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A Markov Diffusive Kantorovich Dual Formulation

This section provides basic theoretical details on the log-Sinkhorn operator and its convergence
results. Let us define two arbitrary functions A,B ∈ C2(M)/R. Then, we start by defining operators
defined as follows:

Hϵ
µ : C(M)→ C(M), Hϵ

µ[A](y) = ϵ log

∫
e−γ2(x,y)/ϵ−A(x)/ϵµt(dx), (1)

Hϵ
ν : C(M)→ C(M), Hϵ

ν [B](x) = ϵ log

∫
e−γ2(x,y)/ϵ−B(y)/ϵνt(dy). (2)

The composition of two operators (i.e.,Hϵ
µt
,Hϵ

ν) is referred to as a log-Sinkhorn iteration (operator)
S ≜ Hϵ

µt
◦Hϵ

ν . Let us define Al as the transformed shape of A after the l-th iteration: Al = Sl(A) =

S ◦ S · · · ◦ S︸ ︷︷ ︸
l time

(A). Then, we define the functional F(Al) : C
2(M)/R→ R, as follows:

F(Al) =

∫
Sl ◦A(x)dµθ

t (x) +

∫
Hϵ

µ[Sl ◦A](y)dνt(y). (3)

The log-Sinkhorn iteration uniquely minimizes the functional F by the following proposition.
Proposition 1. The log-Sinkhorn iteration S has the a point in C2(M)/R. This fixed point is
determined up to an additive constant, and minimizes the functional F uniformly:

F(S ◦Al) ≜ F(Al+1) ≤ F(Al). (4)

We assume that, for a large enough l > L with small enough ϵ ≈ 0, the log-Sinkhorn iteration
converges, i.e., S ◦ Al = Al, and the functional F is minimized. Then, the function Al∨L is
approximated to the d2/2-Legendre transformation (11) of the function Bm∨M .

[Al∨L]
c ≈ χsupp(µt) +Bl∨L, (5)

where [f ]c denotes the d2/2-Legendre transformation of f and χV is the support function on the
subset V ⊂M defined as:

χV (x) =

{
0 if x ∈ V

∞ if x /∈ V
. (6)

Please note that we denote the fixed point of S in the main paper as A∗ := Al∨L. The following
theorem states that the fixed point of the log-Sinkhorn operator induces optimal transport map:

Theorem 1. (Unique fixed-point of S and Optimal transport (2)) We assume that (µ(ϵ)
t , ν

(ϵ)
t ) →

(µt, νt) in P(M)-weak sense. If A is a fixed point of the log-Sinkhorn operator S on C2(M)/R,
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then B converges uniformly to a d2/2-Legendre transformation of A, and it converges to the optimal
transport map Φ satisfying:

Φ(y) = expy(∇gB(y)), Φ#ν = µt, (7)

where exp(·) : T(·)M→M and ∇g are Riemannian exponential and gradient, respectively.

In short, the proposed iteration approximates the d2-convex function, i.e., B ≈ Ac, and induces the
solution to the optimal transport problem (i.e., 2-Wasserstein distance ((8))) as we approximate ϵ→ 0.
This fundamental result with the Kantorovich duality theorem and the theoretical characteristic of
log-Sinkhorn iteration assure the optimal transport between µt and νt.

B Parameterized Fokker-Planck Equation on Manifolds

This section provides the omitted information in Section 5 of the main paper. Specifically, the
intuition and derivation of (16) in Section 4 of the main paper are shown in the following contents.

Parameterized Infinitesimal Generator. We define the infinitesimal generator as follows:

Lθf = lim
t→0

1

t
P θ
t f − f. (8)

We define the P θ
t (i.e., Markov semi-group) in the main paper. However, because the form in (8) is

not applicable due to the lim operation, we present the alternative differential operator on C∞
0 as

follows:
Lθ
t f(x) := β(θ)∆Mf(x) +Wθf(x), x ∈M, f ∈ C∞

0 (M), (9)

where ∆M := divM ◦ ∇M is the Laplace-Beltrami operator on M. Notably, due to the time-
dependent behavior of neural potential field, the proposed generator induces the time-inhomogeneous
Markov process. Then, the Fokker-Planck equation or Kolmogorov forward equation is defined as
follows:

∂tpθ(t, x) = [Lθ
t ]

∗pθ(t, x) = ∆Mpθ(t, x)− div [pθ(t, x)Wθ] , (10)

where [Lθ
t ]

∗ is the adjoint differential operator of Lθ
t satisfying the equality in L2(dQ) sense:∫

M
pθ(t, x)[Lθ

t ]
∗q(t, x)dV =

∫
M

pθ(t, x)Lθ
t q(t, x)dV ∀t ≥ 0 (11)

for arbitrary density q onM.

C Proofs

C.1 Assumptions

This section enumerates the technical assumptions used in the proof.

• (H1) Any Kantorovich potential function A ∈ C∞
0 (M) in the contents is µθ

t × L([0, T ])
measurable for Lebesgue measure L on the time interval [0, T ].

• (H2) Any Kantorovich potential function A in the contents satisfies the inequality: |LθA| <
∞ almost everywhere P, for all θ ∈ Θ.

• (H3) The parameter space Θ is a compact subset of Θ ⊂ RD′
.

• (H4) The Kantorovich potentials [A,B] have bounded norm:

Eµθ
t

[
∥∂iA∥2E + ∥∂ijA∥2E + ∥∂iB∥2E + ∥∂ijB∥2E

]
≤ c0. (12)

• (H5) Constants Cθ
0 , C

θ
1 exist such that supθ∈Θ ∥∂θβ(θ)∥

2
E ≤ Cθ

0 , supθ∈Θ

∥∥∂θwj
∥∥2
E
≤ Cθ

1 ,
a.e, [µθ

t ].
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C.2 Lemmas and Definitions

In this section, we provide lemmas and definitions considered in the proofs.
Definition 1. (Legendre transformation) The c-Legendre transformation is the function Ac ∈ C(M)
for A ∈ C(M)

Ac(y) := sup
x∈M

(−c(x, y)−A(x)) , (13)

where we follow the sign convention suggested in (2) for Legendre transformation.
Lemma 1. The solution to the proposed RNSDE Xθ

t is a semi-martingale Markov process.

Proof. In C.3, a semi-martingale property is presented. Then, the proof is completed by showing the
Markov property because the second term in the definition of RNSDE is a deterministic process.

E[β(θ)π−1(Xθ
t ) ◦ dBt|Fs] = E[β(θ)Uθ

t ◦ dBt|Xθ
t ] = 0. (14)

The equality is trivial where the conditional expectation is taken in the orthonormal frame bundle.

Lemma 2. There exists one-to-one correspondences between Itó and Stratonovich SDEs:

Xt ◦ dYt = YtdZt +
1

2
[X,Y ] , (15)

where [Y, Z] is the covariation between the stochastic processes Y and Z.
Lemma 3. (6) The following quantities are equivalent:

∆Mf :=
1√
|g|

∂i

(√
|g|gij∂jf

)
= gij∂ijf + gjkΓi

jk∂if. (16)

Lemma 4. Given an arbitrary starting point At
l=0(·; θ) ∈ C2(M)/R, F̄(At

l(·; θ)) converges
uniformly to F̄(At

l∨L(·; θ)).

Proof. The proof directly follows from Theorem 1 and the continuity of F̄(·) on C2(M)/R.

The uniform convergence property plays a central role in the proof of Proposition 3 to combine the
log-Sinkhorn iteration with the gradient-flow scheme.

C.3 Proof of Proposition 1.

In this section, we aim to show the following equivalent relations between various representations of
identical objects, RNSDE.

dUθ
t︸︷︷︸

local

φ←−−−→ dUθ
t︸︷︷︸

(19)

π−1

←−−−−−→
π

dXθ
t︸︷︷︸

(18)

φ←−−−→ dXθ
t︸︷︷︸

local

. (17)

Specifically, the goal of this proof is to represent the RNSDE onM in a local coordinate (RHS
in (17)) by rewriting the local coordinate of the RNSDE on OM (LHS in (17)).

(A) Relation between Xt and Ut. To fully represent the proposed RNSDE in a local coordinate
system, we clarify the first term (i.e., stochastic development) in the definition of the RNSDE.

dXθ
t = W (t,Xθ

t ; θ)dt+ β(θ)π−1(Xθ
t ) ◦ dBt, {Xθ

t }0≤t≤T ∈M. (18)

In (1; 12), the Brownian motion on OM is defined as follows:

dUθ
t = HWθ

(Uθ
t )dt+ β(θ)

n∑
i=1

Hei(U
θ
t ) ◦ dBt, {Uθ

t }0≤t≤T ∈ OM, (19)

where we denote Wθ(·) := W (t, ·; θ) for simplicity. The SDE in (19) on the orthogonal frame bundle
is the lift of SDE in (18) on the target manifold where HWθ

is the horizontal vector field of Wθ, and
{Hei}1≤i≤n is called a fundamental horizontal vector field, which has the following local expression:

Hei(U
θ
t ) = eji∂i − ejie

l
mΓk

jl(X
θ
t )∂̄

k
m. (20)
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While the set of basis vectors {∂j ≜ ∂
∂xj

, ∂̄k
m ≜ ∂

∂ekm
; 1 ≤ j, k,m ≤ d} span the tangent of

orthogonal fame bundle TOM, Hei is the vector field on TOM expressed as a linear combination
of basis vectors {∂j , ∂̄k

m}.
(B) Local coordinate on frame bundle. We denote a generic point of orthogonal frame bundle OM
by U = ({Xi}1≤i≤n, {eij}1≤i,j≤n) where a frame is the element of orthogonal group eij ∈ O(n).
We have Uei = eji∂i where {ei} is the basis of the Euclidean space Rn. Then, the local expression
of (19) is expressed as

dUθ
t =

(
dXθ

t

deij

)
=

(
eij(t) ◦ dB

j
t +Wθdt

−Γi
kl(X

θ
t )e

l
j(t)e

k
m(t) ◦ dBm

t

)
. (21)

By applying the Itó’s lemma to the SDE with the function f = R ◦ π for an arbitrary R :M→ R,
we can obtain the following representation of the SDE.

f(Uθ
t ) = f(U0) +

∫
Heif(U

θ
t ) ◦ dBi

t +

∫
HWθ

f(Uθ
t )dt. (22)

In the local coordinate presentation, we can write (22), as follows:

dR(Xθ
t ) = HeiR(Xθ

t ) ◦ dBi
t +W (t,Xθ

t ; θ)R(Xθ
t )dt

= HeiR(Xθ
t )dB

i
t +

1

2
d[HeiR,B]t +Wθ

t

= R(X0) +Mt +
1

2
Nt +Wθ

t .

(23)

In the second equality, we transform the Stratonovich SDE into Itó’s SDE by applying Lemma 2.
Because the lifted function f = R ◦ π uniquely determines the orthonormal basis of tangent space
uei ∈ TM by the property of the fundamental horizontal vector field Hei (i.e., there exists a unique
relation π⋆Hei(Ut) = Utei), we can express Heif(Ut) = Utei. This fact leads to the second equality
in the following formulation:

Mt =
∑
i

Heif(U
θ
t )dB

i
t =

∑
i

(df)Uθ
t
[Hei(U

θ
t )]dB

i
t, (24)

where df is the differential of f . To understand the above relation precisely, we present the local
coordinate expression of Mt. Specifically, the horizontal curve Uθ

t in orthonormal frame bundle OM
can be expressed in a local coordinate, Uθ

t = [[Xθ
t ]

i, eij(t)], as follows:

Hei(U
θ
t )[f ] ≜ Heif(U

θ
t ) = (df)Uθ

t
[Hei(U

θ
t )]

= eji∂jf(U
θ
t )− ejie

l
mΓk

jl(X
θ
t )∂̄

k
mf(Uθ

t )

= eji∂jR ◦ π([[X
θ
t ]

i, eij(t)])

= (eji∂j)XtR(Xi
t) = (Uθ

t ei)Xθ
t
R([Xθ

t ]
i)

= T ([Xθ
t ]

i)R([Xθ
t ]

i).

(25)

The third equality holds as ∂̄k
m ◦ f([Xi

t , e
i
j(t)]) = ∂̄k

mR ◦π([Xi
t , e

i
j(t)]) = ∂̄k

mR(Xt) = 0. In the last
equality, we define the vector field T ∈ TM as Uθ

t ei = eji∂j ≜ T (Xt). To estimate the vector field
T (Xt), we need to find out the explicit numeric of the orthogonal matrix eji by solving the following
equation:

(Uθ
t ei)|Xθ

t
= eji∂j |Xθ

t
. (26)

To solve the equation, we take the Riemannian inner product between Uθ
t el and Uθ

t em, as follows:

⟨Uθ
t el, U

θ
t em⟩g(Xθ

t )
= ⟨eil∂i, ejm∂j⟩g(Xθ

t )
= eil⟨∂i, ∂j⟩g(Xθ

t )
ejm

= eilgij(X
θ
t )e

j
m = δij ,

(27)

where we denote ⟨X,Y ⟩g because the inner product between vector fields X,Y ∈ TM and δlm is
the coordinate delta function. Using the relation in (27), the following identity can be easily obtained:∑

k

eike
j
k = gij . (28)
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We can express the identity in (28) as a matrix form, as follows:

E(i, k)TE(j, k) = G−1(i, j), (29)

where E(i, k) := {eik} and G−1(i, j) := gij . To obtain the explicit form of the matrix E, we apply
the Cholesky decomposition to the co-metric matrix. (i.e., E = Ch ◦ [G−1]). Finally, the derivation
form of horizontal vector field to f , Heif(Ut), can be written in the local coordinate as follows:

Heif(U
θ
t ) = (Uθ

t ei)|Xθ
t
R(Xi

t) = Ch ◦ [G−1(Xθ
t )]

i∂iR([Xθ
t ]

i). (30)

Because the co-metric matrix is semi-definite positive regarding the Riemannian structure, the
following relation holds by the elementary algebraic property of Cholesky decomposition regarding
the SDP matrix:

Ch ◦G−1 = G− 1
2 . (31)

Finally, the local martingale term Mt is written in the local coordinate as follows:

Mt =
∑
i

G(Xθ
t )

− 1
2 ∂iR(Xθ

t )dB
i
t. (32)

To determine whether the process Mt is the local martingale, we estimate the quadratic variation of
the process Mt using the following calculation.

d [M,M]t =

[∑
i

√
g−1
ii ∂iR(Xθ

t )

]2
dt. (33)

Because the quadratic variation of Euclidean Brownian motion B can be derived as [B,B]t = dt,
Mt is the local martingale.

Nt = [HeiR,B]t =

∫
HejHeif(U

θ
t )d

[
Bj , Bi

]
t

=

∫ ∑
i

H2
eif(U

θ
t )dt =

∫
∆OMf(Uθ

t ) =

∫
∆MR(Xθ

t ).
(34)

The last term Wθ
t = W (t,Xt; θ)R(Xt) corresponds to the anti-development of vector field HWθ

.
By collecting the defined stochastic representations, M,N, and W, the proposed local coordinate
expression shown in the main paper is derived. Moreover, this shows that the lift of the solution to
the propsoed RNSDE is a semi-martingale process defined on OM.

C.4 Proof of Proposition 2.

We assume that the reference measure R admits the density: d(µθ
t ⊗ νt)/dR = e

γ2

2 +logZ , where

Z =
∫
e−

γ2

2 d(µθ
t ⊗ νt) is the normalizing constant. Then, the regularized (scaled) entropy is defined

as the following form:

Hϵ(πθ|R) =
1

2

∫
γ2dπθ + ϵH(πθ|µθ

t ⊗ νt) + ϵ logZ, (35)

where Hϵ|ϵ=1 ≡ H restores the original relative entropy. Then, the proof is completed by showing
the following relation:

lim
l→∞

F̄(At
l) = J([A∗, B∗], ϵ, t, ·) = lim

ϵ→0
Hϵ(π∗

θ |R) =W2(µ
θ
t , νt), (36)

where π∗ is the static Schrödinger bridge. If we apply the log-Sinkhorn iteration l → ∞, then
the function Al converges to the Legendre transform of B (i.e., liml→∞ Al → Bc + χsupp(µθ

t )
) by

Theorem 1. Then, we introduce the important equality:∫
eA

∗/ϵ⊕B∗/ϵ−γ2/2ϵd(µθ
t ⊗ νt) = 1, (37)

where the equality holds because the function A∗ = [B∗]c is the Legendre transform induced by
Theorem 1. This leads to the fact that the third term in the definition of Markov diffusive Kantorovich
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dual can be ignored in the minimization problem (i.e., ∂θϵ = 0) for arbitrary 0 ≤ ϵ <∞. Regarding
the definition of regularized entropy, the second equality naturally follows. Finally, the last one can
be directly obtained from the Kantorovich duality.

Note. For a large enough l≫ L, the equality in (36) shows that solving the minimization problem
minθ J is equivalent to minθ F̄ . In other words, the calculation for the gradient of the third term of
functional J is redundant for the gradient descent scheme in the case of the Kantorovich potentials
[A∗, B∗]. Moreover, the small value ϵ ≈ 0 in our implementation makes the third term negligible.
Regarding the discussions, we apply the the gradient descent scheme for the proposed functional F̄
rather J to train the RNSDE.

Horizontal Diffusion. Identically, the infinitesimal generator can be defined on the frame bundle as
the following formulation:

Lθ
OMf̃(u) := β(θ)∆OMf̃(u) +HWθ

f̃(u), u ∈ OM, f̃ ∈ C∞
0 (OM), (38)

where ∆OM =
∑n

i H
2
ei is the famous Bochner’s horizontal Laplacian and Hei is a fundamental

horizontal vector field defined in the previous section.

C.5 Proof of Proposition 3.

Diffusive Kantorovich functional with dual Semi-group. Because the proposed process Xθ
t is the

Markov diffusion process regarding the definition of generator in (9) and Lemma 1, we can apply the
geometric version (on orthonormal frame bundle) of the Itó’s Lemma (12) to obtain the following
equality:

At
l(X

θ
t ; θ) = Al(X0) +

∫ t

0

LθAl(X
θ
s )ds+

β(θ)

2

∫ t

0

⟨U−1
s ∇gAl(Xs), dBs⟩, (39)

where U−1
s : TXθ

s
M → Rd is the inverse of frame Us at Xs which is also the solution to the

horizontal diffusion process in the main paper. Please note that the notation for Al is rewritten as
At

l ∈ [0, T ]× N+ ×M×Θ in the LHS to emphasize the parameterization in the RHS.

F(At
l(·, θ)) =

∫
At

l(X
θ
t , θ)dP

θ,∗
t︸ ︷︷ ︸

Parameter Activated

+

∫
Hϵ

µ[Al](y)dν(y)︸ ︷︷ ︸
Parameter Frozen

= Ex0∼p0
E[At

m(Xθ
t , θ)|X0 = x] +

∫
Hϵ

µ[Al](y)dν(y)

= Ex0∼p0
E
[
Al(x) +

∫ t

0

LθAl(X
θ
s )ds|X0 = x

]
+

∫
Hϵ

µ[Al](y)dν(y)

= Ex0∼p0E
[
Al(x) +

∫ t

0

β(θ)∆MAl −WθAl(X
θ
s )ds|X0 = x

]
+

∫
Hϵ

µ[Al](y)dν(y).

(40)

In the first equality, the parameter in the second term
∫
Hϵ

µ[Al](y)dν(y) is considered fixed during
the update. In other words, our setting induces the following property:

∂θ

[∫
Hϵ

µ[Al](y)dν(y)

]
= 01×D′ . (41)

This trick enables us to avoid the calculation of the second term EHϵ
µ, and makes our discussion

simpler. The second the equality in (40) reveals the proposed Markov interpretation on Kantorovich
functional, where the expectation that is taken over P θ,∗

t is replaced by the conditional expectation
using the property of the Markov semi-group. The third and fourth equalities are induced by the
geometric Ito’s formula in (39) and the definition Lθ. Please note that the expectation over the third
term in (39) vanishes by the property of martingale:

Eµθ
t

[
β(θ)

2

∫ t

0

⟨U−1
s ∇gAl(X

θ
s ), dBs⟩

]
=

β(θ)

2
Eµθ

t

[∫ t

0

U−1
s gijdAl(X

θ
s )[dBs]

T

]
= 0. (42)

This can be easily shown by the fact that U−1
s gijdAl is the deterministic; thus, stochastic integral

in (42) is purely the Ft-martingale.
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Gradient flow with respect to neural parameter θ ∈ Θ. To sum up, the gradient of Kantorovich
functional F can be rewritten in the dual formulation regarding the equalities in (40):

∂θF(At
l(·, θ)) = ∂θE

∫ t

0

LθAlds = E
∫ t

0

∂θβ(θ)∆MAlds+ E
∫ t

0

∂θWθAlds, (43)

where the second equality can be obtained by applying the dominated convergence theorem with the
assumptions (H1) and (H2). In local coordinate, this evaluation can be written as follows:

lim
l→∞

∂θF(Al(X
θ
t ; θ)) = ∂θ lim

l→∞
F(Al(X

θ
t ; θ)) = Eµθ

t

[ ∫ t

0

∂θβ(θ)g
ij(Xθ

t )∂ijAl→∞(Xθ
s )ds

+

∫ t

0

∂θβ(θ)g
jk(Xθ

t )Γ
i
jk(X

θ
t )∂iAl→∞(Xθ

s )ds+

∫ t

0

∂θw
j(Xθ

s ; θ)∂jAl→∞(Xθ
s )ds

]
. (44)

The interchange between gradients and the limitation in the first equality follows the uniform
convergence property of Kantorovich functional developed in Lemma 4. The expectation formula can
be derived by calculating the evaluation in (41) with the fact ∂θAl = 0 a.e, [P]. Then, we introduce
the gradient flow to minimize the functional F defined as follows:

dθ(s, l) = −κ∂θF(At
l(X

θ
t ; θ))|θ=θ(s), (45)

where the auxiliary variable s denotes the iteration of gradient flows with respect to the neural
parameter. By taking limitations to both variables s and l, we can obtain the following evaluation:

lim
l,s→∞

dθ(s, l) = −κ∂θ lim
l→∞

F̄(At
l(X

θ
t , θ))|θ(s→∞). (46)

The equality ∂θ liml = liml ∂θ can be obtained by Lemma 4.

argmin
θ∈Θ

min
C(M)/R

F̄(At(·, θ))|θ = lim
s→∞

lim
l→∞

dθ(s, l). (47)

While the sequence dθ(s,∞) uniquely determines the equality minC(M)/R F̄(At(·, θ))|θ =

F̄(At
∞(·, θ))|θ for every s ∈ N+, the proposed gradient flow in (46) is well-defined and mini-

mizes the functional F̄ . In Algorithm 1 of the main paper, the numerical procedure of the proposed
gradient flow is presented.

Gradient Explosion according to Geometric effect. As shown in (44), the proposed gradient flow
requires the evaluation of the geometric effect to update the parameters of the RNSDE. In particular,
Riemannian co-metric (i.e., gij(Xθ

t )) and the Christoffel symbol (i.e.,Γi
jk(X

θ
t )) are consecutively

calculated for the given stochastic trajectory Xθ
t . Unfortunately, these geometric evaluations are not

generally bounded, which may cause the gradient explosion problem during the parameter update of
the RNSDE. The following example reveals the aforementioned problem:

Example: Gradient Explosion on S2. We denote the local coordinate of 2-sphere as Xθ
t = [ϑθ

t , φ
θ
t ].

Then, we can induce the relation:

sup
i,j

[
|gij(Xθ

t )|+
∣∣Γi

jk(X
θ
t )
∣∣] = 2| csc2(ϑθ

t )| ∨ 1, (48)

where the equality in (48) holds by the fact csc2(ϑθ
t ) − cot(ϑθ

t ) ≥ 0, a.e, [P]. Subsequently, we
define the union of metric balls centered at {mπ}m∈N+ as follows:⋃

m∈N+

B(mπ, ϵ)× {φθ
t } ⊂ M. (49)

If we take small radii ϵ→ 0 of metric balls, the upper bound of (48) diverges:

lim
ϵ→0

[ ⋃
m∈N+

B(mπ, ϵ)× {φθ
t }

]
⇐⇒ csc2(ϑθ

t ) ↑ ∞. (50)

In this case, the gradient flow defined in (46) is not well-defined due to the divergence of geometric
terms. To tackle the problem, we propose random stopping time to avoid an undesirable result:

τ = inf
t∈[0,T ]

{
t; sup

1≤i,j≤n
|gij(Xθ

t )|2 + |Γi
jk(X

θ
t )|2 > c1

}
. (51)
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In (51), the stopping time τ defines the threshold c1 to bound the geometric effect. While the
stopping time τ of Xθ

t induces the identical stopping time τ of horizontal lift Uθ
t (Lemma 2.3.7 (4)),

the proposed RNSDE defined on the frame bundle is also controlled. We determine whether the
convergence speed of gradient flow is bounded by specifying the following evaluation:

∂

∂s
F̄(At∧τ

l (Xθ
t∧τ ; θ))|θ=θ(s) = −κ

∥∥∥∥∂θ lim
l→∞

F(At∧τ
l (Xt∧τ ; θ))|θ=θ(s)

∥∥∥∥2
E

, (52)

where the RHS in (52) can be calculated as follows:∥∥∥∥∂θ lim
l→∞

F(At∧τ
l (Xθ

t∧τ ; θ))

∥∥∥∥2
E

≤ Eµθ
t∧τ

∥∂θβ(θ)∥2E ∫ t∧τ

0

∑
i,j

|gij(Xθ
t )|2 |∂ijAl→∞|2 ds


+ Eµθ

t∧τ

∥∂θβ(θ)∥2E ∫ t∧τ

0

∑
i

∑
j,k

∣∣gjk(Xθ
t )
∣∣2 ∣∣Γi

jk(X
θ
t )
∣∣2 ∣∣∂iAl→∞(Xθ

s )
∣∣2 ds


+ Eµθ

t∧τ

∫ t∧τ

0

∑
j

∥∥∂θwj(Xθ
s ; θ)

∥∥2
E

∣∣∂jAl→∞(Xθ
s )
∣∣2 ds


≤ n

2
(n+ 1)(t ∧ τ)c0c1C

θ
0 (1 + n) +

n

2
n(n+ 1)(t ∧ τ)c20c1C

θ
0 + n(t ∧ τ)Cθ

1c0

≈ O
(
n3(τ ∧ T )C(c0, c1, C

θ
0 , C

θ
1 )
)
. (53)

The first inequality follows by applying Jensen’s inequality. While the Kantorovich potential [A∗]c is
the (d2/2)-Legendre transform of B∗, we can obtain the equalities in (54) and (55).∣∣∣∣ liml→∞

∂iAl

∣∣∣∣2
E

=

∣∣∣∣∂i[ liml→∞
Al]

c

∣∣∣∣2 = |∂i[A∗]c|2 = |∂iB∗|2 , ∀1 ≤ i ≤ n. (54)

Similarly, the second derivatives of the potential function converge to the following evaluation.∣∣∣∣ liml→∞
∂ijAl

∣∣∣∣2 =

∣∣∣∣∂ij [ liml→∞
Al]

c

∣∣∣∣2 = |∂ij [A∗]c|2 = |∂ijB∗|2 , ∀1 ≤ i, j ≤ n. (55)

Then, we introduce the symmetry of Riemannian metric as follows:

gij(Xθ
t ) := gij(Xθ

t )(∂
t
i , ∂

t
j) = [gij ]

−1
(Xθ

t )(∂
t
i , ∂

t
j) = [gij ]

−1
(Xθ

t )(∂
t
j , ∂

t
i ) = gji(Xθ

t ). (56)

In other means, gij = gji almost surely. Similarly, we can show the symmetry of Christoffel symbol
Γi
jk = Γi

kj . Overall, the expectation of the following evaluations is equal to 1 almost surely:

Eµθ
t∧τ

1
∑

i,j,k

|Γi
jk(X

θ
t∧τ )|2 ≤

n2(n+ 1)c1
2




= Eµθ
t∧τ

1
∑

j,k

|gjk(Xθ
t∧τ )|2 ≤

n(n+ 1)c1
2


 = 1. (57)

By combining (57), (54), and (55) with assumptions (H4) and (H5), the proof is completed.

D Geometric Calculation

In this section, we provide the detailed information about geometric objects defined on the 2-Sphere
S2, 2-Torus T2. Given the Riemannian manifolds equipped with Riemannian metric (M, g), we
define three geometric objects including Christoffel symbol, Riemannian metric tensor, and its
determinant to simulate the RNSDE.

Let us denote ∂i is the (spatial) partial derivative with respect to the i-th component on local coordinate.
Then, Christoffel symbol is defined as follows:

Γi
jk(X

θ
t ) =

1

2
gke(Xθ

t )

[
∂jgei(X

θ
t ) + ∂egej(X

θ
t )− ∂igij(X

θ
t )

]
. (58)
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2-Sphere. The Riemannian metric and Christoffel symbol on 2-sphere are calculated as follows:

Sphere S2 : gij(X
θ
t ) =

(
1 0
0 sin2 ϑ

)
, gij(Xθ

t∧τ ) =

(
1 0
0 1

sin2 ϑ
∧ c1

)
,

Γi
jk(X

θ
t∧τ ) =

(0 0
0 − sinϑ cosϑ

)
︸ ︷︷ ︸

i = 1

,

(
0 cotϑ ∧ c1

cotϑ ∧ c1 0

)
︸ ︷︷ ︸

i = 2

 .

(59)

2-Torus. Similar calculations follow on 2-torus.

Torus T2 : gij =

(
R+ r cosφ 0

0 r2

)
,

Γi
jk =


(

0 − r sinφ
R+r cosφ

− r sinφ
R+r cosφ 0

)
︸ ︷︷ ︸

i = 1

,

(
(R+r cosφ) sinφ

r 0
0 0

)
︸ ︷︷ ︸

i = 2

 ,

(60)

where we set [R, r] = [1.0, 0.4] in our experiment on helix coils.

E Implementation Details

E.1 Experimental Settings

We used a single GTX 2080 Ti GPU for all experiments. To train the RNSDE, we utilized the Adam
optimizer with a learning rate of 10−3. We followed the identical network architecture suggested by
prior work (9) in Appendix.6 of (9). The experimental results were obtained using open-source codes
of the author’s repositories:

• MCNF; https://github.com/CUAI/Neural-Manifold-Ordinary-Differential-Equations

• EMSRE; https://github.com/katalinic/sdflows

• RCPM; https://github.com/facebookresearch/rcpm

E.2 Details about experiment on Vessel Route Dataset

Mean Geodesic Errors. We proposed the additional evaluation metric called MGE in Section 6 of the
main paper. We specified the detailed formulation of MGE and related it with Wasserstein distance.
Let µ, ν be elements of Wasserstein space P2(M) :=

{
µ ; Ex∼µ

[
1
2γ

2(x, x0)
]
<∞,∀x0 ∈M

}
.

Then we define the mean geodesic errors as follows

MGEs :
1

2
E(Xθ

t ∼µθ
t ,y∼νt)

[
γ2(Xθ

t , yt)
]
. (61)

By replacing c(x, y) = 1
2γ

2(x, y), mean geodesic errors induce the upper bound of Wasserstein
distance:

W2
2 (µ

θ
t , νt) := min

Π
EΠ [c(x, y)] ≤ E(µt,νt)[c(x, y)] :=

1

2
E(Xθ

t ∼µθ
t ,y∼νt)

[
γ2(Xθ

t , yt)
]
. (62)

While the task is to reconstruct the time-series on the ocean, we followed a similar protocol suggested
in (9; 10) to evaluate the quality of generated sequences from models. Specifically, Compared to their
works, we replaced the Euclidean geodesic error (i.e., mean squared error, MSE) with the Riemannian
geodesic error (i.e., MGE) to reflect the accurate performance regarding the underlying geometry.

Objective function. In this experiment, the proposed method was trained to minimize the following
objective function:

min
θ

∫ T

0

J ([A∗, B∗, ϵ, t, θ]) +
1

2
E(Xθ

t ∼µθ
t ,y∼νt)

[
γ2(Xθ

t , yt)
]
dt. (63)
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Figure 1: Reconstruction results on the Vessel Route dataset.

For fair comparisons with baseline methods (i.e., Latent ODE, ODE-RNN), we modified the our
original objective function to the form in (63).

Qualitative Results on Vessel Route Dataset. The vessel route dataset1 contains sampled routes of
100 individual vessels on the ocean with 64 timestamps. For this experiment, we randomly sampled
5 stochastic trajectories among 100 different vessel routes starting from different continents. Fig.1
shows samples from reconstructed trajectories (black) and target trajectories (red). As shown in the
figure, our model correctly follows the real vessel routes.

F Potential Theoretical Concerns

In this section, we answer potential questions about theoretical concerns of the proposed method,
which are not dealt with in the main paper due to the page limit.

1) Why do we focus on the embedded compact manifolds? Despite the proposed method (i.e.,
RNSDE) provides an universal framework for arbitrary manifolds, there is a theoretical concern for
implementing the proposed RNSDE on non-compact manifolds owing to the ”blowing-up” property
of SDE (5). The solution to the RNSDE needs to exist for every given initial distributions with
compact support. However, it is intractable in our framework to consider whether this condition is
assured for every functions β(θ) and W (θ) regarding the neural network θ. The future work will
discuss about additional theoretical assumptions on this problem. Because our model manifolds (e.g.,
sphere) assure the compactness, the proposed RNSDEs are well-defined for all 0 ≤ t <∞.

2) Why do we consider the parameterization by considering the fixed chart? It is well-known
that the 2-sphere requires at least two charts to fully cover its surface. Let f :M→ R be an arbitrary
bounded continuous function. Then, we show the following calculation:∫

S2\P
f(Xθ

t )dµ
θ
t =

∫
S2\P

f(Xθ
t )pθ(t,X

θ
t )
√
|detG(x)|dx

=

∫
S2
f(Xθ

t )pθ(t,X
θ
t )
√
|detG(x)|dx =

∫
S2
f(Xθ

t )dµ
θ
t ,

(64)

where µθ
t = pθ(t, x)dV = pθ(t, x)

√
|detG(x)|dx and P is an arbitrary point on 2-sphere. The

second equality in (64) holds because dx can be considered as a Lebesgue measure on Rn, and the
expectation is taken over S2 excluding measure-zero set {P}. Because the 2-Torus is diffeomorphic
to the product of circles S1 × S1 requiring 4 covers, similar calculation follows in the case of tori.
The equalities in (64) show that utilizing a single chart in our method is acceptable. Contrary to our
considerations, careful attentions are required when considering arbitrary Riemannian manifolds.

3) Why do we consider the simple Euler-Maruyama scheme to simulate the RNSDE? In con-
ventional SDE-based methods, they utilized the SDE solver (7) which was suggested to simulate the
stochastic paths of neural SDEs. Unfortunately, instability issue was addressed in recent study (3).
They reported that SDE solver may induce unstable training in the computation of gradients. The
RNSDE has similar problems during the training process, especially owing to the geometric cal-
culations, where we discuss about gradient explosion problems in the proof C.5. In contrast to

1https://www.noaa.gov/
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conventional SDE solvers that intrinsically bring complex inner procedures, the proposed method
utilizes a simple Euler-Maruyama Scheme for simulating the RNSDE. The results show that desirable
performance can be achieved regardless of the types of manifolds.
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