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Abstract
The performance of trained neural networks is robust to harsh levels of pruning.
Coupled with the ever-growing size of deep learning models, this observation has
motivated extensive research on learning sparse models. In this work, we focus
on the task of controlling the level of sparsity when performing sparse learning.
Existing methods based on sparsity-inducing penalties involve expensive trial-and-
error tuning of the penalty factor, thus lacking direct control of the resulting model
sparsity. In response, we adopt a constrained formulation: using the gate mech-
anism proposed by Louizos et al. [31], we formulate a constrained optimization
problem where sparsification is guided by the training objective and the desired
sparsity target in an end-to-end fashion. Experiments on CIFAR-{10, 100}, Tiny-
ImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate
the effectiveness of our proposal and demonstrate that we can reliably achieve
pre-determined sparsity targets without compromising on predictive performance.

1 Introduction

Commonly used neural networks result in overparametrized models, whose performance is robust to
harsh levels of parameter pruning [18, 42, 12, 14]. Thus, regularization techniques aimed at learning
sparse models can drastically reduce the computational cost associated with the learnt model by
removing unnecessary parameters, and retain good performance in the learning task. Given the
recent research trends which explore the capabilities of ever more ambitious large-scale models
[2], developing techniques which provide reliable training of sparsified models becomes crucial for
deploying them in massively-used systems, or on resource-constrained devices.

Pruning methods aim to reduce the storage and/or computational footprint of a model by discarding
individual parameters [18, 34] or groups thereof [29, 27, 37], while inducing minimal distortion in the
model’s predictions. These methods can be further categorized based on whether the sparse model is
obtained while or after training the model (also known as in-training and post-training sparsification).

Traditional post-training methods rely on heuristic rankings of the weights or filters to be pruned,
often based on parameter magnitudes [26, 18]. Despite their simplicity, these methods usually
require retraining the weights to maintain high accuracy after pruning, and thus incur in additional
computational overhead. On the other hand, in-training methods which learn a good sparsity pattern
by augmenting the training loss with sparsity-inducing penalties [31, 27] do not perform fine-tuning,
but face challenges regarding the tuning and interpretability of the penalty hyperparameter.

In this work†, we focus on the task of learning models with controlled levels of sparsity while
performing in-training pruning. We tackle two central issues of the popular penalized method of
Louizos et al. [31]: 1⃝ tuning the L0-penalty coefficient to achieve a desired sparsity level is non
trivial and can involve computationally wasteful trial-and-error attempts; 2⃝ in the worst case the
penalized method can outright fail at producing any sparsity, as documented by Gale et al. [14].

∗Correspondence to: {gallegoj, juan.ramirez, akram.erraqabi}@mila.quebec
†Our code is available at: https://github.com/gallego-posada/constrained_sparsity
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Figure 1: Training sparse ResNet18 models on TinyImageNet [28]. Density denotes the proportion
of active gates in the model. The penalty-based method (red) shows a stagnating-then-overshooting
behavior, making it difficult to tune. In contrast, our proposed constrained approach (blue) reliably
achieves the desired target L0-densities. The diagonal denotes the ideal case in which the achieved
density exactly matches the target density used in the constrained setting. Parameters and MACs
are computed for the corresponding test-time purged networks following the procedure described in
Appendix D; the L0-density (see Eq. (3)) is computed for the train-time model.

To address these limitations, we propose a constrained optimization approach in which arbitrary
sparsity targets are expressed as constraints on the L0-norm of the parameters. Formally, we
consider constraints of the type ∥θg∥0 ≤ K, where θg represents a group g of parameters of the
network (e.g. individual layers, or the whole model), and resort to well established gradient-based
methods for optimizing the Lagrangian associated with the constrained optimization problem.

Adopting this constrained formulation provides several advantages:
• Unlike the multiplicative factor λ of a penalty term, the constraint level ϵg has straight-

forward and interpretable semantics associated with the density of a block of parameters
θg , i.e. the percentage of active parameters.

• Requiring different density levels for different parameter groups (e.g. lower density for
network modules with a larger computational or memory footprint), simply amounts to
specifying several constraints with levels matching these desired densities, thus avoiding
the costly process of trial-and-error tuning‡ and re-balancing various penalty factors.

• Much like the penalized approach in which additional regularizers can be “stacked” as other
additive terms in the objective, new desired properties can be expressed in the constrained
formulation in a modular and extensible fashion as additional constraints.

• In non-convex problems, the constrained formulation can be strictly more powerful than
the penalized approach: there may be constraint levels that cannot be achieved by any value
of the penalty coefficient [1, §4.7.4].

The left column of Fig. 1 illustrates the interpretability and controllability advantages of the con-
strained approach when training a sparse ResNet18 model on TinyImageNet. We vary the constraint
level (left axis) and the penalty coefficient (right axis) and compare the achieved parameter density at
the end of training. Note how the penalized approach results in an very dense model (> 80%) across
several orders of magnitude of the penalty factor, and then suddenly drops to < 40% density. This
behavior is in stark contrast with our proposed constrained approach, which consistently achieves the
desired target density, across a wide range of values. See Section 5 for further discussion.

The purpose of our paper is to illustrate the feasibility and advantages of using constrained formula-
tions in the study of sparse learning. We favor Lagrangian, gradient-based methods for tackling the
constrained optimization problem due to their ease of use and scalability in the context of machine
learning models. Exploring alternative constrained optimization techniques is an interesting direction
for future studies, but lies beyond the scope of our work.

‡Appendix E shows that the tuning challenges of penalized methods exist even for simple MLP tasks.
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The main contributions of this work are:
• Building on the work of Louizos et al. [31], we propose a constrained approach for learning

models with controllable levels of sparsity (Section 3).
• We introduce a dual restart heuristic to avoid the excessive regularization caused by the

accumulation of constraint violations in gradient-based Lagrangian optimization (Section 3).
• Previous studies [31, 14] have been unsuccessful at training sparse ResNets [45] based on
L0 regularization without significantly damaging performance. We propose two simple
adjustments to the implementation of Louizos et al. [31], allowing us to overcome these
challenges (Appendix H).

• We provide empirical evidence that we can reliably achieve controllable sparsity across
many different architectures and datasets. Moreover, the controlability and interpretability
benefits of the constrained approach do not come at the expense of achieving competitive
predictive performance (Section 5).

2 Sparsity via L0 Penalties

Louizos et al. [31] propose a framework for learning sparse models using the L0-“norm” of the model
parameters as an additive penalty to the usual training objective. The L0-norm counts the number of
non-zero entries in the parameter vector, and ignores the magnitude of said entries. Consider h(x; θ)
be a predictor with parameters θ and a supervised learning problem defined by a dataset of N i.i.d.
pairs D = {(xi, yi)}Ni=1, a loss function ℓ and a regularization coefficient λpen ≥ 0. Louizos et al.
[31] formulate the L0-regularized empirical risk objective:

R(θ, λpen) = LD(θ) + λpen∥θ∥0 =
1

N

(
N∑
i=1

ℓ (h(xi; θ), yi)

)
+ λpen

|θ|∑
j=1

1{θj ̸= 0} (1)

The non-differentiability of the L0-norm makes it poorly suited for gradient-based optimization. The
authors propose a reparametrization θ = θ̃ ⊙ z, where θ̃ are free (signed) parameter magnitudes, and
z are independent stochastic gates indicating whether a parameter is active§. The authors model the
gates using a modified version of the concrete distribution [32, 22], with parameters denoted by ϕ.

This reparametrization allows for gradient-based optimization procedures, while retaining the possi-
bility of achieving exact zeros in the parameters values. We provide a brief overview of the properties
of the concrete distribution in Appendix A.

Moreover, this stochastic reparametrization induces a distribution over the network parameters θ. In
consequence, the authors propose to re-define the training objective as the expectation (under the
distribution of the gates) of the L0-regularized empirical risk in Eq. (1):

R(θ̃,ϕ, λpen) ≜ Ez | ϕ

[
R(θ̃ ⊙ z, λpen)

]
= Ez | ϕ

[
LD(θ̃ ⊙ z)

]
+ λpenEz | ϕ [∥z∥0] (2)

Test-time model. Since the stochastic reparametrization induces a distribution over models, Louizos
et al. [31] propose a protocol to choose a sparse network at test time. We employ a slightly modified
version of their strategy, based on the medians of the gates (see Appendix A.1).

Parameter grouping. Rather than considering a gate for each individual parameter (which would
double the number of trainable parameters), several parameters may be gathered under a shared gate.
We match the setup of Louizos et al. [31] who focus on neuron sparsity: using 1⃝ one gate per input
neuron for fully connected layers; and 2⃝ one gate per output feature map for convolutional layers.
This use of structured sparsity results in practical storage and computation improvements since entire
parameter groups (e.g. slice of convolution kernels/activation) can be discarded.

Combining other norms. Louizos et al. [31] show that their reparametrization can used in con-
junction with other commonly used norms for regularization, such as the L2-norm. One can express
Ez|ϕ

[
∥θ̂∥22

]
=
∑|θ|

j=1 P[zj ̸= 0] θ̃2j , where θ̂ is a gate-rescaled version of θ in order to “avoid extra
shrinkage for the gates”. Further discussion on the challenges of combining weight-decay and their
proposed reparametrization can be found in Appendices H and I.

§Note that the L0-norm of θ is determined by that of z. This is because for commonly used weight
initialization and optimization schemes, θ̃ ̸= 0 almost surely.
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3 Sparsity via L0 Constraints

We favor formulating regularization goals as constraints, rather than as additive penalties with fixed
scaling factors. We refer to these two approaches as constrained and penalized, respectively. Although
a ubiquitous tool in machine learning, penalized formulations may come at the cost of hyper-parameter
interpretability and are susceptible to intricate dynamics when incorporating multiple, potentially
conflicting, sources of regularization.

3.1 Constrained Formulation

In contrast to the penalized objective of Louizos et al. [31] presented in Eq. (2), we propose to
incorporate sparsity through constraints on the L0-norm. We formulate an optimization problem that
aims to minimize the model’s expected empirical risk, subject to constraints on the expected L0-norm
of pre-determined parameter groups:

min
θ̃,ϕ

fobj(θ̃,ϕ) ≜ Ez|ϕ

[
LD(θ̃ ⊙ z)

]
s.t. gconst(ϕg) ≜

L0−density︷ ︸︸ ︷
Ezg|ϕg

[∥zg∥0]
#(θ̃g)

≤ ϵg for g ∈ [1 : G], (3)

where g denotes a subset of gates, #(x) counts the total number of entries in x, and xg denotes the
entries of a vector x associated with the group g. See Appendix B for details on parameter grouping.

Note how the #(θ̃g) factor in the constraint levels allows us to interpret ϵg as the maximum
proportion of gates that are allowed to be active within group g, in expectation. We refer to ϵg as
the target density of group g. Lowering the target density demands a sparser model and thus a (not
necessarily strictly) more challenging optimization problem in terms of the best feasible empirical
risk. Moreover, for any choice of ϵg ≥ 0, the feasible set in Eq. (3) is always non-empty; while values
of ϵg ≥ 1 result in vacuous constraints.

We highlight one important difference between the constrained and penalized formulations. The
penalized approach is jointly optimizing the training loss fobj(θ̃,ϕ) and the expected L0-norm
gconst(ϕ), due to their additive combination (mediated by λpen). Meanwhile, the constrained method
focuses on obtaining the best possible model within a prescribed density level ϵ: given two feasible
solutions, the constrained formulation in Eq. (3) only discriminates based on the training loss. In
other words, we aim to satisfy the constraints, not to optimize them.

3.2 Solving the Constrained Optimization Problem

We start by considering the (nonconvex-concave) Lagrangian associated with the constrained formu-
lation in Eq. (3), along with the corresponding min-max game:

θ̃∗,ϕ∗,λ∗
co ≜ argmin

θ̃,ϕ

argmax
λco≥0

L(θ̃,ϕ,λco) ≜ fobj(θ̃,ϕ) +

G∑
g=1

λgco (gconst(ϕg)− ϵg) , (4)

where λco = [λgco]Gg=1 are the (non-negative) Lagrange multipliers associated with each constraint.

A commonly used approach to optimize this Lagrangian is simultaneous gradient descent on (θ̃,ϕ)
and projected (to R+) gradient ascent on λco [30]:

[θ̃t+1,ϕt+1] ≜ [θ̃t,ϕt] − ηprimal ∇[θ̃,ϕ]L(θ̃
t,ϕt,λt

co)

λ̂t+1 ≜ λt
co + ηdual ∇λcoL(θ̃

t,ϕt,λt
co) = λt

co + ηdual
[
gconst(ϕ

t
g)− ϵg

]G
g=1

(5)

λt+1
co ≜ max

(
0, λ̂t+1

)
The gradient update for λco matches the value of the violation of each constraint. When a constraint is
satisfied, the gradient for its corresponding Lagrange multiplier is non-positive, leading to a reduction
in the value of the multiplier.

Negligible computational overhead. Just as the penalized formulation of Louizos et al. [31], the
update for θ̃ and ϕ requires the gradient of the training loss and that of the expected L0-norm. Hence,
the cost of executing this update scheme is the same as the cost of a gradient descent update on the
penalized formulation in Eq. (1), up to the negligible cost of updating the multipliers.
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Choice of optimizers. We present simple gradient descent-ascent (GDA) updates in Eq. (5). However,
our proposed framework is compatible with different choices for the primal and dual optimizers,
including stochastic methods. Throughout our experiments, we opt for primal (model) optimizers
which match standard choices for the different architectures. A choice of gradient ascent for the dual
optimizer provided consistently robust optimization dynamics across all tasks. Detailed experimental
configurations are provided in Appendix J. The evaluation and design of other optimizers, especially
those for updating the Lagrange multipliers, is an interesting direction for future research.

Oscillations. The non-convexity of the optimization problem in Eq. (4) implies that a saddle point
(pure strategy Nash Equilibrium) might not exist. In general, this can lead to oscillations and unstable
optimization dynamics. Appendix F provides pointers to more sophisticated constrained optimization
algorithms which achieve better convergence guarantees on nonconvex-concave problems than GDA.
Fortunately, throughout our experiments we observed oscillatory behavior that quickly settled around
feasible solutions. Empirical evidence of this claim is presented in Section 5.4.

Extensibility. Our proposed constrained formulation is “modular” in the sense that it is easy to
induced other properties in the model’s behavior beside sparsity (e.g. fairness [20, 5]) by prescribing
them as additional constraints; much like extra additive terms in the penalized formulation. However,
the improved interpretability and control afforded by the constrained approach removes the need to
perform extensive tuning of the hyper-parameters to balance these potentially competing demands.

3.3 Dual Restarts

A drawback of gradient-based updates for optimizing the Lagrangian in Eq. (4) is that the constraint
violations accumulate in the value of the Lagrange multipliers throughout the optimization, and
continue to affect the optimization dynamics, even after a constraint has been satisfied. This results
in an excessive regularization effect, which forces the primal parameters towards the interior of the
feasible set. This behavior can be detrimental if we are concerned about minimizing the objective
function and satisfying (but not minimizing!) the constraints.

To address this, we propose a dual restart scheme in which the Lagrange multiplier λgco associated
with a constraint gconst(ϕg) ≤ ϵg is set to 0 whenever the constraint is satisfied; rather than waiting
for the “negative” gradient updates (gconst(ϕg)− ϵg < 0 when feasible) to reduce its value. Formally,[

λt+1
co

]
g
≜

{
max

(
0, [λt

co]g + ηdual
(
gconst(ϕ

t
g)− ϵg

))
, if gconst(ϕ

t
g) > ϵg

0, otherwise
(6)

Dual restarts remove the contribution of the expected L0-norm to the Lagrangian for groups g whose
constraints are satisfied, so that the optimization may focus on improving the predictive performance
of the model. In fact, this dual restart strategy can be theoretically characterized as a best response (in
the game-theoretic sense) by the dual player. The effect of dual restarts in the optimization dynamics
is illustrated in Section 5.3 and Appendix G.

4 Related Work

Min-max optimization. Commonly used methods for solving constrained convex optimization
problems [1, 11, 21] make assumptions on the properties of the objective function, constraints or
feasible set. In this work, we focus on applications involving neural networks, leading to the violation
of such assumptions. We rely on a GDA-like updates for optimizing the associated Lagrangian.
However, our proposed formulation can be readily integrated with more sophisticated/theoretically
supported algorithms for constrained optimization of non-convex-concave objectives, such as the
extragradient method [24]. Further discussion on guarantees and alternative algorithms for min-max
optimization is provided in Appendix F.

Model sparsity. Learning sparse models is a rich research area in machine learning. There exist
many different approaches for obtaining sparse models. Magnitude-based methods [41, 18] perform
one or more rounds of pruning, by removing the parameters with the lowest magnitudes. Popular
non-magnitude based techniques include [26, 17, 34]. Structured pruning methods [6, 37, 31, 29],
remove entire neurons/channels rather than individual parameters. More recently, the Lottery Ticket
Hypothesis [12] has sparked interest in techniques that provide the storage and computation benefits
of sparse models directly during training [35, 8]. However, finding “good” sparse sub-networks at
initialization remains a central challenge for these techniques [13, 33].
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Controllable sparsity. Magnitude pruning [18, 29] can achieve arbitrary levels of sparsity “by design”
since it removes exactly the proportion of parameters with lowest magnitudes in order to match
the desired density. However, the magnitude pruning method experiences certain shortcomings: 1⃝
retaining performance usually involves several round of fine-tuning¶; 2⃝ it relies on the assumption
that magnitude (of filters or activations) is a reasonable surrogate for parameter importance; and 3⃝ it
lacks the “extensibility” property of our constrained formulation: it is not immediately evident how
to induce other desired properties in the model, besides sparsity.

Note that several extensions of the basic magnitude pruning method have been proposed. Zhu and
Gupta [47] start from a partially or fully pre-trained model and consider a sparsification scheme in
which the network density is gradually reduced, while fine-tuning the model to compensate for any
potential loss in performance due to pruning. Wang et al. [44] start by identifying the parameters to
be removed by applying magnitude pruning on a pre-trained model. However, rather than pruning
the model immediately, the authors propose to fine-tune the model with an adaptive L2-penalty. The
weight of this penalty is increased over time for the previously identified parameters, leading their
magnitudes to decrease during the fine-tuning process.

Sparsity via constrained optimization. Previous works have cast the task of learning sparse models
as the solution of a constrained optimization problem. Carreira-Perpinan and Idelbayev [3] consider
a reformulation of the constrained optimization problem using “auxiliary variables”, and assume that
the constraints enjoy an efficient proximal operator. Their empirical evaluation is limited to low-scale
models and datasets.

Zhou et al. [46] adopt a constrained formulation similar to ours, although based on a different
reparametrization of the gates. The authors tackle the constrained problem via projected gradient
descent by cleverly exploiting the existence of an efficient projection of the gate parameters onto
their feasible set. However, the applicability of their method is limited to constraints with an
efficiently-computable projection operator.

Lemaire et al. [27] consider “budget-aware regularization” and tackle the constrained problem using
a barrier method. Although originally inspired by a constrained approach, their resulting training
objective corresponds to a penalized method with a penalty factor that requires tuning, in addition to
the choice of barrier function.

Other constrained formulations in ML. Constrained formulations can be used to prescribe desired
behaviors or properties in machine learning models. Nandwani et al. [36] study the problem of
training deep models under constraints on the network’s predicted labels, and approach the constrained
problem in practice through a min-max Lagrangian formulation. Incorporating these constraints
during training allows them to inject domain-specific knowledge into their models across several
tasks in natural language processing.

Fioretto et al. [10] consider a wide range of applications spanning from optimal power flow in energy
grids, to the training of fair classification models. Their work demonstrates how Lagrangian-based
methods can be complementary to deep learning by effectively enforcing complex physical and
engineering constraints.

Cotter et al. [5] train models under constraints on the prediction rates of the model over different
datasets. Note that the sparsity constraints we study in this paper depends only on properties of the
parameters and not on the predictions of the model. We would like to highlight that the notion of
proxy constraints introduced by Cotter et al. [5] can enable training models based on constraints on
their actual test time density, rather than the surrogate expected L0-norm metric.

5 Experiments
The main goal of our work is to train models that attain good predictive performance, while having a
fine-grained command on the sparsity of the resulting model. In this section we present a comparison
with the work of Louizos et al. [31]||; we explore the stability and controllability properties of our
Lagrangian-based constrained approach, along with the effect of our proposed dual restarts heuristic.
Finally, we present empirical evidence which demonstrates that our method successfully retains its
interpretability and controllability advantages when applied to large-scale models and datasets.

¶This re-training overhead makes magnitude pruning less appealing compared with in-training alternatives,
since magnitude pruning is typically performed given an already fully trained model.

||See a comparison to other sparsity methods therein, along with the survey of Gale et al. [14].
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5.1 Experimental Setup

Experiment configuration and hyperparameters. Details on our implementation, hyperparameter
choices and information on the network architectures can be found in Appendices A, B, C, D and J.

Model- and layer-wise settings. We present experiments using two kinds of constraints: one global
constraint on the proportion of active gates throughout the entire model; or several local constraints
prescribing a maximum density at each layer. Note that for models such as ResNet50, the layer-wise
setting involves handling 48 constraints. The experiments below demonstrate that our constrained
approach can gracefully handle from a single constraint up to dozens of constraints in a unified
way and still achieve controllable sparsity for each of the layers/model. This level of control is an
intractable goal for penalized methods: as demonstrated in Appendix E, even trying to tame one
constraint via a penalty factor can be prohibitively expensive.

L0-regularization for residual models. ResNets have been a challenging setting for L0-penalty
based methods. Gale et al. [14] trained WideResNets [45] and ResNet50 [19] using the penalized
L0-regularization framework of Louizos et al. [31], and reported being unable to produce sparse
ResNets without significantly degrading performance.

We propose two simple adjustments that enable us to successfully train WRNs and ResNets with
controllable sparsity, while retaining competitive performance: 1⃝ increasing the learning rate of
the stochastic gates; and 2⃝ removing the gradient contribution of the weight decay penalty towards
the gates. Appendices H and I provide detailed analysis and empirical validation of these two
modifications. We integrate these adjustments in all experiments involving residual models below.

Obtaining test-time models. Appendix D describes our procedure to transform a model with
stochastic gates into a deterministic, test-time model. The measurements of retained parameters and
MACs (multiply-accumulate operations) percentages reported in the tables and figures below, are
computed for the deterministic, purged, test-time models.

5.2 Proof of Concept Experiments on MNIST

We begin by comparing the behavior of our method with that of Louizos et al. [31] in the simple
setting of training MLP and LeNet5 architectures on the MNIST dataset. The authors report the
size of their pruned architectures found using the penalized formulation. In this section we aim to
showcase the controllability advantages of our constrained approach. We manually computed the
corresponding model-wise or layer-wise density levels achieved by the reported architectures of
Louizos et al. [31] and used these values as the target density levels for our constrained formulation.

Table 1: Achieved density levels and performance for sparse MLP and LeNet5 models trained
on MNIST for 200 epochs. Metrics aggregated over 5 runs. †Results by Louizos et al. [31] with N
representing the training set size (see Appendix C).

Architecture Grouping Method Hyper-parameters
Pruned Val. Error (%)

architecture best at 200 epochs
(avg ± 95% CI)

Model Pen. †λpen = 0.1/N 219-214-100 1.4 –
MLP Const. ϵ = 33% 198-233-100 1.36 1.77 ± 0.08

784-300-100 Layer Pen. †λpen = [0.1, 0.1, 0.1]/N 266-88-33 1.8 –
Const. ϵ = [30%, 30%, 30%] 243-89-29 1.58 2.19 ± 0.12

Model Pen. †λpen = 0.1/N 20-25-45-462 0.9 –
LeNet5 Const. ϵ = 10% 20-21-34-407 0.56 1.01 ± 0.05

20-50-800-500 Layer Pen. †λpen = [10, 0.5, 0.1, 0.1]/N 9-18-65-25 1.0 –
Const. ϵ = [50%, 30%, 70%, 10%] 10-14-224-29 0.7 0.91 ± 0.05

Table 1 displays the results of our constrained method and the reported metrics for the penalized
approach. Note that, as desired, the pruned models obtained using the constrained formulation
resemble closely the “target architecture sizes” reported by Louizos et al. [31]. Moreover, our method
does not cause any loss in performance with respect to the penalized approach. This final observation
will be confirmed for larger-scale tasks in later sections.

Note that the goal of this section is to demonstrate that our constrained approach can achieve
arbitrary sparsity targets “in one shot” (i.e. without trial-and-error tuning) and without inducing any
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compromise in the predictive performance of the resulting models. Comprehensive experiments for
MLP and LeNet5 models on MNIST across a wide range of sparsity levels for model- and layer-wise
constraints are presented in Appendix K.1.

5.3 Training Dynamics and Dual Restarts

We now discuss the effect of the dual restarts scheme introduced in Section 3.3 on the training
dynamics of our constrained formulation. Fig. 2 illustrates the training of a convolutional network on
MNIST under a 30% model-wise density constraint when using (blue) or not (orange) dual restarts.
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Figure 2: Effect of dual restarts for training a LeNet5 on MNIST with a model-wise target density
ϵg = 30% (horizontal dashed line). The accumulation of the constraint violations in the Lagrange
multiplier leads to excessive sparsification when the model satisfies the constraint. Restarting the
Lagrange multiplier allows the model to concentrate on improving the training loss.

We initialize the Lagrange multipliers to zero. Therefore, at the beginning of optimization there is
no contribution from the L0-norm in the Lagrangian (see Eq. (4)), and the optimization focuses on
improving the training loss. As the optimization progresses, the constraint violations are accumulated
in the value of the Lagrange multiplier. When the Lagrange multiplier is sufficiently large, the impor-
tance of satisfying the constraints outweighs that of optimizing the training loss.**. In consequence,
the model density decreases. As the model reaches the desired sparsity level, λco stops increasing.

Up until the time at which the model is first feasible, the multiplier value accumulates the constraint
violations (scaled by the dual learning rate). Once the model is feasible, the constraint violation
gconst(ϕg)− ϵ < 0 becomes negative, leading to a decrease in the Lagrange multiplier. However, at
this stage, the Lagrange multiplier is large due to the accumulated constraint violations. This confers
a higher relative importance to the gradient of the constraints over that of the training loss: the larger
multiplier encourages to reduce the constraints even if they are already being satisfied.

Our proposed dual restart heuristic reduces the Lagrange multiplier to zero whenever the constrained
is satisfied, allowing the training to focus on minimizing the training loss faster. Although this
heuristic may lead to slightly unfeasible solutions, as demonstrated throughout our experiments, our
models remain consistently below (or close to) the required L0-density levels.

5.4 Stable Constraint Dynamics

Despite the theoretical risk of oscillatory dynamics commonly associated with iterative constrained
optimization methods, we consistently observed quickly stabilizing behavior in our experiments.
Fig. 3 shows the density levels throughout training for a layer of a WideResNet-28-10 trained on
CIFAR-10 (right), and the model-wise density of a ResNet18 trained on TinyImageNet (left).

The desired density levels are successfully achieved over a wide range of targets, and the constraint
dynamics stabilize quickly. These dynamics were consistent across all our architectures and datasets.

**Note that the Lagrange multiplier influences the update of the model parameters by dynamically adjusting
the relative importance of the gradient of the training loss with respect to the gradient of the constraint. In the
penalized method this relative importance is fixed.
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Figure 3: Density levels for a ResNet18 model (left; trained with a model-wise constraint) and the
last sparsifiable layer of a WideResNet-28-10 model (right; trained with layer-wise constraints).

5.5 Large-scale Experiments

We now demonstrate the scalability of our method to more challenging settings: we consider
(Wide)ResNet models on the CIFAR-{10, 100}, TinyImageNet [28] and ImageNet [7] datasets.
Comprehensive experiment are provided in Appendix K.

CIFAR-{10, 100} and TinyImageNet. Figures 1 and 4 display the results for a ResNet18 model
trained on Imagenet, and a WideResNet-28-10 trained on CIFAR-10, respectively. The left column
shows the alignment between the achieved and desired densities (as expected proportion of active
gates in the model). Our method (in blue) provides a robust control over the range of densities.
In contrast, the penalized method (in red) exhibits an unreliable dependency between the penalty
coefficient and the achieved density: when increasing the coefficient λpen, the achieved density seems
to be insensitive to λpen for several orders of magnitude until it starts considerably changing. This
brittle sensitivity profile limits the potential of the penalized method for controlling sparsity.
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Figure 4: Training sparse WideResNet-28-10 models on CIFAR-10.

Columns two and three display the number of parameters and MACs (multiply-accumulate operations)
of the resulting purged models, as a proportion of those of the fully-dense baseline model. Note that,
while retaining a similar proportion of parameters, layer-wise constraints lead to a larger reduction
in the number of MACs, compared to the model-wise case. This is because layer-wise constraints
induce a strict, homogeneous sparsification of all the modules of the network; while the model-wise
setting can allow for a more flexible allocation of the parameter budget across different layers.

ImageNet. We conducted experiments on ImageNet [7] with a ResNet50 architecture. We compare
with layer-wise structured magnitude pruning [29]††. The results are presented in Table 2.

††For each layer, we remove the filters with the (1− ϵ) lowest L1-norms to achieved the desired ϵ density.

9



Note that experiments with layer-wise constraints correspond to optimization problems with 48
constraints (one for each sparsifiable layer). We highlight the number of constraints since tuning such
a large number of penalty coefficients is an intractable challenge when using the penalized method.

Table 2: ResNet50 models on ImageNet with structured sparsity. “Fine-tuning” for zero epochs
means no fine-tuning.

Target Method L0-density Params MACs Best Val. Error (%)

Density (%) (%) (%) After fine-tuning for # epochs
0 1 10 20

− Pre-trained Baseline 100 [25.5M] [4.12 · 109] 23.90 ———————-

ϵ = 90%
Const. Model-wise 90.36 88.06 91.62 24.68 ———————-
Const. Layer-wise 90.58 87.07 85.97 24.97 ———————-
L1-MP Layer-wise − 85.94 84.99 38.74 25.38 24.69 24.68

ϵ = 70%
Const. Model-wise 70.78 64.41 76.50 25.53 ———————-
Const. Layer-wise 70.36 61.91 58.59 26.98 ———————-
L1-MP Layer-wise − 62.15 59.85 97.78 29.04 26.80 26.14

ϵ = 50%
Const. Model-wise 50.18 42.47 58.00 27.51 ———————-
Const. Layer-wise 50.70 43.15 38.25 27.89 ———————-
L1-MP Layer-wise − 43.47 39.76 99.75 36.21 29.98 29.16

ϵ = 30%
Const. Model-wise 30.31 31.81 42.05 29.65 ———————-
Const. Layer-wise 31.44 30.16 23.74 31.71 ———————-
L1-MP Layer-wise − 29.86 24.80 99.89 56.11 36.90 34.74

Just like the magnitude pruning method, our proposed approach successfully delivers the desired
levels of sparsity in this challenging task. To the best of our knowledge, our work constitutes the first
instance of successfully learning ResNet50 models using the L0 reparametrization of Louizos et al.
[31] for structured sparsity while retaining high accuracy.

Our results clearly demonstrate that the constrained L0 formulations can obtain large levels of
structured parameter reduction while preserving performance. Table 2 shows a quick degradation in
performance for the magnitude pruning method, and highlights the need for fine-tuning in heuristic-
based pruning techniques.

5.6 Unstructured Sparsity

Appendix L contains experiments with unstructured sparsity (i.e. one gate per parameter, rather than
per neuron/activation map) for the MNIST and TinyImageNet datasets. These experiments show that
the controllability advantages of our constrained formulation apply in the unstructured regime. Recall
that Gale et al. [14] report an apparent dichotomy between sparsity and performance when training
(residual) models with unstructured sparsity using the L0 reparametrization of Louizos et al. [31].
Our experimental results demonstrate that it is in fact possible to achieve high levels of sparsity and
predictive performance.

6 Conclusion

We resort to a constrained optimization approach as a tool to overcome the controllability shortcom-
ings faced by penalty-based sparsity methods. Along with a reliable control of the model density, this
technique provides a more interpretable hyper-parameter and removes the need for expensive iterative
tuning. We adopt the L0 reparametrization framework of Louizos et al. [31] and integrate simple
adjustments to remedy their challenges at training (Wide)ResNet models. Our proposed method
succeeds at achieving the desired sparsity with no compromise on the model’s performance for a
broad range of architectures and datasets. These observations position the constrained approach as a
solid, practical alternative to popular penalty-based methods in modern machine learning tasks.
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