this section, we provide more detailed information about the DaRUS Dataverse which PDEBENCH
uses to store its datasets. As explained in subsection 3.5, DaRUS is the University of Stuttgart’s data
repository based on the OpenSource Software DataVerse3, providing a place to archive, share, and
publish the research data, scripts and source codes. All data uploaded to DaRUS gets a DOI as a
persistent identifier, a license, and can be described with an extensive set of metadata, organized in
metadata blocks. A dedicated team ensures that DARUS is continuously maintained. PDEBENCH
obtained a permanent DOI (doi:10.18419/darus-2986) [55] through DaRUS.

K.1 Motivation
1. For what purpose was the dataset created? Was there a specific task in mind? Was there

a specific gap that needed to be filled? Please provide a description.
PDEBENCH’s datasets were created to provide a more challenging and representative
benchmark for scientific ML approaches, that is, machine learning methods to approximately
simulate physical systems governed by PDEs. More details can be found in section 1.

2. Who created this dataset (e.g. which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
This dataset was created by Makoto Takamoto and Francesco Alesiani (senior researchers at
NEC Labs Europe), Dan MacKinlay (postdoctoral researcher at CSIRO’s Data61), Timothy
Praditia and Raphael Leiteritz (PhD students at the University of Stuttgart), Dirk Pflüger
and Mathias Niepert (professors at the University of Stuttgart).

3. Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.)
Funding for the University of Stuttgart researchers was provided by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2075 – 390740016, for the Cluster of Excellence on “Data-Integrated Simulation
Science (SimTech)".

4. Any other comments?
No

K.2 Composition
1. What do the instances that comprise the dataset represent (e.g. documents, photos,

people, countries)? Are there multiple types of instances (e.g. movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.)
Each instance of the dataset is a simulation-generated array, containing the solutions (i.e.
values of the variables of interest) of a specific partial differential equation (PDE). The
details of the physical systems goverened by PDEs can be found in Appendix D and the
format of the data can be found in subsection K.10.

2. How many instances are there in total (of each type, if appropriate)? An overview of the
datasets and instances are provided in Table 1. For the 1D diffusion-sorption equation, there
is one file containing 10 000 samples, with 1 024 spatial cells, 101 time steps, and 1 variable.
For the 2D diffusion-reaction equation, there is one file containing 1 000 samples, with
128⇥ 128 spatial cells, 101 time steps, and 2 variables. For the 2D shallow-water equation,
there is one file containing 1 000 samples, with 128⇥ 128 spatial cells, 101 time steps, and 1
variable. For the advection, Burgers, and 1D-diffusion-reaction equation, each file contains
10 000 samples, with 1 024 spatial cells, 201 time steps, and 1 variable. The advection
equation has 6 files for different parameters (advection velocity), the Burgers equation
has 12 files for different parameters (diffusion coefficient), and the 1D diffusion-reaction
equationa has 16 files for different parameters (diffusion and source term coefficients). For
the DarcyFlow, each file contains 10 000 samples, with 128 ⇥ 128 spatial cells, 1 time
step, and 2 variables. For the incompressible Navier-Stokes equations, the file contains
1 000 samples, with 256⇥ 256 spatial cells, 1 000 time steps, and 2 variables. For the 1D
compressible Navier-Stokes equations, the file contains 10 000 samples, with 1 024 spatial
cells, 100 time steps, and 3 variables. For the 2D compressible Navier-Stokes equations,
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the file contains 1 000 samples, with 512⇥ 512 spatial cells, 21 time steps, and 4 variables.
For the 3D compressible Navier-Stokes equations, the file contains 1 00 samples, with
128⇥ 128⇥ 128 spatial cells, 21 time steps, and 5 variables. The variation of parameters,
initial conditions, and boundary conditions of the compressible Navier-Stokes equations are
provided in subsection D.5.

3. Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g. geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).)
The datasets that we provide are intended to be representative of challenging physical
systems. Since this is a very broad and general scope, it is difficult, if not impossible,
to represent it wholly. However, we provide datasets that contain longer time steps, non-
linearly coupled variables, various challenging boundary conditions, different parameters,
and more applicable to real-world scenarios than currently available. For more details, see
subsection 3.2 and Appendix D.

4. What data does each instance consist of? ("Raw" data (e.g. unprocessed text or images)
or features? In either case, please provide a description.)
Each instance consists of numerical values in the form of an HDF5 file that correspond to
the variables of interest in each specific physical system. See Appendix D for further details.

5. Is there a label or target associated with each instance? If so, please provide a descrip-
tion.
Each instance is an array, which elements are the values of a specific variable at a specific
space and time (for the data format please refer to subsection K.10). These values are the
target for the regression task performed by the baseline models. We also provide the full
information of physical parameters for each dataset.

6. Is any information missing from individual instances? (If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.)
No.

7. Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? (If so, please describe how these relationships are made explicit.)
There are no relationships between different instances which were generated using randomly
created initial conditions.

8. Are there recommended data splits (e.g., training, development/validation, testing)? (If
so, please provide a description of these splits, explaining the rationale behind them.
There are no recommendations for the data split. Users can experiment defining the data
split as a hyperparameter. However, for the paper we use the split of 90% for training and
the rest for validation and testing.

9. Are there any errors, sources of noise, or redundancies in the dataset? (If so, please
provide a description.)
No. The only possible source of error might come from the discretization error, which
should be minimal because our dataset was generated with a relatively high resolution.
However, users can also generate their own dataset with the provided source code with even
higher resolution.

10. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? (If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.)
The dataset is available via a data repository (DaRUS) [10], which is maintained by the
University of Stuttgart, and therefore will be available permanently.
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11. Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? (If so, please provide a description.)
No.

12. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? (If so, please describe why.)
No.

13. Does the dataset relate to people? (If not, you may skip the remaining questions in this
section.)
No.

14. Does the dataset identify any subpopulations (e.g., by age, gender)? (If so, please
describe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.)
N/A.

15. Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? (If so, please
describe how.)
N/A.

16. Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? (If so, please provide a description.)
N/A.

17. Any other comments?
No.

K.3 Collection Process
1. How was the data associated with each instance acquired? (Was the data directly

observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.)
All the dataset were obtained by performing computationally expensive numerical simula-
tions for each PDEs.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? (How were these
mechanisms or procedures validated?)
The numerical simulations were performed either using CPUs or GPUs with freely available
Python libraries, such as Scipy.

3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
This is already mentioned above (F.2 "Composition"’s 3rd item).

4. Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
All the data generation process (numerical simulation) was performed by the authors, mainly
conducted by Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay and
Francesco Alesiani. For a part of the simulations we received help by people at ANU
Techlauncher who are acknowledged in "Acknowledgements".

5. Over what timeframe was the data collected? (Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created.)
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The dataset was generated from early to mid 2022. Because of the eternal nature of PDEs,
our dataset is irrelevant to the timeframe of creation.

6. Were any ethical review processes conducted (e.g., by an institutional review board)?
(If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.)
No.

7. Does the dataset relate to people? (If not, you may skip the remaining questions in this
section.)
No

8. Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?
No.

9. Were the individuals in question notified about the data collection? (If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.)
N/A.

10. Did the individuals in question consent to the collection and use of their data? (If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.)
N/A.

11. If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? (If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).)
N/A.

12. Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? (If so, please provide a description of
this analysis, including the outcomes, as well as a link or other access point to any supporting
documentation.)
N/A.

13. Any other comments?
None.

K.4 Preprocessing/cleaning/labeling

1. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? (If so, please provide a description. If not, you may skip
the remainder of the questions in this section.)
No. At most we rejected meaningless solutions because of the failure of numerical simula-
tions, such as data with all zeros or Nan values.

2. Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? (If so, please provide a link or other access point to
the "raw" data.)
N/A.

3. Is the software used to preprocess/clean/label the instances available? (If so, please
provide a link or other access point.)
N/A.

4. Any other comments?
None.
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K.5 Uses
1. Has the dataset been used for any tasks already? (If so, please provide a description.)

Not yet.
2. Is there a repository that links to any or all papers or systems that use the dataset? (If

so, please provide a link or other access point.)
No.

3. What (other) tasks could the dataset be used for?
The dataset could possibly be used for developing or testing ML models for fitting the
out-of-distribution data, such as unseen physical parameters.

4. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? (For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?)
Basically no. But high-dimensional data, in particular 3D data, has a relatively small number
of samples, only 100, due of storage limitations and the very large size of single data points.
This might result in ML models with insufficient accuracy, but it is realistic for scientific
simulations, where extensive computation time can be required for a single data point.
However, we emphasize that we provide the data generation source code. This allows future
users to increase their dataset size as much as they need.

5. Are there tasks for which the dataset should not be used? (If so, please provide a
description.)
No.

6. Any other comments?
None.

K.6 Distribution
1. Will the dataset be distributed to third parties outside of the entity (e.g., company,

institution, organization) on behalf of which the dataset was created? (If so, please
provide a description.)
Yes, the dataset is freely and publicly available and accessible.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? (Does
the dataset have a digital object identifier (DOI)?)
The dataset is free for download either by directly accessing the DaRUS page https://doi.
org/10.18419/darus-2986 or making use of a Python API, "pyDaRUS", provided by
DaRUS. An example of a code snippet for downloading the data is listed in subsection 3.5.

3. When will the dataset be distributed?
The dataset is distributed as of June 2022 in its first version.

4. Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? (If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.)
The dataset is licensed under CC BY license.

5. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? (If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.)
No

6. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? (If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.)
No
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7. Any other comments?
None.

K.7 Maintenance

1. Who is supporting/hosting/maintaining the dataset?
The storage infrastructure, DaRUS, is maintained by the University of Stuttgart and a
dedicated team of DaRUS. The dataset themselves are maintained by the authors.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
E-mail addresses are provided in the main-body of the paper.

3. Is there an erratum? (If so, please provide a link or other access point.)
Currently, no. As errors are encountered, future versions of the dataset may be released.
They will all be provided in the same github and DaRUS location.

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances’)? (If so, please describe how often, by whom, and how updates will be commu-
nicated to users (e.g., mailing list, GitHub)?)
Same as previous.

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? (If so, please describe
these limits and explain how they will be enforced.)
N/A.

6. Will older versions of the dataset continue to be supported/hosted/maintained? (If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.)
Versioning of the dataset is managed via DaRUS. Data can only be added.
For additional information see https://guides.dataverse.org/en/5.9/user/
dataset-management.html#dataset-versions

7. If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? (If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to other users? If so, please provide a
description.)
Errors may be submitted via the bugtracker on github.

8. Any other comments?
None.

K.8 Reproducibility of the baseline score

We provide all the pretrained model in our DaRUS repository: https://darus.uni-stuttgart.
de/privateurl.xhtml?token=cd862f8c-8e1b-49d2-b4da-b35f8df5ac85. So users can
freely check our result or even continue longer training with the help of our APIs.

K.9 Reading and using the dataset

The downloaded HDF5 files can easily be read by a standard software to read HDF5 files. Concerning
the data size, 1D data have 4 - 20 GB, 2D data have 6 - 100 GB, 3D data have 60 - 80 GB, depending
on PDEs and parameters. In our project home page https://github.com/pdebench/PDEBench/
blob/main/README.md, we also provide APIs to read and store the data into PyTorch data loader,
which could be directly used in the user’s code or our providing ML model training APIs.

An example of snipped code for reading data is introduced in subsection 3.5. Information on how to
use the baseline and read the dataset is provided in the project home page.
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Figure 34: Example of data format for a PDE with density and velocity terms

K.10 Data Format

Fig.34 visualizes the data format of PDEBENCH.

Realizations are stored in HDF5 format, allowing typed storage of dense arrays on disk. File naming
format is ${PDE name}--${Parameters}--{$Config}.h5. The HDF file contains a single group,
documented in the source code for the generating PDE, which may contain multiple HDF5 datasets,
corresponding to tensors.

Arrays are packed according to the convention (b⇥ t⇥x1 · · ·⇥xd⇥v), where b denotes the samples’
dimension, t the time dimension, x1, . . . , xd the d spatial dimensions, and v the dimensions needed to
encode the state of the system (e.g. a scalar density field has dimension one, a 2d velocity field might
have dimension 2)11. Not all dimensions are present in all data sets; for example, some parameters
are be time-invariant, in which case the time dimension does not exist. For each file, simulation
parameters are stored alongside the simulation runs as HDF5 attribute strings in YAML format
encoded as UTF8.

11 Concerning the compressible Navier-Stokes equations’ dataset, each variable is provided independently, not
summarized into a channel dimension (i.e. extending the array by 1 dimension), such as "density" and "pressure".
This is to avoide too big array sizes, allowing memory efficient data I/O by sub-sampling spatial cells.

34


	Motivation
	Related Work
	PDEBench: A Benchmark for Scientific Machine Learning
	General Problem Definition
	Overview of Datasets and PDEs
	Overview of Metrics
	Existing Baseline Surrogate Models
	Data Format, Benchmark Access, Maintenance, and Extensibility

	A Selection of Experiments
	Baseline Setups
	Baseline Performance
	Temporal Error Analysis
	Inference Time Comparison

	Conclusions and Limitations
	Continuation of Related Work
	Detailed metrics description
	Inverse Problem Metrics

	Training Protocol and Hyperparameters
	Inverse problem

	Detailed Problem Description
	1D Advection Equation
	1D Diffusion-Reaction Equation
	Burgers equation
	Darcy Flow
	Compressible Navier-Stokes equation
	Inhomogenous, incompressible Navier-Stokes
	2D Shallow-Water Equations
	Diffusion-Sorption Equation
	2D Diffusion-Reaction Equation
	Gradient-Based Inverse Method

	Detailed Baseline Score
	Detailed Runtime Comparison
	Resolution Sensitivity of Inference Time
	Error Comparison with PDE Solver
	Visualization of Model Predictions
	Visualization of Initial Conditions
	PDEBench's Data Sheet
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Uses
	Distribution
	Maintenance
	Reproducibility of the baseline score
	Reading and using the dataset
	Data Format


