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Abstract

Machine learning-based modeling of physical systems has experienced increased
interest in recent years. Despite some impressive progress, there is still a lack of
benchmarks for Scientific ML that are easy to use but still challenging and repre-
sentative of a wide range of problems. We introduce PDEBENCH, a benchmark
suite of time-dependent simulation tasks based on Partial Differential Equations
(PDEs). PDEBENCH comprises both code and data to benchmark the performance
of novel machine learning models against both classical numerical simulations
and machine learning baselines. Our proposed set of benchmark problems con-
tribute the following unique features: (1) A much wider range of PDEs compared
to existing benchmarks, ranging from relatively common examples to more real-
istic and difficult problems; (2) much larger ready-to-use datasets compared to
prior work, comprising multiple simulation runs across a larger number of ini-
tial and boundary conditions and PDE parameters; (3) more extensible source
codes with user-friendly APIs for data generation and baseline results with popular
machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method).
PDEBENCH allows researchers to extend the benchmark freely for their own pur-
poses using a standardized API and to compare the performance of new models
to existing baseline methods. We also propose new evaluation metrics with the
aim to provide a more holistic understanding of learning methods in the context
of Scientific ML. With those metrics we identify tasks which are challenging for
recent ML methods and propose these tasks as future challenges for the community.
The code is available at https://github.com/pdebench/PDEBench.

1 Motivation

In the emergent area of Scientific Machine Learning (or machine learning for physical sciences or
data-driven science), recent progress has broadened the scope of traditional machine learning (ML)
methods to include the time-evolution of physical systems. Within this field, rapid progress has been
made in the use of neural networks to make predictions using functional observations over continuous
domains [8, 46] or with challenging constraints and with physically-motivated conservation laws [34,
61, 47]. These neural networks provide an approach to solving PDEs complementing traditional
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Figure 1: PDEBENCH provides multiple non-trivial challenges from the Sciences to benchmark
current and future ML methods, including wave propagation and turbulent flow in 2D and 3D

numerical solvers. For instance, data-driven ML methods are useful when observations are noisy or
the underlying physical model is not fully known or defined [11]. Moreover, neural models have the
advantage of being continuously differentiable in their inputs, a useful property in several applications.
In physical system design [1], for instance, the models are themselves physical objects and thus not
analytically differentiable. Similarly, in many fields such as hydrology [14], benchmark physical
simulation models exist but the forward simulation models non-differentiable black boxes. This
complicates optimisation, control, sensitivity analysis, and solving inverse inference problems. While
complex methods such as Bayesian optimisation [38, 50, 42] or reduced order modelling [16] are in
part an attempt to circumvent this lack of differentiability, gradients for neural networks are readily
available and efficient.

For classical ML applications such as image classification, time series prediction or text mining,
various popular benchmarks exist, and evaluations using these benchmarks provides a standardised
means of testing the effectiveness and efficiency of ML models. As yet, a widely accessible,
practically simple, and statistically challenging benchmark with ready-to-use datasets to compare
methods in Scientific ML is missing. While some progress towards reference benchmarks has been
made in recent years (see section 2), we aim to provide a benchmark that is more comprehensive with
respect to the PDEs covered and which enables more diverse methods for evaluating the efficiency
and accuracy of the ML method. The problems span a range of governing equations as well as
different assumptions and conditions; see Figure 1 for a visual teaser. Data may be generated by
executing code through a common interface, or by downloading high-fidelity datasets of simulations.
All code is released under a permissive open source license, facilitating re-use and extension. We
also propose an API to ease the implementation and evaluation of new methods, provide recent
competitive baseline methods such as FNOs and autoregressive models based on the U-Net, and a set
of pre-computed performance metrics for these algorithms. We may thus compare their predictions
against the “ground truth” provided by baseline simulators used to generate the data.

As in other machine learning application domains, benchmarks in Scientific ML may serve as a source
of readily-available training data for algorithm development and testing without the overhead of
generating data de novo. In these emulation tasks, the training/test data is notionally unlimited, since
more data may always be generated by running a simulator. However, in practice, producing such
datasets can have an extremely high burden in compute time, storage and in access to the specialised
skills needed to produce them. PDEBENCH also addresses the need for quick, off-the-shelf training
data, bypassing these barriers while providing an easy on-ramp to be extended.

In this work, we propose a versatile benchmark suite for Scientific ML (a) providing diverse data
sets with distinct properties based on 11 well-known time-dependent and time-independent PDEs,
(b) covering both “classical” forward learning problems and inverse settings, (c) all accessible via a
uniform interface to read/store data across several applications, (d) extensible, (e) with results for
popular state-of-the-art ML models (FNO, U-Net, PINN) for (f) a set of metrics that are better-suited
for Scientific ML, (g) with both data to download and code to generate more data, and (h) pre-trained
models to compare against. The inverse problem scenarios comprise initial and boundary conditions
and PDE parameters (e.g. viscosity). Each data set has a sufficiently large number of samples for
training and test, for a variety of parameter values, with a resolution high enough to capture local
dynamics. As an additional note, our goal is not to provide a complete benchmark that includes all
possible combinations of inference tasks on all known experiments, but rather to ease the task for
subsequent researchers to benchmark their favoured methods. Part of our goal here is to invite other
researchers to fill in the gaps for themselves by leveraging our ready-to-run models.
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To evaluate ML methods for scientific problems, we consider several metrics that go beyond the
standard RMSE and include properties of the underlying physics. The initial experimental results
we obtained using PDEBENCH confirm the need for comprehensive Scientific ML benchmarks:
There is no one-size-fits-all model and there is plenty of room for new ML developments. The
results show that the standard error measure in ML, the RMSE on test data, is not a good proxy for
evaluating ML models, in particular in turbulent and non-smooth regimes where it fails to capture
small spatial scale changes. We furthermore cover an application where a parameter of the underlying
PDE heavily influences the difficulty of the problem for ML baselines. We also observe unexpected
experimental results for the generalization behavior of auto-regressive training, which seems to be
more challenging in the scientific realm. In the remainder of the paper, we first address related work,
introduce PDEBENCH and the underlying design choices, and discuss results for a few selected
experiments.

2 Related Work

PDE benchmarking has particular challenges. Unlike many classic datasets, PDE datasets can be
large on a gigabyte or terabyte scale and still contain only few data points. And unlike monolithic
benchmark datasets such as ImageNet, the datasets for each PDE approximation task are specific to
that task. Each set of governing equations or experiment design assumptions leads to a distinct dataset
of PDE samples. Recent works in PDEs have attempted to produce standardised datasets covering
well-known challenges [44, 19, 51]. [19] targets non-ML uses. [51] is specialised for particular
classes of equations. Of these, the excellent work of [44] is most closely related, but with only
four physical systems, it still lacks sufficient scale and diversity of data to challenge emerging ML
algorithms. We expand the range of benchmarks in this domain by providing a larger, more diverse
problem selection and scale than these previous attempts (11 PDEs with different parametrizations
leading to 35 datasets). We additionally consider inverse problems for PDEs [53, 56], with the
goal to identify unobserved latent parameters using ML. This has not been covered by benchmarks
so far, despite its increasing importance in the community. Furthermore, most work in this scope
considers classical statistical error measures such as the RMSE over the whole domain and at most
PDE-motivated variants such as the RMSE of the gradient [44]. Measures based on properties of the
underlying physical systems, as studied in this work, are lacking.

An overview and taxonomy of Scientific ML developments can be found in [28, 6]. For developing our
baselines, we focus on using neural network models to approximate the outputs of some ground truth
PDE solver, given data generated by that solver, which itself aims to directly implement the numerical
solution of a given partial differential equation. A range of methods aim to solve problems fitting
this description, reviewed in [22]. Methods include Physics-informed neural networks (PINNs) [47],
Neural operators (NOs) [32, 26], treating ResNet as a PDE approximant [49], custom architectures for
specific problems such as TFNet for turbulent fluid flows [61], and generic image-to-image regression
models such as the U-Net [48]. These approaches each have different assumptions, domains of
applicability, and data processing requirements. For a more comprehensive discussion of prior work
in Scientific ML we refer the reader to Appendix A.

3 PDEBENCH: A Benchmark for Scientific Machine Learning

In the following we describe the general learning problem addressed with the benchmark, the
currently covered PDEs, existing implemented baselines (all developed using PyTorch [45], and
PINN specifically using DeepXDE [34]), and the ways in which the benchmark follows FAIR data
principles [63].

3.1 General Problem Definition

A solution to a PDE is a vector-valued function v : T ⇥ S ⇥ ⇥ ! Rd on some spatial domain S,
with temporal index T , and some possibly function-valued parameter-space ⇥. For example in a heat
diffusion equation, v might represent the local temperature ⌧ 2 R1 of some substrate at some given
point s 2 S , at a given moment t 2 T , and conditional upon a spatially-varying scalar conductivity
field representing an inhomogeneous substrate ✓ : S ! R+. The operator mapping from the state of

3



Table 1: Summary of PDEBENCH’s datasets with their respective number of spatial dimensions Nd,
time dependency, spatial resolution Ns, temporal resolution Nt, and number of samples generated.

PDE Nd Time Ns Nt Number of samples

advection 1 yes 1 024 200 10 000
Burgers’ 1 yes 1 024 200 10 000
diffusion-reaction 1 yes 1 024 200 10 000
diffusion-reaction 2 yes 128⇥ 128 100 1000
diffusion-sorption 1 yes 1 024 100 10 000
compressible Navier-Stokes 1 yes 1 024 100 10 000
compressible Navier-Stokes 2 yes 512⇥ 512 21 1000
compressible Navier-Stokes 3 yes 128⇥ 128⇥ 128 21 100
incompressible Navier-Stokes 2 yes 256⇥ 256 1000 1000
Darcy flow 2 no 128⇥ 128 – 10 000
shallow-water 2 yes 128⇥ 128 100 1000

the solution at one timestep to the solution one time step later, F✓ : v✓(t, ·) ! v✓(t+ 1, ·) is referred
to as the forward propagator.

The objective of Scientific ML is to find some ML-based surrogate, sometimes referred to as an
emulator, of this forward propagator by learning an approximation bF✓ ' F✓. The forward propagator
of a PDE is dependent not only on the current state, but also upon both spatial and temporal derivatives
of the state field. In practice, temporal derivatives of solutions are often not conveniently encoded
by system states at one single time step. Hence, the forward propagator may also depend on
multiple previous timesteps of the solution, enabling finite-difference approximations of the temporal
derivatives. The discretised forward propagator F̊✓ then operates on ` � 1 consecutive timesteps
so that F̊✓ : v✓(t � `, ·), . . . ,v✓(t � 1, ·) 7! v✓(t, ·), which is abbreviated as v✓([t�`:t�1], ·) :=
v✓(t� `, ·), . . . ,v✓(t� 1, ·).

We seek to approximate this discretised operator with an emulator bF✓ ' F̊✓ in the sense that
predictions the emulator makes should be close to the ground truth simulation given the same inputs,
with respect to some measure of cost. We fix a parametric class of models {F✓,�}�. From this class
we learn a surrogate bF✓,� from data. In learning, we take a dataset D comprising discretized PDE
solutions conditional on selected parameter values (✓k), D := {v(k)

✓k
([0:tmax], ·) | k = 1, . . . ,K}.

Fixing a loss functional L, we aim to find some � achieving a minimal total loss on the training
dataset

b� = argmin�

tmaxX

t=1

KX

k=1

L
⇣
F✓k,�{v

(k)
✓k

([t�`:t�1], ·)},v(k)
✓k

(t, ·)
⌘
. (1)

Due to the use of iterative optimization algorithms such as stochastic gradient descent and the non-
convex nature of the above optimization problem, we typically obtain local optima. D is generated
by a ground-truth solver designed to simulate the desired dynamics with high precision. In this data
we may vary initial conditions, that is, varying v✓(0, ·), varying ✓, or both.

In addition to the forward problem, we also consider the use of learned surrogate models to approx-
imately solve inverse problems [53, 56], where an unknown initial condition v✓(0, ·) or unknown
parameter ✓ is chosen to be congruent with some observed outputs v✓([t:t+ `], ·). We follow [32, 35]
in using an approximate surrogate approach, taking the forward surrogates as mean predictors for the
model. We assume v✓(t, ·) = F✓,�{v✓([t�`:t�1], ·)}+ ✏ for some mean-zero observation noise ✏,
and assuming a prior distribution for the unknown of interest. Other inversion methods can be used
in this domain, such as generative adversarial models, [9] or variational autoencoders [54].

3.2 Overview of Datasets and PDEs

The current version of the benchmark provides datasets generated for various PDEs ranging from 1
to 3 dimensional spatial domains. There are both time-dependent and time-independent PDEs. The
current datasets are summarized in Table 1; see Figure 1 for a visual teaser. Each sample is generated
with different parameters, initial conditions, and boundary conditions. Generalization to different
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parameters, varying initial conditions, and proper treatment of complex boundary conditions are still
open challenges in Scientific ML [21, 4, 2, 29]. The parameters which are varied to provide several
datasets include the advection speed in the advection equation, the forcing term in the Darcy flow, as
well as the viscosity in the Burgers’ and compressible Navier-Stokes equations all of which can lead to
significantly different behaviors of the simulated systems. Additionally, besides the periodic boundary
condition that is most commonly used in Scientific ML studies, we also provide datasets generated
with the Neumann boundary condition in the 2D diffusion-reaction and shallow-water equations,
the Cauchy boundary condition in the diffusion-sorption equation, and the Dirichlet condition in the
incompressible Navier-Stokes equation.

We designed this benchmark to represent a diverse set of challenges for emulation algorithms. In
particular, we focus on hydromechanical field equations. Following this philosophy, we selected
6 basic and 3 advanced real-world problems. The basic PDEs are stylized, simple models: 1D
advection/Burgers/Diffusion-Reaction/Diffusion-Sorption equations, 2D Diffusion-Reaction equation,
and 2D DarcyFlow; the advanced and real-world PDEs incorporate features of real-world modeling
tasks: Compressible and incompressible Navier-Stokes equations, and shallow-water equations. The
PDEs exhibit a variety of behaviors of real-world significance which are known to challenge emulators,
such as sharp shock formation dynamics, sensitive dependence on initial conditions, diverse boundary
conditions, and spatial heterogeneity. Finding a surrogate model which can approximate these
challenging dynamics with high fidelity we argue is a necessary precondition to applying such models
in the real world. While some of these have been used in prior work, a publicly available benchmark
dataset is, to the best of our knowledge, not available.

In the following we provide a brief introduction and important features of the advanced PDEs. More
detailed explanations for all the PDEs are provided in Appendix D.

Compressible Navier-Stokes equations The compressible fluid dynamics equations describe a
fluid flow whose expression is given as:

@t⇢+r · (⇢v) = 0, ⇢(@tv + v ·rv) = �rp+ ⌘4v + (⇣ + ⌘/3)r(r · v), (2a)

@t(✏+ ⇢v2/2) +r · [(p+ ✏+ ⇢v2/2)v � v · �0] = 0, (2b)

where ⇢ is the mass density, v is the fluid velocity, p is the gas pressure, ✏ is an internal energy
described by the equation of state, �0 is the viscous stress tensor, and ⌘ and ⇣ are shear and bulk
viscosity, respectively. This equation can describe more complex phenomena, such as shock wave
formation and propagation. It is applied to many real-world problems, such as the aerodynamics
around airplane wings and interstellar gas dynamics.

Incompressible Navier-Stokes equations The Navier-Stokes equation is the incompressible ver-
sion of the compressible fluid dynamics equation, applicable to sub-sonic flows. This equation can
model a variety of systems, from hydromechanical systems to weather forecasting or investigating
turbulent dynamics.

Shallow-Water Equations The shallow-water equations, derived from the compressible Navier-
Stokes equations, present a suitable framework for modeling free-surface flow problems. In 2D, these
come in the form of the following system of hyperbolic PDEs,

@th+rhu = 0, @thu+r
✓
u2h+

1

2
grh

2

◆
= �grhrb , (3a)

where u = u, v being the velocities in the horizontal and vertical direction, h describing the water
depth, and b describing a spatially varying bathymetry. hu can be interpreted as the directional
momentum components and gr describes the gravitational acceleration. The mass and momentum
conservation properties even hold across shocks in the solution and thus challenging datasets can be
generated. Example applications include the simulation of tsunamis or general flooding events.

3.3 Overview of Metrics

The standard approach of computing the RMSE on test data falls short of capturing important
optimization criteria in Scientific ML. A good fit to (often sparse) data is not sufficient if the physics
of the underlying problem is severely violated. Physics-informed learning that aims to conserve
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from pyDaRUS import Dataset
p_id = "doi:10.18419/darus-2986"
dataset = Dataset.from_dataverse_doi(p_id, filedir="data/")

Listing 1: Including a benchmark dataset.

physical quantities must therefore be evaluated with appropriate metrics. A global, averaged metric
for instance cannot capture small spatial scale changes critical in turbulent regimes. Moreover, a
single evaluation metric is not sufficient to compare different methods with respect to their ability to
extrapolate to unseen time steps and parameters which are important but underexplored evaluation
criteria for ML surrogates. Hence, the proposed benchmark includes several novel metrics which we
believe provide a deeper and more holistic understanding of the surrogate’s behavior and which are
designed to reflect both the data and physics perspective. The following table summarizes the metrics
used; further details can be found in the Appendix B.

Scope Acronym Metric

Data
view

RMSE root-mean-squared-error
nRMSE normalized RMSE (ensuring scale independence)
max error maximum error (local worst case; also proxy for stability of time-stepping)

Physics
view

cRMSE RMSE of conserved value (deviation from conserved physical quantity)
bRMSE RMSE on boundary (whether boundary condition can be learned)
fRMSE low RMSE in Fourier space, low frequency regime (wavelength dependence)
fRMSE mid RMSE in Fourier space, medium frequency regime
fRMSE high RMSE in Fourier space, high frequency regime

3.4 Existing Baseline Surrogate Models

U-Net U-Net [48] is an auto-encoding neural network architecture used for processing images using
multi-resolution convolutional networks with skip layers. U-Net is a black-box machine learning
model that propagates information efficiently at different scales. Here, we extended the original
implementation, which uses 2D-CNN, to the spatial dimension of the PDEs (i.e. 1D,3D).

Fourier neural operator (FNO) FNO [32] belongs to the family of Neural Operators (NOs),
designed to approximate the forward propagator of PDEs. FNO learns a resolution-invariant NO by
working in the Fourier space and has shown success in learning challenging PDEs.

Physics-Informed Neural Networks (PINNs) Physics-informed neural networks [47] are methods
for solving differential equations using a neural network u✓(t, x) to approximate the solution by
turning it into a multi-objective optimization problem. The neural network is trained to minimize the
PDE residual as well as the error with regard to the boundary and initial conditions. PINNs naturally
integrate observational data [30], but require retraining for each new condition.
Gradient-Based Inverse Method Since the surrogate model is fully differentiable, we use its
gradient to solve inverse inference by minimizing the prediction loss [7, 40], where a function surface
defining the unknown initial conditions [35], is specified through bilinear interpolation.

3.5 Data Format, Benchmark Access, Maintenance, and Extensibility

The benchmark consists of different data files, one for each equation, type of initial condition, and
PDE parameter, using the HDF5 [15] binary data format. Each such file contains multiple arrays
where each array has the dimensions N,T,X, Y, Z, V with N the number of samples, T the number
of time steps, and X,Y, Z the spatial dimensions and V the dimension of the field. Additional
information on the data format is provided in the Supplementary Material.

PDEBENCH’s datasets are stored and maintained using DARUS, the University of Stuttgart’s data
repository based on the OpenSource Software DataVerse3. DARUS follows the Findable, Accessible,
Interoperable and Reusable (FAIR) data principles [63]. All data uploaded to DaRUS gets a DOI as
3 https://dataverse.org
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from pdebench.fno.utils import FNODatasetSingle
filename = "data/2D_diff-react_NA_NA"
train_data = FNODatasetMult(filename)
train_loader = torch.utils.data.DataLoader(train_data)

Listing 2: Using the PyTorch data loader.

Figure 2: Comparisons of baseline models’ performance for different problems for (a) the forward
problem and (b) the inverse problem.

a persistent identifier, a license, and can be described with an extensive set of metadata, organized
in metadata blocks. A dedicated team ensures that DARUS is continuously maintained. Through
DARUS we provide a permanent DOI (doi:10.18419/darus-2986) [55] for the benchmark data. We
also support a straightforward inclusion of the benchmark with a few lines of code. In Listing 1 we
demonstrate the way in which the Dataverse [10] platform4 supports the integration of pre-generated
datasets using a few lines of code. Specifically, we utilize the easy-to-use pyDaRUS Python package
to access the data. It provides a simple API for both downloading and uploading data as well as
providing metadata to the Dataverse platform.

In Listing 2 we show an example leveraging pre-defined classes included in our benchmark code to
load specific datasets as PyTorch [45] Dataset classes. Subsequently, these can be used to construct
common DataLoader instances for training custom ML models. We utilize the Hydra [64] library
simplifying the configuration of both surrogate model training as well as the generation of additional
datasets. For the latter, we provide and expose various parameters of the underlying simulations for
the end user to tweak. This provides a low barrier of entry for users to try out benchmarking with
new experiments or baseline configurations.

4 A Selection of Experiments

In this section, we present a selection of experiments for the PDEBENCH datasets. An exhaustive
discussion of all results is beyond the scope of this paper. An extensive set of additional results,
tables, and plots can be found in the Appendix.

4.1 Baseline Setups

We trained and tested the baseline emulator models, namely U-Net, FNO, and PINN with the
datasets generated with the PDEs described in subsection 3.2. The data was split into training
and test data: 90% was for training and 10% for test data. For FNO, we followed the original
implementation, hyperparameters, and training protocols. We trained U-Net similarly to FNO, but
with the autoregressive methods with the pushforward trick with slight modification to the original
implementation [4]. A more comprehensive comparison between different U-Net training methods is
presented in subsection 4.3. The PINN baseline is implemented using the open-source DeepXDE [34]
library. The training was performed on GeForce RTX 2080 GPUs for 1D/2D cases, and GeForce GTX
3090 for 3D cases. The detailed training protocol and hyper-parameters are provided in Appendix C.

4 https://darus.uni-stuttgart.de/dataverse/sciml_benchmark
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Figure 3: Detailed visualization of (a) Burgers’, (b) DarcyFlow, and (c) Compressible NS eqs.

Training code and configurations are open and well documented, allowing researchers to easily
reproduce or extend these methods.

4.2 Baseline Performance

Figure 2 5visualizes the RMSE performance of the surrogate models, averaged for each trained model
over different PDE parameters. A more detailed comparison is shown in Appendix E. 6Among the
baseline surrogate models, FNO provides the best prediction for most metrics. It learns the differential
operators well, leading to low errors even for the conserved quantities and on the boundaries.
Additionally, FNO has a consistent error of about 4⇥ 10�4 across the frequency spectrum for many
problems highlighting its ability to learn in Fourier space. As an example, Figure 4 depicts the
FNO and U-Net predictions for the 2D diffusion-reaction equation and the training data obtained
from a numerical simulator. Our baseline results further indicate that the PINNs might deal better
than expected with high-frequency features, despite prior observations [62]. As an example for
an inverse problem setup, we identify the initial condition to minimize the prediction error of the
ML surrogate over a 15 time steps horizon. In Figure 2b, we present the MSE of the prediction of
estimated initial condition (with error bars) for 4 of the 11 datasets (1D). The results show that FNO
outperforms U-Net also for the inverse problem. However, our benchmark also reveals several tasks
which these methods cannot treat properly. First, Figure 3a shows that the FNO’s error increases with
decreasing diffusion coefficient where a strong discontinuity appears. This can be attributed to Gibb’s
phenomenon for FNO’s limited maximum wave frequency in Fourier space, as shown by an increase
of two orders of magnitude for high-frequency fRMSE. Second, Figure 3b shows that the normalized
RMSE increases with decreasing force term, which is equivalent to decreasing the scale-value of
the solution (in our case, force term 0.01 means mean(|u|) ⇡ 0.01).7Third, Figure 3c shows several
metrics for the compressible Navier-Stokes equations. It shows the overall RMSE is very bad in
comparison to the basic PDEs, such as the Burgers equation. Interestingly, the 3D inviscid case
shows lower error than 2D inviscid case. We posit this is due to lower resolution resulting in smooth
train/validation samples which FNO can learn very efficiently. This also indicates that high-resolution
training samples should be used to create a surrogate model for real-world problems with a Reynolds
number of more than 106.

4.3 Temporal Error Analysis

Autoregressive Behaviour of U-Net We observed instabilities when training U-Net with fully
autoregressive mode. When trained in an open loop, i.e. only 1 time step ahead without feedback of
prediction, the error during testing quickly accumulates with more unrolled time steps. Therefore,
we tried three different training methods as described in the previous section. Figure 5a shows the
RMSE behaviour calculated at different unrolled time steps. It shows that for different U-Net training
strategies, the RMSE behaviors are different. We observed that U-Net with the pushforward trick
5 In Figure 2 CFD means compressible fluid dynamics or, equivalently, the compressible Navier-Stokes equations.

6 Note that we omitted the PINN baseline score for the 2D/3D Compressible Navier-Stokes equations and
the DarcyFlow. The reason for the former case is limited GPU memory, and the reason for the latter is that the
DarcyFlow’s problem setup is to learn the mapping from diffusion coefficients a(x) to a steady state solution,
which cannot be treated by PINNs. 7 Note that U-Net is consistently better than FNO in this case. We
postulate that this is due to the strong similarity between this task and the diffusion-like regression task that the
original U-Net targets.
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Figure 4: (a) Visualization of the 2D diffusion-reaction data generated with a standard finite volume
(FVM) solver and a resolution of 1282, (b) FNO prediction, and (c) U-Net prediction.
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Figure 5: (a) Plots of the RMSE calculated at different unrolled time steps, (b) comparison of each
autoregressive method, and (c) RMSE for temporal extrapolation.

provides better stability during training for all problems, and better accuracy for a longer prediction
horizon. For this reason, we used the U-Net with pushforward trick as our baseline score for U-Net.

Temporal Extrapolation Figure 5c plots the RMSE temporal evolution of 1D Advection and
Burgers equations predicted using the FNO model. Different from the other scenarios, we trained
only until half of the time steps used in the other cases (the green dotted line in the figure). The main
purpose of this experiment is to test how well the ML model (FNO) learns the temporal dependency
of the PDEs with limited information. We observe monotonically increasing errors after the time
steps used in training (t > 1). This indicates that the present ML models cannot properly capture the
dynamic behavior of the PDEs, and it is a challenging task to provide reliable predictions beyond the
time experienced during training.

4.4 Inference Time Comparison

In this subsection, we provide runtime comparisons between the numerical PDE solvers that we
use to generate a single data sample and the FNO, the most accurate ML model according to our
experiments. A fair runtime comparison between classical solvers and ML methods is challenging
because these method classes are usually optimized for different hardware setups. In this paper, we
provide the information on the hardware and system configuration in Appendix F 8 . In addition, we
list the ML models’ total training time. All the runtime numbers are given in seconds. The highest
computational demand originates from the ML training time. However, once the ML models were
trained, the ML models’ predictions can be computed multiple orders of magnitudes more efficiently.
A more complete overview of these experiments can be found in Appendix F. The ML model allows
us to predict a solution even in the strong-viscous regime (⌘ = ⇣ = 0.1) efficiently since it eliminates
the stability restriction defined by the Courant-Friedrichs-Lewy condition [31] 9. A more detailed
analysis of the resolution sensitivity of inference time is provided in Appendix G.

8 We used the same hardware resources and system configuration for the 2D/3D CFD simulations and the ML
methods. Whether or not this consitutes a fair comparison is surely debatable. 9 Note that in the table the ML
inference and training time does not monotonically increase with spatial-dimension. This is because the 2D/3D
cases’ time-step numbers and training sample numbers is much smaller than Diffusion-sorption case.
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PDE Resolution Simulation time ML inference time ML training time

Diffusion-sorption 1 0241 59.83 0.32 48 760
2D CFD (⌘ = ⇣ = 0.1) 5122 582.61 0.14 107 567
3D CFD (inviscid) 643 60.06 0.14 12 387

5 Conclusions and Limitations

With PDEBENCH we contribute an extensive benchmark suite for comparing and evaluating methods
on the realm of Scientific ML. We provide both pre-computed datasets for easy access in a dataverse as
well as code to generate new data from configurable simulation runs. The focus is on time-dependent
PDE problems ranging from simple 1D equations to challenging 3D coupled systems of equations
featuring challenging boundary conditions. Furthermore, we present a variety of different evaluation
metrics in order to better understand strengths and weaknesses of the machine learning methods in
a scientific computing context. We also provide an example application for utilizing Scientific ML
methods for inverse modeling with our benchmark data. We believe this will be an important area in
the future for machine learning models to produce competitive results both in accuracy as well as
runtime when compared to numerical methods.

Limitations While PDEBENCH provides an easy-to-use, modular and extensible approach to
devising and testing ML surrogates for PDE simulations, the scope of our benchmark is naturally
limited. Our main focus is on time-dependent PDEs for different types of flow problems which pose
a wide variety of challenges to Scientific ML. We currently do not cover other types of physics nor
quantum mechanics as this goes beyond the scope of this paper. With respect to flow problems, our
main limitations are that we do not yet cover multi-phase flows or non-rectangular domains. This is
left for future work.

10



Acknowledgements

We thank MinMae (John) Kim, Ran Zhang, Tianqi Wang, Yizhou Yang, Gefei Shan and Simon
Brown of the ANU Techlauncher for consulting on code design and implementation. Partially
funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2075 – 390740016. We acknowledge support by the Stuttgart Center for
Simulation Science (SimTech). We further thank the DaRUS-team, in particular Jan Range.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] All the contributions listed in the abstract are elaborated
in section 3.

(b) Did you describe the limitations of your work? [Yes] See the last paragraph of section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We

believe that our work does not have any potential negative societal impacts as it does
not contain confidential or private data.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes] We do not include any confidential or private data, only numerical
values related to general physical systems with no potential ethical issues or severe
environmental damage.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not
include any theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] See the previous
point.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include the
parameters used to reproduce the datasets in Appendix D and instructions to run the
code in the README file in our code repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We ran several experiments using different parameters.
The mean and standard deviation values for the errors are reported in the Figure 2.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The types of GPUs used are
provided in subsection 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We adopted the
implementation of the baseline models with some modifications, with proper citation
and credits to the authors, as well as existing software packages.

(b) Did you mention the license of the assets? [Yes] Appropriate license notices are
included in the affected source code files, and license of new assets is included in the
supplementary materials.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
All the data generation scripts are included in the code repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We generate all of our data, and the models we use are all openly
accessible to the public, so we adopt and modify them, and include citations to the
original authors.

11



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not include any personal information
or offensive content in our datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We use neither crowdsourcing nor conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] See the previous point.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] See the previous point.

References
[1] K. R. Allen, T. Lopez-Guevara, K. Stachenfeld, A. Sanchez-Gonzalez, P. Battaglia, J. Ham-

rick, and T. Pfaff. Physical design using differentiable learned simulators. arXiv preprint
arXiv:2202.00728, 2022.

[2] F. d. A. Belbute-Peres, Y.-f. Chen, and F. Sha. Hyperpinn: Learning parameterized differential
equations with physics-informed hypernetworks. In International Conference on Learning
Representations, 2021. URL https://openreview.net/pdf?id=LxUuRDUhRjM.

[3] D. A. Bezgin, A. B. Buhendwa, and N. A. Adams. JAX-FLUIDS: A fully-differentiable
high-order computational fluid dynamics solver for compressible two-phase flows, 2022. URL
https://arxiv.org/abs/2203.13760.

[4] J. Brandstetter, D. Worrall, and M. Welling. Message passing neural pde solvers. In The Tenth
International Conference on Learning Representations, 2022. URL https://openreview.
net/pdf?id=vSix3HPYKSU.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym, 2016.

[6] S. L. Brunton and J. N. Kutz. Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, 2019. ISBN 978-1-108-42209-3.
URL https://databookuw.com.

[7] K. Cao. Inverse Problems for the Heat Equation Using Conjugate Gradient Methods. PhD
thesis, University of Leeds, 2018.

[8] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 6572–6583.
Curran Associates, Inc., 2018.

[9] M. Chu, N. Thuerey, H.-P. Seidel, C. Theobalt, and R. Zayer. Learning meaningful controls for
fluids. ACM Transactions on Graphics, 40(4):1–13, Aug. 2021. doi: 10.1145/3476576.3476661.

[10] M. Crosas. The dataverse network: An open-source application for sharing, discovering and
preserving data. D-Lib Magazine, Volume 17, 2011. URL http://www.dlib.org/dlib/
january11/crosas/01crosas.html.

[11] H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa. Physics-informed neural networks for
solving reynolds-averaged navier-stokes equations. arXiv:2107.10711 [physics], Jul 2021. URL
http://arxiv.org/abs/2107.10711. arXiv: 2107.10711.

[12] R. P. Feynman. Feynman lectures on physics - Volume 1. 1963.

[13] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf.

12

https://openreview.net/pdf?id=LxUuRDUhRjM
https://arxiv.org/abs/2203.13760
https://openreview.net/pdf?id=vSix3HPYKSU
https://openreview.net/pdf?id=vSix3HPYKSU
https://databookuw.com
http://www.dlib.org/dlib/january11/crosas/01crosas.html
http://www.dlib.org/dlib/january11/crosas/01crosas.html
http://arxiv.org/abs/2107.10711
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/3def184ad8f4755ff269862ea77393dd-Paper-round1.pdf


[14] D. W. Gladish, D. E. Pagendam, L. J. M. Peeters, P. M. Kuhnert, and J. Vaze. Emulation
Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models. Journal
of Agricultural, Biological and Environmental Statistics, 23(1):39–62, Mar. 2018. doi: 10.1007/
s13253-017-0308-3.

[15] T. H. Group. An overview of the hdf5 technology suite and its applications, 2022. URL
https://portal.hdfgroup.org/display/HDF5/HDF5.

[16] M. Guo and J. S. Hesthaven. Data-driven reduced order modeling for time-dependent problems.
Computer Methods in Applied Mechanics and Engineering, 345:75–99, 2019. ISSN 0045-7825.
doi: https://doi.org/10.1016/j.cma.2018.10.029. URL https://www.sciencedirect.com/
science/article/pii/S0045782518305334.

[17] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Rietmann, J. d. A.
Ferrandis, W. Byeon, Z. Fang, and S. Choudhry. NVIDIA SimNet{̂TM}: An AI-accelerated
multi-physics simulation framework. arXiv:2012.07938 [physics], Dec. 2020.

[18] P. Holl and V. Koltun. Phiflow: A differentiable PDE solving framework for deep learning via
physical simulations. page 5, 2020.

[19] Z. Huang, T. Schneider, M. Li, C. Jiang, D. Zorin, and D. Panozzo. A large-scale benchmark
for the incompressible Navier-Stokes equations, 2021. URL https://arxiv.org/abs/2112.
05309.

[20] T. Inoue, S.-i. Inutsuka, and H. Koyama. The Role of Ambipolar Diffusion in the Formation
Process of Moderately Magnetized Diffuse Clouds. The Astrophysical Journal, 658(2):L99–
L102, Apr. 2007. doi: 10.1086/514816.

[21] M. Karlbauer, T. Praditia, S. Otte, S. Oladyshkin, W. Nowak, and M. V. Butz. Composing
partial differential equations with physics-aware neural networks. In Proceedings of the 39th
International Conference on Machine Learning, Proceedings of Machine Learning Research,
Baltimore, USA, 16–23 Jul 2022.

[22] K. Kashinath, M. Mustafa, A. Albert, J.-L. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli,
R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli, D. Chirila, R. Yu, R. Walters, B. White,
H. Xiao, H. A. Tchelepi, P. Marcus, A. Anandkumar, P. Hassanzadeh, and n. Prabhat. Physics-
informed machine learning: Case studies for weather and climate modelling. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379
(2194):20200093, Apr. 2021. doi: 10.1098/rsta.2020.0093.

[23] D. I. Ketcheson, K. T. Mandli, A. J. Ahmadia, A. Alghamdi, M. Quezada de Luna, M. Parsani,
M. G. Knepley, and M. Emmett. PyClaw: Accessible, Extensible, Scalable Tools for Wave
Propagation Problems. SIAM Journal on Scientific Computing, 34(4):C210–C231, Nov. 2012.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[25] G. Klaasen and W. Troy. Stationary wave solutions of a system of reaction-diffusion equations
derived from the fitzhugh–nagumo equations. SIAM Journal on Applied Mathematics, 44(1):
96–110, 1984. doi: 10.1137/0144008.

[26] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural operator: Learning Maps Between Function Spaces. arXiv:2108.08481 [cs, math], Sept.
2021.

[27] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Characterizing possible
failure modes in physics-informed neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

[28] A. Lavin, H. Zenil, B. Paige, D. Krakauer, J. Gottschlich, T. Mattson, A. Anandkumar,
S. Choudry, K. Rocki, A. G. Baydin, C. Prunkl, B. Paige, O. Isayev, E. Peterson, P. L. McMahon,
J. Macke, K. Cranmer, J. Zhang, H. Wainwright, A. Hanuka, M. Veloso, S. Assefa, S. Zheng,
and A. Pfeffer. Simulation Intelligence: Towards a New Generation of Scientific Methods.
arXiv:2112.03235 [cs], Dec. 2021.

13

https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.sciencedirect.com/science/article/pii/S0045782518305334
https://www.sciencedirect.com/science/article/pii/S0045782518305334
https://arxiv.org/abs/2112.05309
https://arxiv.org/abs/2112.05309


[29] R. Leiteritz, M. Hurler, and D. Pflüger. Learning free-surface flow with physics-informed neural
networks. In 2021 20th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 1668–1673, 2021. doi: 10.1109/ICMLA52953.2021.00266.

[30] R. Leiteritz, P. Buchfink, B. Haasdonk, and D. Pflüger. Surrogate-data-enriched physics-aware
neural networks. Proceedings of the Northern Lights Deep Learning Workshop, 2, 04 2022. doi:
10.7557/18.6268.

[31] H. Lewy, K. Friedrichs, and R. Courant. Über die partiellen differenzengleichungen der
mathematischen physik. Mathematische annalen, 100:32–74, 1928.

[32] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. International Conference
on Learning Representations (ICLR), 2021.

[33] G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa. Sorption
isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22
(2):249–275, 2007. ISSN 0883-2927. doi: https://doi.org/10.1016/j.apgeochem.2006.09.010.
URL https://www.sciencedirect.com/science/article/pii/S0883292706002629.

[34] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. SIAM Review, 63(1):208–228, 2021. doi: 10.1137/19M1274067.

[35] D. MacKinlay, D. Pagendam, P. M. Kuhnert, T. Cui, D. Robertson, and S. Janardhanan. Model
Inversion for Spatio-temporal Processes using the Fourier Neural Operator. In Neurips Workshop
on Machine Learning for the Physical Sciences, page 7, 2021.

[36] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. The M4 Competition: 100,000 time series
and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74, Jan. 2020. doi:
10.1016/j.ijforecast.2019.04.014.

[37] S. K. Mitusch, S. W. Funke, and J. S. Dokken. Dolfin-Adjoint 2018.1: Automated adjoints
for FEniCS and Firedrake. Journal of Open Source Software, 4(38):1292, June 2019. doi:
10.21105/joss.01292.
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