
A Similarity Statistics on Different Datasets

We conduct the similarity statistics introduced in §3.3 on the whole LMD dataset that we use, and
exhibit the results in Figure 6. We can observe that the periodical structure pattern, that a music bar
tends to be more similar to its previous 2 bars, and also to the previous 4-th bar or its multipliers in
most cases, is also satisfied on this set of music. Specifically, this rule holds on all of the instrument
tracks except the drum track. This makes sense because the percussive instruments usually play the
same rhythmic patterns over and over throughout a song.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(a) Melody track.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

5

10

15

20

25

Si
m

ila
rit

y
(%

)

(b) All tracks.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16
18
20

Si
m

ila
rit

y
(%

)

(c) Piano track.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

5

10

15

20

25

Si
m

ila
rit

y
(%

)

(d) Guitar track.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

12

14

Si
m

ila
rit

y
(%

)

(e) String track.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

5

10

15

20

25

Si
m

ila
rit

y
(%

)

(f) Bass track.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

10

20

30

40

50

60

70

Si
m

ila
rit

y
(%

)

(g) Drum track.

Figure 6: The similarity distribution of the LMD dataset we use.

14

To see the structure pattern of music of different genres, we conduct the same similarity statistics on
the Top-MAGD dataset 6, which annotates altogether 13 music genres to the songs. Figure 7 shows
that although different genres have their specific distributions, the general pattern is still applicable to
all of these genres.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(a) All genres.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(b) Pop/rock.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

5

10

15

20

Si
m

ila
rit

y
(%

)

(c) Electronic.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16
18

Si
m

ila
rit

y
(%

)

(d) Rap.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(e) Jazz.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(f) Latin.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(g) R&B.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(h) International.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(i) Country.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(j) Reggae.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(k) Blues.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(l) Vocal.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

12

Si
m

ila
rit

y
(%

)

(m) Folk.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

(n) New age.

Figure 7: The similarity distribution of the melody track of the different genres in TopMAGD.

To see whether the pattern still holds on other styles of music, we conduct the statistics on the
Symphony dataset [42] and exhibit the distribution in Figure 8. Since it is not easy to tell the melody
tracks for the symphony music, the reported result is calculated over all the tracks. Due to the
existence of some instruments that play more repetitions, e.g., drums, the differences among the
similarities over the intervals are not that significant, but it still presents the same tendency.

6http://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

15

http://www.ifs.tuwien.ac.at/mir/msd/TopMAGD.html

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

2

4

6

8

10

Si
m

ila
rit

y
(%

)

Figure 8: The similarity distribution of all tracks of the Symphony dataset.

B Details of Experiment Settings

B.1 Dataset Construction

We use the LMD dataset [40] in our experiments, and perform the following cleaning and processing
to ensure the data quality:

• Track Compression: We first compress various tracks into 6 tracks [10], namely square synthesizer,
piano, guitar, string, bass, and drum, with the square synthesizer playing the melody.

• Note Position and Duration Normalization: To ensure that the bar splitting is correct and the
duration of notes recorded in MIDI files conforms to the musically perfect duration (e.g., quarter
notes held for exact 1 beat, 8-th notes held for exact 0.5 beat), we use MuseScore7 to normalize the
note position and duration.

• Data Filtering: Since this dataset is crawled from the Internet and contains many samples of low
quality, we use a set of heuristic rules presented in Table 4 to filter them out and keep the samples
of good quality and reasonable lengths.

• Pitch Normalization: We normalize the pitches to transfer the tonality to “C major” or “A minor”.

Table 4: Our filtering rules.

Type Rule Purpose

Duplication Remove the duplicated samples that have the same duration and
the same numbers of bars, notes, distinct note positions, and
instruments.

To remove
the duplicated
samples.

Musical
features

Only keep the samples of time signature 4/4. To remove
musically
complicated
or erroneous
samples.

Only keep the samples that have at least 2 instruments and have
the square synthesizer (the melody track).
Only keep the samples whose tempo values (the performance
speed) are not less than 24 and not larger than 200.
Only keep the samples whose pitch values are not less than 21
(A0) and not larger than 108 (C8).
Only keep the samples with maximum note duration not longer
than 16 beats (4 bar).
Remove the samples that contain 4 or more empty bars, or the
pitch/duration values are the same for all the notes.

We then represent each MIDI file into a sequence of tokens using a REMI-like [21] method. The
bar lines are inferred automatically based on the time signature and the note onset positions. The
statistics of the number of tokens and the number of bars are shown in Figure 9. The average number

7https://musescore.org/

16

https://musescore.org/

1-
 2
04
8

 2
04
9-
 4
09
6

 4
09
7-
 6
14
4

 6
14
5-
 8
19
2

 8
19
3-
10
24
0

10
24
1-
12
28
8

12
28
9-
14
33
6

14
33
7-
16
38
4

16
38
5-
18
43
2

18
43
3-
20
48
0

20
48
1-
22
52
8

22
52
9-
24
57
6

24
57
7-
26
62
4

26
62
5-
28
67
2

28
67
3-
30
72
0

30
72
1-
32
76
8

32
76
9-
34
81
6

34
81
7-
36
86
4

36
86
5-
38
91
2

38
91
3-
40
96
0

40
96
1-
43
00
8

43
00
9-
45
05
6

45
05
7-
47
10
4

Number of tokens

0

2

4

6

8

10

Ra
tio

 (%
)

(a) Statistics of number of tokens.

 2
5-
 3
2

 3
3-
 4
0

 4
1-
 4
8

 4
9-
 5
6

 5
7-
 6
4

 6
5-
 7
2

 7
3-
 8
0

 8
1-
 8
8

 8
9-
 9
6

 9
7-
10
4

10
5-
11
2

11
3-
12
0

12
1-
12
8

12
9-
13
6

13
7-
14
4

14
5-
15
2

15
3-
16
0

16
1-
16
8

16
9-
17
6

17
7-
18
4

18
5-
19
2

19
3-
20
0

20
1-
20
8

20
9-
21
6

21
7-
22
4

22
5-
23
2

23
3-
24
0

24
1-
24
8

24
9-
25
6

Number of bars

0

2

4

6

8

10

Ra
tio

 (%
)

(b) Statistics of number of bars.

Figure 9: Length statistics. The vertical axes represent the ratios of those samples that are in the
corresponding ranges.

of tokens is 15,042, the average number of bars is 95, and the average number of tokens per bar
is 158. Most samples are longer than 10,000 tokens, making it essential to design Museformer for
efficiently modeling the long music sequences.

B.2 Implementation Details

Museformer is equipped with a dynamic sparse attention mechanism, which requires constructing
distinct attention layouts for each sample according to the token ranges of bars. Since the dynamic
sparse attention layout is not regular as sliding windows [14, 25] or fixed-length blocks [24], it
is very challenging to leverage the GPU parallel computation techniques to speed up training and
decrease the memory consumption. Note that we cannot pad each bar into a fixed-length sequence
because the lengths of bars vary drastically, and it would introduce a lot of padding tokens that lead
to unacceptable sequence lengths. To achieve an efficient implementation, we utilize a blocksparse
method that splits the attention layouts into fixed-size square blocks, and only computes those blocks
where there is at least one query-key/value pair that expects computation. In our implementation, all
the summary tokens of the input bars are put before the music tokens to facilitate the computation,
and thus the summarization step and the aggregation step in FC-Attention can be transferred into
computing summary-to-all (summary tokens attending to summary tokens and music tokens) and
music-to-all (music tokens attending to summary tokens and music tokens) attention, respectively, and
their attention layouts are shown in Figure 10. We take the following 3 steps to compute each of the
two attention processes: 1) attention layout generation to generate the full attention layout according
to the bar ranges; 2) layout block-sparsification to transfer the full layout into a blocksprase layout; 3)
blocksparse computation to compute the blocksparse multiplications and softmax operations.

Attention Layout Generation According to the bar splitting of each sample, we fill “true” on the
corresponding areas of a Boolean tensor to construct the attention layout (shown on the left part of
Figure 10). To speed up the construction, we collect the begin and end indices of the bars ahead of
time and write a CUDA kernel to fill it for all the bars simultaneously.

Layout Block-Sparsification As visualized in Figure 10, the full attention layouts are block-
sparsified with a fixed-size square (the block size set to 32 in our experiments), and diminished into
the blocksparse layouts.

Blocksparse Computation We leverage SparTA [41] to compute the blocksparse multiplications
and softmax operations of attention. It only computes for the shaded areas on the blocksparse layouts
in Figure 10.

Since the attention layouts are the same for all the layers and heads in our setting, we only construct
the attention layouts once for each sample, and cache them as well as the SparTA kernels for reuse,
which saves a lot of memory and time.

17

𝑠1 𝑠2 𝑠3 𝑥1,1 𝑥1,2 𝑥1,3 𝑥2,1 𝑥2,2 𝑥3,1 𝑥3,2

Figure 10: Visualization of the blocksparse implementation. The full attention layouts are on the
left, which are exactly the same layouts shown in Figure 2b except that the summary tokens are put
before the music tokens to facilitate our implementation. If the block size is 2, the corresponding
blocksparse layouts are shown on the right. Note that it is only a toy example, and in real cases, the
sequences are much longer, and the sparsity of the layouts is much larger than what is depicted here.

B.3 Detailed Model and Training Configurations

For Museformer and all the compared models, the basic model and training configurations introduced
in §4.1 are set the same. For Museformer involves two separate attention processes (summarization
and aggregation), to make the parameter size comparable with other models, the projection matrices
for projecting the targets (i.e., queries) are shared for the two attention processes, and we add different
biases for summary tokens and music tokens respectively. It is the same for projecting the sources (i.e.,
keys and values), except that we use different projection parameters for S̃N(i) in Equation (3). All the
models have a comparable amount of trainable parameters: Museformer 16.1M, Music Transformer
16.6M, Transformer-XL 13.9M, Longformer 15.3M, Linear Transformer 13.2M, with acceptable
differences due to different architectures and implementations.

All the models are trained on 4 Nvidia V100 32GB GPUs with fp16. Since in Museformer, a token
directly attends to the tokens of 8 previous bars (the selected structure-related bars) and the current
bar via the fine-grained attention, for a fair comparison, we set the window sizes for Longformer
to 1,408, which is approximately the number of tokens that 9 bars contain. For Music Transformer
that uses full attention and cannot process long sequences at once, we chunk the input sequence into
blocks of fixed size 1,408, and manipulate the batch size and the update frequency to ensure that it is
updated the comparable number of times within each epoch as other models. For Transformer-XL,
the chunk size and the memory size are also set to 1,408. During inference, all the models are applied
to generate sequences not shorter than 2,048 and not longer than 20,480, until the end-of-sentence
token is generated. The top-k sampling is used, and k is set to 8.

C Similarity Distributions of Generated Music

Compared to other models (the compared models and the ablation settings), the music generated by
Museformer has the similarity distribution most similar to that of the training data, as its SE reported
in Table 1 is the smallest. However, the value of SE may not comprehensively represent the structural
characteristics, so we further display and discuss about the specific distributions in this section.

Figure 11 shows the similarity distributions. We can observe that: 1) The distribution of Museformer
is very similar to that of the training data (shown in Figure 3). The quantity is close, and the contour
shows the same periodical pattern, i.e., the previous 2 bars, the previous 4-th bar as well as its
multipliers, have relatively large similarities. 2) The distributions of Music Transformer and Linear
Transformer show no periodical pattern. It implies that the Music Transformer model trained on short
sequences cannot generate well-structured music of long lengths, and Linear Transformer cannot well

18

capture the structure-related correlations even though its receptive field covers the whole sequence.
3) The distributions of Transformer-XL and Longformer show the tendency of the periodical pattern,
and the similarity decreases as the interval increases in general. It indicates that the two models whose
receptive fields only contain the most recent content have the ability to generate periodical repetitions
of short distances but fall short for long-term structures. 4) It seems that compared to the quantity of
the similarity, the contour (i.e., the periodical pattern) is more relevant to the human scoring on the
structure-related metrics. The distributions of Transformer-XL and Longformer show the pattern, and
their subjective scores on short-term and long-term structures (shown in Table 2) are relatively high,
and are higher than Music Transformer and Linear Transformer whose distributions fail to show the
periodical pattern. However, the quantity of the similarity may also influence human decisions. For
example, the quantities of the similarities of Transformer-XL are relatively high, which indicates
that too many repetitions are generated. For these samples, human scorers sometimes think them
annoying and eventually give lower scores on musicality. 5) The ablation setting, Museformer w/o
coarse-grained, has slightly larger SE compared to Museformer, and its distribution clearly shows the
periodical pattern. Thus, the coarse-grained attention does not contribute a lot to the music structures.
The distribution of Museformer w/o bar selection shows the tendency of the periodical pattern, and
the similarity decreases in general as the interval increases, similar to those of Transformer-XL and
Longformer. It indicates that the structure-related bars are contributory to generating music with both
short-term and long-term structures.

19

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16

Si
m

ila
rit

y
(%

)

(a) Museformer.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16

Si
m

ila
rit

y
(%

)

(b) Music Transformer.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

10

20

30

40

Si
m

ila
rit

y
(%

)

(c) Transformer-XL.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16
18
20

Si
m

ila
rit

y
(%

)

(d) Longformer.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16

Si
m

ila
rit

y
(%

)

(e) Linear Transformer.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0
2
4
6
8

10
12
14
16

Si
m

ila
rit

y
(%

)

(f) Museformer w/o coarse-grained.

0 4 8 12 16 20 24 28 32 36 40
Interval (bar)

0

5

10

15

20

Si
m

ila
rit

y
(%

)

(g) Museformer w/o bar selection.

Figure 11: The similarity distribution of the melody track of the music generated by different models.

20

