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Abstract
In recent years, the neural stochastic differential equation (NSDE) has gained
attention for modeling stochastic representations with great success in various
types of applications. However, it typically loses expressivity when the data
representation is manifold-valued. To address this issue, we suggest a principled
method for expressing the stochastic representation with the Riemannian neural
SDE (RNSDE), which extends the conventional Euclidean NSDE. Empirical results
for various tasks demonstrate that the proposed method significantly outperforms
baseline methods.

1 Introduction

Figure 1: Brownian motions on torus
T2 (black) and R3 (red).

Recently, there has been a great success in modeling stochastic
dynamical systems for complex data representations with spa-
tially high stochasticity. Particularly, recent studies have uti-
lized the stochastic differential equation (SDE) as a fundamen-
tal probabilistic model to express the transition of stochastic
states. The pioneering work, Latent SDE (14), introduced the
deep-learning framework to utilize SDE for modeling spatio-
temporal representations. Following their work, parameterized
reverse-SDE (1) was adopted to model score-based generative
models (27). Recently, a controlled SDE combined with a
stochastic optimal control theoretical framework was intro-
duced to model time series (21). These studies provided a new
method for describing stochastic representations and illustrated the superiority of neural SDE models
in various real-world applications. Although remarkable progress has been recorded in recent studies,
the primary interest in using SDE has focused on Euclidean geometry (i.e., Rd). Thus, conventional
approaches inevitably lose their expressivity when data representation is defined in generic geometry,
such as Riemannian manifolds (i.e., M). In this paper, we solve the aforementioned problem by
introducing the Riemannian neural SDE (RNSDE), which can model the stochastic representation on
manifolds. The proposed RNSDE is a natural extension of conventional Euclidean SDEs that defines
intrinsic stochastic transitions while fully considering the geometric structure. Specifically, we follow
the Eells-Elworthy-Malliavin interpretation of the diffusion Riemannian SDE, where the stochastic
representation is expressed on the frame bundle.

Example. To illustrate the problem mentioned above, we represent the stochastic trajectories of
Riemannian (black) and Euclidean (red) Brownian motions on 2-Torus in Fig.1. As shown in the
figure, the Euclidean SDE is unaware of the underlying geometry (i.e., torus) and its trajectory easily
steps out of the curved surface. Accordingly, the use of Euclidean SDE is problematic and lacks
geometry-awareness. In contrast, the proposed Riemannian SDE respects its underlying geometry
and yields a trajectory that clearly lies on the manifold.
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Contribution. The main contribution of this work is to suggest a general framework for modeling
the stochastic representations on Riemannian manifolds. Specifically, we define the diffusion process
on manifolds based on the Eells-Elworthy-Malliavin interpretation. Given well-defined Riemannian
SDEs, we introduce a novel Markov diffusive Kantorovich dual formulation and suggest a gradient
flow-based algorithm to train the neural network.

Notation. Einstein’s summation conventions are used throughout the paper. The Euclidean and
Riemannian norms are denoted as ∥u∥ , ∥v∥g with vectors u ∈ Rn, v ∈ T(·)M, respectively. ∂xi

:=
∂

∂xi
and ∂t := ∂

∂t denote spatial and temporal partial derivatives, respectively. We consider the
probability space (M,Σ,P) where the filtration {Ft}0≤t≤T is augmented by the Brownian motion
{Bt}t∈[0,T ] in the time interval [0, T ].

Riemannian geometry. In this paper, we consider complete and oriented n-dimensional Riemannian
manifolds (M, g) equipped with Riemannian metric g. In particular, we focus on embedded compact
sub-manifolds M (e.g., sphere and torus) of the ambient Euclidean space, M ⊆ RD, for n ≤ D ≤
2n1. The metric tensor is expressed in the matrix form G := [gij ]1≤i,j≤n. Similarly, we define the
Riemannian co-metric as the inverse of matrix G as G−1 := [gij ]. The Christoffel symbol with
respect to metric g is denoted by the tensor form [Γi

jk]1≤i,j,k≤n. For the tangent space TXt
M along

the sample path, we denote {∂ti}1≤i≤n as the moving frame. The Riemannian volume measure
is denoted as dV =

√
|detG(x)|dx. The orthogonal frame bundle and its corresponding local

coordinate function are denoted as OM and ψ : U ⊂ Rn → M, respectively.

2 Riemannian Neural Stochastic Differential Equation
We introduce a novel Riemannian SDE that defines the stochastic representations on Riemannian
manifolds. Additionally, explicit local representations and a numerical scheme for implementation
are presented. We begin by introducing the conventional neural SDE and extend the discussion.

Euclidean Neural SDE. The major interest of neural SDE is to train the parameterized stochastic
process Xθ

t defined as a solution to the following Stratonovich SDE (20):

dXθ
t = h

(
t,Xθ

t ; θ
)
dt+ σ

(
Xθ

t ; θ
)
◦ dBt, (1)

where Bt = [B1
t , · · · , Bn

t ] denotes the n-dimensional standard Brownian motion on Rn, and Eu-
clidean drift, and diffusion functions (i.e., h : [0, T ] × Rd × Θ → Rd and σ : Rd × Θ → Rd×n,
respectively) are parameterized by the neural network θ ∈ Θ. Euclidean SDE has obvious limitations
in handling non-Euclidean datasets, because it produces outputs in ambient space. Therefore, we
propose Riemannian neural SDE, which notably respects its underlying geometry.

Riemannian Neural SDE. Similar to Euclidean NSDE, our goal is to suggest a differential equation
on manifolds. Specifically, we suggest the Riemannian Neural Stochastic Differential Equation
(RNSDE) parameterized by two novel terms (i.e., (A) and (B)), defined as follows:

dXθ
t =W

(
t,Xθ

t ; θ
)
dt︸ ︷︷ ︸

(A)

+β(θ)π−1
(
Xθ

t

)
◦ dBt︸ ︷︷ ︸

(B)

. (2)

Figure 2: Neural potential fields.

(A) Neural Potential Field. In the first term, we refer to
the parameterized vector field W (t,Xt; θ) := wj(t,Xt; θ)∂

t
j :

[0, T ] × M × Θ → TXt
M as the neural potential field,

where the set of orthonormal tangent vectors {∂tj}1≤j≤n :=

{ ∂
∂xj

|Xt
}1≤j≤n : M → TXt

M is the moving frame on the
trajectories of stochastic dynamics. This term defines the de-
terministic drift on manifolds in respect to the inferred network
decision W (t,Xt; θ), based on the current state information
(t,Xt). The neural network W produces tangent vectors (red arrows in Fig.2), which consecutively
drive the stochastic trajectory to determine the next direction on TXθ

t
M (white planes in Fig.2).

While the Euclidean drift h in (1) is limited to producing vectors in the ambient space RD, the neural
potential field W in (2) produces vectors in the tangent space, thus respecting the geometric surfaces.

1The Whitney’s theorem (11) guarantees the existence of smooth embedding on RD=2n. Thus, we set the
maximal dimension of D to be bounded by 2n.
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(B) Stochastic Development. The second term, called stochastic development (8; 9), controls
the diffusive/stochastic behavior of the proposed SDE on manifolds. The function π : OM →
M is a canonical projection that maps the orthogonal frame bundle to model manifolds, where
Uθ
t = π−1(Xθ

t ) ∈ OM. This term projects the stochastic trajectory defined on the orthogonal
frame bundle Uθ

t ∈ OM, which locally behaves like a flat Euclidean SDE, onto the curved model
manifolds. This procedure is called Eells-Elworthy-Malliavin interpretation to present the SDE on the
manifold. Intuitively, the stochastic development could be considered the procedure for rolling2 the
trajectory on a curved surface (e.g.,M) over a flat plane (e.g., Euclidean SDE in (1)). Meanwhile,
the parameterized scalar-valued function β : Θ → R+ controls the diffusivity of the process Xθ

t . It is
noteworthy that the solution to (2) is the Brownian motion on M, when W ≡ 0 and β ≡ 1

2 . This
case is illustrated in Fig.1.

Figure 3: Local representations of the RNSDE.

Local Representations. Although the proposed
RNSDE in (2) is mathematically well-defined,
it is not directly applicable to the numerical al-
gorithm because of the abstract formulations of
horizontal vector fields. Thus, for clarity, we
provide explicit local representations expressed
as Itô’s SDE, as follows:
Proposition 1. (Local Representations) Let Xθ

t
be a parameterized stochastic process which is
the solution to the RNSDE in (2). In a local
coordinate system, the proposed RNSDE can be rewritten as the Itô’s representation:

Xθ
t = β(θ)

∫ T

0

√
gij(Xθ

s )dB
j
s +

∫ T

0

[
−β(θ)

2
gjk(Xθ

s )Γ
i
jk(X

θ
s ) + wj(Xs; θ)∂

s
j (X

θ
s )

]
ds. (3)

The detailed derivation is provided in Appendix C.3. The local-coordinate-based representation
in (3) simultaneously requires geometric terms including metric tensor g, Christoffel symbol Γi

jk,
and frame ∂sj , along the sample path Xθ

s ∈ M, that is calculated during sample propagation. The
effect of stochastic development can be inferred from the newly appearing terms (i.e., the first and
second terms in (3)). It transforms the Euclidean diffusion induced by standard Brownian motion Bt

into Riemannian diffusion on manifolds by considering the curvature effect (i.e., g,Γ).

Euler-Maruyama Scheme. To approximate the solution to the RNSDE in a local coordinate system,
we apply the Euler-Maruyama scheme to simulate the SDE in (3). Let t ∈ T := {to}1≤o≤T/∆t

be
the total simulation time and ∆t be a priorly fixed time interval. This scheme provides sampled
stochastic particles approximated as {Xto+∆t

}1≤o≤T/∆t
∝ N (mt∆t,

√
gij(Xθ

s )∆tIn), where the
mean mt ≈ −βgjkΓi

jk+W considers both the geometrical properties (i.e., g,Γ) and neural potential
fields. It is noteworthy that these two components are computed simultaneously for every temporal
states. Fig.3 shows the detailed numerical scheme for the local representation.

3 Learning Representations on Manifolds
In this section, we describe an efficient method for learning densities over manifolds. We begin by
analyzing the density estimation methods used in previous studies. Let us assume that both the model
and target measures admit densities pθ(t, ·)dV = µθ

t and pνdV = νt, respectively. Conventional
methods (e.g., RCNF (17)) define the minimization problem of relative entropy H(·|·) between the
model probability measure µθ

t and the target probability measure νt, as follows:

min
θ∈Θ

H(µθ
t |νt) = min

θ∈Θ
E
[
log

dµθ
t

dνt

]
= min

θ∈Θ
E [log pθ − log pν ] . (4)

To compute the numerical estimation in (4), conventional methods require a preprocessing step (e.g.,
Gaussian KDE) to obtain an explicit and accurate estimation of the target density pν . Owing to this
shortcoming, the induced performance is highly dependent on the preprocessing step, which must be
correctly tuned for different applications and manifolds. In contrast, the proposed method directly
utilizes a set of observed particles sampled from the target object. Specifically, it is constructed

2This term is also called a "rolling without slipping" to emphasize the intuition (16; 8).
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from the N sampled particles {ylt}1≤l≤N defined as νt = 1
N

∑N
l δyl

t
. Consequently, the proposed

approach does not require any distributional information to represent the target object.
Markov Semi-group. Because our main objective is to find a solution Xθ

t of the RNSDE, the
model measure is defined as a law of the stochastic path µθ

t := P(Xθ
t ∈ ·) ∼ Xθ

t ∈ M, where
Xθ

t is the solution to the proposed RNSDE. In spite of the rigorous definition, the model measure
µθ
t is not applicable to numerical algorithms owing to its abstract form. To resolve this issue, we

suggest an algebraic trick for evaluating the model measure µθ
t . Specifically, we utilize the Markov

property of the proposed RNSDE to identify the probabilistic structures of the model measure. Let
P θ
t f := E[f(Xθ

t )|X0] be a Markov semi-group (28) of Xθ
t . Then, by duality, we can define the

probability measure called a dual semi-group P θ,∗
t (2), satisfying the following equality:

Ex∼µ0E[f(Xθ
t )|X0 = x] = Ex∼µ0 [P

θ
t f(x)] = Ex′∼P θ,∗

t
[f(x′)] = EXθ

t ∼µθ
t
[f(Xθ

t )], (5)

where µ0 indicates the initial state of the RNSDE. Evidently, the expectation according to the measure
µθ
t is identified as the expectation with the dual semi-group µθ

t := P θ,∗
t , which can be easily computed

using the relation in (5). Throughout this paper, the model measure is interchangeably denoted as
P θ,∗
t and µθ

t .

Objective Function. Similar to previous studies, the proposed method aims to minimize the
discrepancy between the model and target measures; however, a different approach is adopted.
Specifically, we utilize the static Schrödinger bridge to define the discrepancy between P θ,∗

t and νt:
Definition 1. (Static Schrödinger Bridge (12)) Let us assume that there exists a coupling πθ such
that πθ ≪ P θ,∗

t ⊗ νt for fixed time t ∈ [0, T ] where πθ ∈ Π(P θ,∗
t , νt) is the set of parameterized

couplings. Let R be the reference measure satisfying dR

d(P θ,∗
t ⊗νt)

∝ e−γ2/2 with the Riemannian
distance γ. Then, the (static) Schrödinger bridge π⋆ is a unique solution to the following minimization
problem:

π⋆
θ = argmin

πθ∈Π(P θ,∗
t ,νt)

H(πθ|R) := argmin
πθ∈Π(P θ,∗

t ,νt)

∫
M×M

log

[
dπ

dR
(Xθ

t , yt)

]
dπ(Xθ

t , yt). (6)

By adopting the Markov property, the proposed Schrödinger bridge problem in (6) enables the
transformation of the fixed static bridge suggested in (12) into a temporally variational formulation.
In addition, the marginal measure P θ,∗

t of the bridge πθ is propagated over time by the parameterized
Fokker-Planck Equation (pFPE) because of the Markov property of Xθ

t . Consequently, the optimal
coupling in (6) can be interpreted as being similar to the dynamic Schrödinger bridge explored in a
recent study (4) for generative modeling. With the definition of the Schrödinger bridge in (6), our
objective function is defined as follows:

min
θ∈Θ

min
π∈Π(P θ,∗

t ,νt)
H(πθ|R) = min

θ∈Θ
H(π⋆

θ |R). (7)

The objective function in (7) first connects the model measure to the target measure by searching the
Schrödinger bridge π∗

θ (inner problem), and minimizes the relative entropy using the neural network
θ ∈ Θ according to π∗

θ (outer problem). Unlike the minimization problem suggested in (4), which

requires an accurate approximation of the Radon-Nikodym derivative dµθ
t

dνt
, the proposed objective

function adopts an alternative approach. It is reformulated to identify a feasible scheme for searching
for the Schrödinger bridge π∗

θ . In the following, we introduce a dual formulation of (7), called the
Markov diffusive Kantorovich dual to induce the bridge in a computationally tractable manner:
Definition 2. (Markov diffusive Kantorovich dual) Let γ2 be the squared Riemannian distance on
M. Then, we define the functional J : C(M)× C(M)× R+ × [0, T ]×Θ → R, as follows:

J ([A,B], ϵ, t, θ) =

∫
A(x)dP θ,∗

t (x) +

∫
B(y)dνt(y)

− ϵ

∫
eA(x)/ϵ+B(y)/ϵ−γ2(x,y)/2ϵd(P θ,∗

t ⊗ νt). (8)

In the following proposition, we relate the proposed dual functional to the regularized version of the
Schrödinger bridge problem in (6) in the following proposition:
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Proposition 2. (Log-Sinkhorn with Dual formulation) Let Hϵ be a regularized relative entropy3.
Then, the Schrödinger bridge problem in (7) has a dual formulation in the following equality:

min
θ∈Θ

min
π∈Π(P θ,∗

t ,νt)
Hϵ(πθ|R) = min

θ∈Θ
J ([A⋆, B⋆], ϵ, t, θ) := min

θ∈Θ
J ∗(ϵ, t, θ), (9)

where ϵ > 0 is a predetermined constant, [A⋆, B⋆] is the fixed points of log-Sinkhorn operator
S := Hϵ

µ ◦ Hϵ
ν , and each functional Hϵ

µ,Hϵ
ν : C(M) → C(M) is defined as follows:{

Hϵ
µ[A](y) = ϵ log

∫
M e−γ2(Xθ

t ,y)/ϵ−A(Xθ
t )/ϵdP θ,∗

t ,

Hϵ
ν [B](x) = ϵ log

∫
M e−γ2(x,yt)/ϵ−B(yt)/ϵνt.

(10)

Note that ϵ = 1 restores the original problem posed in (7). In (22; 13), they showed that the
evaluation of J ⋆ on the right-hand side of (9) is the entropic regularized 2-Wasserstein distance. This
indicates that the proposed objective function approximates the Wasserstein distance to minimize the
discrepancy between model and target measures given a small ϵ ≈ 0. The optimal solution to the
inner problem is obtained in Proposition 2 by combining the Markov diffusive Kantorovich duality
and log-Sinkhorn operator. Our next goal is to solve the outer problem by optimizing neural networks
(β,W ).
Gradient Descent Scheme. In the expectations of Definition 2, the Markov dual semi-group
P θ,∗
t plays a central role, explicitly revealing the neural networks β, and W in the equations by

reformulating the Kantorovich functional. To specify the discussion, we introduce the equivalent
formulation of the first term in (8):∫

A(Xθ
t )dP

θ,∗
t

(5)
=

∫
P θ
t A(X0)dµ0 = A(X0) +

∫ t

0

E
[
β(θ)∆MA(Xθ

s )−WθA(X
θ
s )
]
ds, (11)

where ∆M is the Laplace-Beltrami operator on M, and µ0 is the law for the initial state of the
RNSDE. Owing to the explicit relation above, the gradient of the first term in (11) can be expressed
by calculating the gradients of the neural networks, ∂θβ, ∂θW . Regarding this relation, we propose
the gradient flow-based update rule to minimize the dual formulation in (9) with neural networks in
the following proposition.
Proposition 3. The following gradient descent scheme {θ(m)}m∈N+ minimizes the dual functional
in the right-hand side of (9):

θm+1 = θm − κE
[ ∫ T∧τ

0

∂θβ(θm)gij∂ijA
∗(Xθm

s )ds

+

∫ T∧τ

0

∂θβ(θm)gjkΓi
jk∂iA

∗(Xθm
s )ds−

∫ T∧τ

0

∂θw
j(Xθm

s ; θm)∂jA
∗(Xθm

s )ds

]
, (12)

where κ is the learning rate, and τ ∝ c1 is the random stopping time that ensures the avoidance
of the gradient explosion induced by geometric effects. Then, there exist numerical constants
c0, c1, C0, C1 > 0, such that the convergence speed is bounded as O

[
n3(τ ∧ T )C(c0, c1, C0, C1)

]
.

Detailed discussions on the derivation and relation between (8) and (12) are provided in Appendix
C.5. Algorithm 1 summarizes the training procedure for the proposed RNSDE.

Role of Stopping Time τ . As shown in (12), the proposed gradient descent method requires the
evaluation of geometric terms to update the parameters of the RNSDE. In particular, the Riemannian
co-metric (i.e., gij(Xθ

t )) and Christoffel symbol (i.e.,Γi
jk(X

θ
t )) are required to be consecutively

calculated for the given stochastic trajectory Xθ
t . As addressed in (17), these geometric quantities are

not generally bounded. Thus they may cause the gradient explosion problem during the parameter
update of the RNSDE. Regarding the issue, the role of stopping time τ is to ensure safe training
by imposing a constraint on the gradient norm. These problems are not problematic in Euclidean
geometry (e.g., Euclidean SDE) because the geometric terms are set to constants (i.e., gij = 1,Γi

jk =

0). Thus, an additional module (e.g., τ ) is not required in the Euclidean SDE because the raised
problem is purely a geometric consequence depending on the non-flat Riemannian structure of
manifolds.

3Please refer to Appendix C.4 for detailed information.

5



Algorithm 1 Learning Representations on Manifolds with the proposed RNSDE
Require: Neural parameters θm=0 ∈ Θ, learning rate κ, time interval ∆t, stopping time threshold c1.

for m = 1 to M do
1) Simulate the proposed RNSDE by applying the Euler-Maruyama scheme in (14), {Xθm

to
}1≤o≤T/∆t .

for o = 1 to T/∆t do
1-1) Update the geometric terms according to the current state (t,Xθm

to
).

gij ←− gij(Xθm
to ),Γi

jk ←− Γi
jk(X

θm
to ), ∂to

j ←− ∂to
j (Xθm

to ) (13)

1-2) Sample the mean-zero standard Gaussian random variable Z ∼ N (0, In).
1-3) Propagate stochastic trajectories:

Xθm
to+1

= β(θm)
∑
j

√
gij∆tZj +

[
− β(θm)

2

∑
j,k

gjkΓi
jk +

∑
j

wj(Xθm
to ; θm)∂to

j

]
∆t (14)

end for
2) Search the fixed point [A⋆, B⋆] by applying the log-Sinkhorn iteration.
3) Sample random stopping-time τ = inf1≤to≤T/∆t{to; |g

ij |2 + |Γi
jk|2 < c0}.

4) Update the neural network θm+1 ←− θm by applying the proposed gradient descent in (12) with stopping
time τ , and the obtained fixed point A⋆.

end for

4 Comparison to Existing Methods
In conventional Riemannian continuous normalizing flows, model density pθ is transited according to
the following differential equation:

RCNF:
∂

∂t
log pθ(zt) = −divM[Vθ(zt, t)], (15)

where zt is the ODE flow on a manifold, and Vθ is the vector field parameterized by the neural
network. As shown in (15), the infinitesimal difference between log-densities is proportional to the
divergence of the learnable vector field Vθ, where the spatio-temporal latent information need to be
priorly encoded in the neural ODE (i.e., zt). While the probability transition rule in (15) is dependent
on the temporal derivative of the neural ODE (i.e., ∂tzt) by the chain rule, the differential equation
in (15) implicitly expresses the probability transition. In the proposed method, the parameterized
Fokker-Planck Equation (pFPE) obeys the transition rule of model density Xθ

t ∼ pθ:

pFPE:
∂

∂t
pθ(t, x) = β(θ)∆Mpθ(t, x)− divM[pθ(t, x)Vθ(t, x)], (16)

where Vθ(t, ·) :=W (t, ·; θ) is the neural potential field. Instead of borrowing additional dynamics
(i.e., ODE zt in RCNF) to express the probability transitions of density, the pFPE can explicitly
express the infinitesimal evolution of density p(t, x) with neural networks β and W for both spatio-
temporal variables (t, x) and the solution to the pFPE follows the law of path trajectory Xθ

t .

In (26), the FPE has been numerically simulated by linearization to approximate density pt. In contrast,
the proposed method can avoid the computational burden of simulating the pFPE, while considering
the dual measure µθ

t = pθ(t, x)dV ∼ Xθ
t as the law of Xθ

t using the property of the Markovian semi-
group to access the probability at time t. In the Lie-group valued generative flow model proposed
in (10), it showed that the specific form of vector field Vθ(t, ·) := ∇ log(pν(t, ·)/pθ(t, ·)) ∈ TM
can also induce the solution to the FPE. However, its representational power may be limited because
the network outputs (i.e., Neural ODE) are implicitly utilized to estimate the model density pθ. In
contrast, the neural networks in the proposed model are directly incorporated into the pFPE as a
vector field, which enables rich stochastic representations.

5 Related Work
MCNF (15) and RODE (18) defined the ordinary differential equation (ODE) on manifolds and
adopted continuous normalizing flows (i.e., RCNF) to express the transition of data representations.
In their methods, the stochastic transition was expressed as the ODE flow of log-density on manifolds
and directly calculated the geometric operations (e.g., divergence). In a similar context, (10) adopted
ODE-based diffeomorphic flows for the Lie structure (e.g., n-special unitary group SU(n)) that
preserves equivariance/invariance. EMSRE (23) proposed a new set of expressive normalizing flows
on complex geometries, such as torus and spheres. RCPM (6) directly parameterized the convex
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(a) MCNF (15) (b) RNSDE (ours)
Figure 4: Learned densities on 2-sphere S2. Green arrows indicate the north poles on the sphere (0, 0, 1) ∈ R3.

Figure 5: Learned densities on 2-Torus T2. The target shapes are helix coil where the number of coils was set to
NC = 4, 6 in the left and right figures.

potential map on Riemannian manifolds with a neural network, which can solve the optimal transport
problem. MF (24) introduced a computationally tractable linear-type normalizing equation to express
the evolution of density over time. In (7; 4), generative modelings was formulated by adopting the
Euclidean dynamic Schrödinger bridge and SDEs were estimated for applications.

6 Experiments

In this section, we compared the proposed RNSDE to baseline methods for various tasks, including
generative modeling, interpolation, and reconstruction. Although the proposed method can be applied
to general compact manifolds, we focused on well-known structures. In particular, the following
two model manifolds were considered: 2-sphere S2 and 2-torus T2 ∼= S1 × S1. The corresponding
Riemannian metrics and detailed information on geometric calculations are provided in Appendix D.

Generative Modeling. In this experiment, we evaluated the performance for density estimation
on model manifolds of geometric shapes: 8-shapes, two moons, spiral, and helix coil. Note that
the complexities of the target densities in our experiments are considerably higher than those in
previous studies (e.g., a mixture of von Mises). Every methods take the initial states of the stochastic
trajectories as the mean-zero standard Gaussian in the local coordinate, Xθ

0 ∼ µ0 := ψ#N (0, In),
where the coordinate function is denoted as ψ. The goal is then set to accurately restore the target
densities. To define the target densities for baseline models, including MCNF (15), RCPM (6),
and EMSRE (23), we utilized samples from target densities as anchor points of Gaussian kernels,
where the bandwidths were identically set to 10, as suggested in their methods. After obtaining
the approximated target densities from the Gaussian KDE, each baseline model was trained by
minimizing KL divergence. To train EMSRE, the number of transformation modules and radial
components were set to NT = 24 and K = 5, respectively. For RNODE, which is a deterministic
version of our RNSDE, we utilized only the potential field term in (2)-(A), where the diffusive term
was set to 0.

In Tables 1, 2, and 3, we estimated the 2-Wasserstein distance (i.e.,W2) between the empirical target
measure νt and the model measure µθ

t to evaluate the model performance. Table 1 summarizes
the performance comparisons of the density estimation tasks. Evidently, the proposed method
(RNSDE) outperforms all the baselines by approximately 0.1 ∼ 8.2% in all four experiments
(i)-(iv), despite incorporating no prior information on the target density. RNODE exhibits an
inferior performance compared to the proposed RNSDE, which empirically verifies the effectiveness
of stochastic representation (i.e., stochastic development) compared to a deterministic one. In
the case of arbitrary manifolds with no definite formulas for extrinsic geometric operations (e.g.,
global exponential map by vector projection from Rd), flow-based models (e.g., MCNF) cannot be
implemented in such a geometry because their methods require explicit computation of geometric
operations. Accordingly, MCNF is incapable of generating samples on the torus. Unlike their
methods, RNSDE only requires intrinsic and local geometric objects (e.g., Riemannian metric tensor,

7



Table 1: Performance comparison of density estimation on synthetic datasets. Each model was evaluated with
the 2-Wasserstein distanceW2 (×10−2). The best performance is rewritten in bold.

Manifold Density MCNF EMSRE Moser RCPM RNODE RNSDE

Sphere
(i) 8-shapes 11.26 9.83 5.81 9.40 8.01 5.67

(ii) Two moons 14.34 9.11 6.10 9.02 7.68 5.66
(iii) Spiral 15.15 10.13 7.56 9.25 9.32 6.97

Torus (iv) Helix coil − − − 7.64 3.18 2.86

Table 2: Shape interpolation

Methods (i) → (ii) (i) → (iii)
EMSRE 15.37 11.40
RCPM 9.32 9.24

RNODE 7.09 9.01

RNSDE 6.09 7.61

Table 3: Volcano dataset

Methods W2

EMSRE 5.70
RCPM 1.83

RNSDE 1.08

Table 4: Vessel Route dataset

Methods Eγ2 W2

Latent ODE 14.25 7.17
ODE RNN 16.37 7.29

RNSDE 12.83 6.23

Christoffel symbols, and geodesic) to define the stochastic representations; thus, the experimental
results can be easily followed.

Figs.4a and 4b show samples from the learned densities (i.e., black dots) and target densities (i.e.,
red dots) of the baseline and proposed method, respectively. In the figures, our RNSDE accurately
restored the complex target shapes, whereas the MCNF failed to capture the geometric patterns. The
samples from the learned densities on 2-Torus are shown in Fig.5, where the number of coils is set to
Nc = 4 and Nc = 6. As shown in the figure, the proposed method correctly approximates the target
shapes, regardless of the complexity. These qualitative results highlight the representational power of
the proposed RNSDEs for various geometries.

Figure 6: Result of shape interpolation starting from 8-shape to spiral on S2. The red (at t31) and black dots
represent target and model densities, respectively.

Shape Interpolation. In the second experiment, we conducted shape interpolation starting from (i)
8-shapes to (ii) two moons and (iii) spiral. The total interpolation time (T ) was set to 0.1, and 32
intermediate samples were taken in the sequence. Fig.6 shows sampled shapes with uniform temporal
intervals. Although the distributional constraint is only imposed at the end of the sequence (e.g.,
target), the intermediate samples exhibit smooth changes between increasing temporal states. This
example emphasizes the representability of the proposed RNSDE, showing the superiority of the
pFPE, which can express the entanglement of spatio-temporal variables. Table 2 shows the estimated
performance comparison on a scale of 10−2. As shown in the table, the proposed model outperformed
baselines by approximately 1.0 ∼ 9.3%, which is similar to the performance improvement in the
previous experiment. Generally, quantitative and qualitative results of density estimation tasks show
the versatility of various geometric spaces (i.e., sphere and torus) compared to the previous models.
In the following experiment, we evaluated the expressiveness of the proposed model on real-world
datasets, including volcano and vessel route.

Volcano Eruption. As the third application, we modeled the density of a volcano eruption dataset (19),
which has been explored in previous studies works (10; 17; 24). Table 3 shows the quantitative results
of the density estimation on the geographic dataset at a scale of 10−1. Owing to the dependency
on hyperparameters for approximating target densities (i.e., optimal bandwidth for KDE), baseline
methods produced relatively poor results in learning the target density, as shown in Table 3. On the
contrary, the proposed model precisely restored the intricate distribution of volcano datasets and
demonstrated the superiority of expressivity. Fig.7 highlights the samples from the learned (black)
and target densities (red) distributed around the Pacific Rim. In the figure, the proposed model
accurately captured the volcano eruptions that occurred on the “Ring of Fire”.
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Figure 7: Density estimation on the geographic volcano
dataset. Table 3 shows the numerical results.

Vessel Route. In the final experiment, we re-
constructed the vessel routes in the ocean, ex-
pressed as time sequences. We compared the
proposed method with neural ODE models for
time-series data, including Latent ODE (5) and
ODE-RNN (25). To implement the baseline
models in the Riemannian setting, we projected
the Euclidean vectors produced by their meth-
ods onto the 2-sphere using the stereographic
projection. Then, the baseline models were
trained to minimize the mean geodesic errors
(MGEs) (i.e.,Eγ2). Table 4 shows the com-
parison results for both MGEs and Wasserstein
distances. The results show that RNSDE out-
performs other latent models (e.g., Latent ODE
and ODE-RNN). Appendix E provides the cor-
responding figure depicting the sampled trajec-
tories of the trained RNSDE and thoroughly discusses the suggested metric.

7 Discussion
Conclusion. In this paper, we presented a principled approach for expressing stochastic representa-
tions on manifolds by suggesting a novel Riemannian neural SDE. To define diffusivity, we followed
the Eells-Elworthy-Malliavin interpretation, where the Brownian motion on manifolds is derived
from the stochastic trajectories on the orthogonal frame bundle. Theoretically, we combined the
Markov property with the static Schrödinger bridge problem and proposed a Markov diffusive dual
formulation. Then, the corresponding gradient descent scheme was proposed. Empirical results
for various tasks including generative modeling, interpolation, and reconstruction, showed that the
proposed method surpasses its counterpart.

Limitation and Future Work. In the implementation of the proposed RNSDE, we focused on
Euclidean embedded manifolds despite their extensive applicability to general compact manifolds.
Regarding this issue, we plan to extend our method to other geometries including the non-compact
Lie group (e.g., SU) for quantum physics (10; 3) and the product spheres for human motion data and
global weather data as high-level applications.
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