
A Reproducibility
In this section, we provide the information required to reproduce our results reported in the main
text. And we commit to making the code implementation and evaluating checkpoints public. Our
experiments are run on a machine with an AMD Ryzen Threadripper 3970X 32-Core Processor and a
GeForce RTX 3090 GPU.

VAE methods implementation. For the results on synthetic datasets, i.e., dSprites, Cars3D,
SmallNORB, and Shapes3D, the disentanglement score is from the original logs of DisLib (34) 2.
In the released logs, each method has different training configurations, and our reported result is
from the configuration with the highest average performance overall the provided random seeds. For
the evaluation on the CelebA dataset, we follow an open-sourced implementation in Pytorch 3 and
align the encoder architecture of all methods to be the same as described in Appendix A.1. For the
results on Shapes3D, because DisLib does not release the pretrained checkpoints, we use the same
open-sourced implementation to reproduce with the configuration indicated by DisLib. Parameters
are kept as the default well-tuned version in the provided implementation. When the latent dimension
is 1000, training of BetaTC VAE will collapse with the default hyperparameters, we have to decrease
the β to 3.0 to work it around.

GAN methods implementation. Limited by the text length, we do not include the performance
of GAN methods in the main text, but we will report some in the following appendix content.
It is hard to include GAN methods’ performance in the benchmark as the training is not always
stable and the discriminator weights are usually not provided in many public codebases. When
evaluating the methods on synthetic datasets, the FactorVAE scores of InforGAN, IB-GAN, and
InfoGAN-CR are provided in the paper of Lin et al.. But the evaluation of other metrics in Lin et al.
uses a not aligned settings with Locatello et al., so we check its officially release 4 to evaluate the
provided implementation and model weights under the unified evaluation setup. We perform the
same evaluation process for results on the CelebA dataset.

Energy-based Model (EBM). We refer to the implementation of ICE-BeeM (23) for this method.
We use the officially released codebase for it 5. The encoder implementation has been aligned with
our default already. The only modification we make is to use the unconditional version instead of its
default conditional version in loss computation to satisfy the fully unsupervised settings.

Contrastive Learning implementation. Our implementations are based on the public and official
implementations of MoCo/MoCov2 6, BYOL/SimSiam 7 and Barlow Twins 8. The details of
implementation are explained in Appendix A.1.

Evaluation Protocol. For MED, we first compute MI following the implementation of MIG
by DisLib (34). Then we calculate the entropy disentanglement score in the same way as the
DCI Disentanglement score in DisLib. For other disentanglement metrics evaluation, we use the
implementation of DisLib. The settings of some important parameters are provided in Appendix A.2.

A.1 Implementation of contrastive learning model
Architecture. To make a fair comparison with previous methods, we follow the encoder architecture
in Factor VAE (24). The pipeline details are shown in Table 2. After each convolutional layer in
the figure, there is a ReLU activation layer and a group normalization (group number = 4) layer
for BYOL. So, the encoder is a stack of (Conv-ReLU-GN) blocks. For other contrastive learning
methods, we keep the default batch normalization to replace GN. By default, the final output channel
number is 1000, i.e, D = 1000. For other details of contrastive learning methods, we follow the
convention in their official implementations.

2https://github.com/google-research/disentanglement_lib
3https://github.com/AntixK/PyTorch-VAE
4https://github.com/fjxmlzn/InfoGAN-CR
5https://github.com/ilkhem/icebeem
6https://github.com/facebookresearch/moco
7https://github.com/lucidrains/byol-pytorch
8https://github.com/facebookresearch/barlowtwins

14

Besides the representation network (encoder), BYOL also has a projector network and a predictor
network. Both of them consist of a pipeline “Linear −→ BN −→ ReLU −→ Linear”. The projection
dimension is 256, and the hidden dimension of the projector is 4096. The predictor keeps a 256-
dimensional feature vector in its pipeline.

Table 2: The encoder architecture for our implemented contrastive learning methods on synthetic datasets.
Besides, there is a ReLU activation layer and a possible normalization layer following each convolutional layer
to create a stack of (Conv-ReLU-Norm) blocks.

Encoder

input: 64× 64 images
pipeline:

4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 32-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 64-channel
4×4 conv, stride 2, 128-channel
1×1 conv, stride 1, D-channel

Training settings. We make minor modifications to the training setting of default BYOL to apply
to contrastive learning methods without negative samples. For training on all datasets, the images are
resized to 64x64. For data preprocessing, we copy 1-channel images of dSprites and SmallNORB to
be 3-channel. During the training stage, we use such a pipeline of augmentation (in PyTorch-style):

1. RandomApply(transforms.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.3)

2. RandomHorizontalFlip()

3. RandomApply(transforms.GaussianBlur((3,3), (1.0, 2.0)), p=0.2)

4. RandomResizeCrop(size=(64, 64), scale=(0.6,1.0))

5. normalization.

For the normalization, the pixel value of images from dSprites and SmallNORB is uniformly nor-
malized from [0,255] to [0,1.0]. For Cars3D, Shapes3D, and CelebA, we adopt the commonly used
Imagenet-statistic normalization for preprocessing the RGB image pixel values.

During training, we use Adam optimizer by default, whose learning rate is 3e− 4 without weight
decay. The batch size is set to 512 by default. For evaluation on dSprites, Shapes3D, and CelebA, we
select the weights after training for 15 epochs for evaluation. We select the weights after training for
140 epochs for evaluation on Cars3D and the weights of the 200th epoch on SmallNORB considering
the small scale of these two datasets.

To decrease the influence of randomness, we train each model configuration multiple times with
different random seeds (seed=0, 1, 2). We report the average and standard deviation. To be precise,
as our implementation is based on Pytorch, we initialize the libraries of numpy, torch, torch.cuda,
and random with the same random seeds.

Table 3: The factors on all the datasets we investigate the disentanglement on.

dSprites Shapes3D Cars3D SmallNORB CelebA

Factors
(# of values)

Shape (3) Floor hue (10) Elevation (4) category (10) 40 attributes
Scale (6) Wall hue (10) Azimuth (24) Elevation (9) (2 for each)
Orientation (40) Object hue (10) Object id (183) Azimuth (18)
Position X (32) Scale (8) Lighting (6)
Position Y (32) Orientation (15)

Shape (4)

15

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
Latent Dimension Index

Sh
ap

e
Sc

al
e

Po
si

tio
n_

X
Po

si
tio

n_
Y

Fa
ct

or

0.00

0.05

0.10

0.15

0.20

0.25

Figure 7: The importance distribution for the representation learned from BYOL on dSprites. Here, we follow
the practice of DisLib to use a Gradient Boosting Tree (GBT) regressor to determine the importance matrix of
each latent dimension in predicting each factor. Compared with the Mutual Information distribution shown in
Figure 1a, the importance distribution is significantly more sparse. Sparsity is encouraged when constructing the
GBT regressor. This makes it hard to study the true representation pattern.

A.2 Evaluation Metrics
In the main text, we compare the evaluation metrics provided in the DisLib protocol with our proposed
MED metric. Here we provide more details about them. Moreover, we would conduct evaluations
under all of them in the next section.

BetaVAE Metrics. Introduced in Higgins et al. (15), BetaVAE score assumes each dimension
corresponds to one category in a linear classifier. Representations are obtained after the generated
samples with only one factor fixed. Then we calculate the summation of the divergence between
different representations and put it into a linear classifier. The classifier is trained to predict the index
k for the fixed data factor. The accuracy of this linear model is the value of the BetaVAE score.

FactorVAE Metrics. Kim and Mnih (24) argues the BetaVAE score has the tendency to fail
into a spurious disentanglement and proposes a new metric based on a majority vote classifier.
Representations are obtained after the generated samples with only the k-th factor fixed. Normalizing
each dimension in representations in terms of standard deviation. The index of dimension with the
lowest variances of normalized representation and the factor index k are the input and the output of
the linear classifier. The accuracy of the classification is the FactorVAE score.

Mutual Information Gap. Chen et al. (6) assumes the disentanglement model has the property
that most information of one specific factor is contained in one dimension or a group of certain
dimensions. The mutual information gap is the summation of the difference between the highest
and second-highest normalized mutual information between a fixed factor and the dimensions of the
output representation vector. The formula can be illustrated below:

1

K

K∑
k=1

1

Hzk

(I(vjk , zk)−max
j ̸=jk

I(vj , zk)), (5)

where K is the overall number of ground truth factors. v is the latent representation and zk is the
factors of latent variables and jk = argmaxj I(vj , zk).

DCI disentanglement. As Eastwood and Williams (9) suggest, the disentanglement can also be
measured by the entropy of relative importance for each dimension in predicting factors. First, we
have to know the importance of each dimension of the representation for predicting each factor. The
importance is determined by a regressing model such as Lasso or Random Forest in the original
DCI implementation (9) or Gradient Boosting Tree in DisLib implementation (34). We note the
importance matrix R where Rij is the importance of the i-th dimension in prediction the j-th
factor. Then the disentanglement score for the i-th dimension is defined as Di = (1 − HK(Pi))

where HK(Pi) = −
∑K−1

k=0 PiklogKPik denotes the entropy and Pij = Rij/
∑K−1

k=0 Rik denotes
the normalized importance of the i-th dimension in prediction the j-th factor. Finally the overall
disentanglement score is calculated as D =

∑
i ρiDi where ρi =

∑
j Rij/

∑
ij Rij is the weighting

factor of the each dimension’s informativeness in representing factors.

SAP. Kumar et al. (27) proposes the Separated Attribute Predictability (SAP) score. SAP is computed
with classification score of predicting jth factors on ith dimension as the ijth entry. SAP is the mean
of the difference between the highest and second-highest scores for each column.

We follow the implementation provided by DisLib (34) for the evaluation protocol. Despite exceptions,
the evaluation batch size is 64, the prune_dims.threshold is 0.06. If a classifier is required to be trained

16

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
Latent Dimension Index

0
1

2
3

Fa
ct

or

0.001

0.002

0.003

0.004
0 - azimuth
1 - object category
2 - elevation
3 - lighting

SmallNORB

(a)

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

Latent Dimension Index

0
1

2
3

4
5

Fa
ct

or

0.001

0.002

0.003

0.004

0.005

0 - floor color
1 - wall color
2 - object color
3 - object size
4 - object type
5 - azimuth

Shpaes3D

(b)

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
Latent Dimension Index

0
1

2
3

4
Fa

ct
or

0.002

0.004

0.006
0 - Shape
1 - Scale
2 - Orientation
3 - Position_X
4 - Position_Y

dSprites

(c)

Figure 8: The mutual information distribution on SmallNORB(a), Shapes3D(b) , and dSprites including all
factors(c).

0 1 2
Factor

0
1

2
Fa

ct
or

Co-occurrence of Mutual Information

0.2

0.4

0.6

0.8

1.0

0 - Elevation
1 - Azimuth
2 - Object type

 Cars3D

(a)

0 1 2 3
Factor

0
1

2
3

Fa
ct

or

Co-occurrence of Mutual Information

0.0

0.2

0.4

0.6

0.8

1.0

0 - Azimuth
1 - Object Category
2 - Elevation
3 - Lighting

SmallNORB

(b)

0 1 2 3 4 5
Factor

0
1

2
3

4
5

Fa
ct

or

Co-occurrence of Mutual Information

0.0

0.2

0.4

0.6

0.8

1.0

0 - floor color
1 - wall color
2 - object color
3 - object size
4 - object type
5 - azimuth

Shapes3D

(c)

0 1 2 3 4
Factor

0
1

2
3

4
Fa

ct
or

Co-occurrence of Mutual Information

0.0

0.2

0.4

0.6

0.8

1.0

0 - Shape
1 - Scale
2 - Orientation
3 - Position_X
4 - Position_Y

dSprites

(d)

Figure 9: The co-occurrence of factors in the mutual information relationship among BYOL representations on
Cars3D(a), SmallNORB(b) , Shapes3D(c), and dSprites including all factors(d).

during evaluation, num_train is 10000, and num_eval is 5000. For Mutual information computation,
the discretizer function is the histogram discretizer, and the number of bins in the discretization is
20. For the evaluation of MIG and SAP on dSprites, SmallNORB, Cars3D, and Shapes3D, BYOL
representation vectors are reduced to 10 dimensions by PCA to be aligned with other methods. For
the evaluation of MIG and SAP on CelebA, to have a fair comparison, the representation vectors
of all methods are reduced to 40 dimensions. For the implementation of our proposed MED, the
basic logic is the same as DCI Disentanglement, but we replace the classifier output with the mutual
information based scores.

B More Qualitative Study
We provide more qualitative studies about the disentanglement property shown by the contrastive
learning here. We still use BYOL as an example of the negative-free contrastive learning methods.

B.1 Importance Distribution by DCI
In the main text, we concisely talked about the potential variables introduced by the learnable model
under some metrics. Here we show an example for the widely used DCI Disentanglement metric.
We follow DisLib to use Gradient Boosting Tree to estimate the importance matrix between each
factor and each latent dimension. All parameters are set the same as its default protocol. The
visualization is shown in Figure 7. Compared with the mutual information distribution shown in

17

Figure 10: Some samples from SmallNORB dataset. The variance is controlled by the factor indicated on the
axis. The image is from Jakab et al. (20).

Figure 1a, the importance distribution is much more sparse. This is because the construction of the
GBT regressor encourage the sparsity of the output importance matrix. Such a sparsity can lead to
the misunderstanding that the correlation between factors and latent dimensions is also sparse which
is not true. By using pure measurement without involving additional adaptive models, such a problem
will not be raised in the proposed MED metric.

B.2 Mutual Information Heatmaps
We compute MI between each latent dimension and each data factor and visualize them by heatmaps.
The heatmaps offer us an intuitive picture of the learned representation space. For completeness,
we show the MI heatmaps on SmallNORB, Shapes3D, and dSprites with all factors in Figure 8a,
Figure 8b and Figure 8c respectively. We can see that the disentangled pattern described in the main
text still emerges. There is a group of columns brighter than others in each row, and these groups
do not overlap for most rows. However, we find that some latent dimensions emphasize more than
one factor. We provide a more detailed analysis from the perspective of factor co-occurrence on this
phenomenon in B.3 below.

B.3 Co-occurrence of Factors
To understand to what extent one dimension of the learned representation would respond to more
than one factor, we make the co-occurrence of mutual information to factors on more datasets here.
The visualizations are shown in Figure 9 for the results on Cars3D, SmallNORB, Shapes3D, and
dSprites respectively. Moreover, we now analyze the definition of data factors of these datasets to
discuss whether they are defined to be fully independent or not.

object type

elevation

Figure 11: Samples from Cars3D. The variables of the object
type and the elevation are controlled. It shows that the two
factors are not independent.

SmallNORB Though most non-diagonal
entries have very low co-occurrence of mu-
tual information, two pairs of factors show
slightly higher co-occurrence. They are
“azimuth-elevation” and “instance category-
lighting”. After investigating the dataset,
we find the two pairs of factors are not
fully independent. Figure 10 show some
samples with corresponding factors manip-
ulated. We could see that the elevation and
azimuth are not fully independent. And the
correlation between the instance category
and the lighting factor is even more obvious
because the lighting condition is sensibly
related to the shadow around the object,
whose distribution and shape are highly de-
termined by the instance category.

Cars3D Only one pair of factors show
some co-occurrence, i.e. “elevation-object type”. We randomly selected samples from Cars3D by
different object types and elevations, as shown in Figure 11. It shows that with the same value of

18

elevation, samples of different object types have different visual elevations. So these two factors are
not fully independent. This explains the slightly higher co-occurrence of mutual information between
this pair of factors.

Shapes3D The result shows relatively bad disentanglement. To be precise, some factor pairs show
low mutual information co-occurrence as expected, such as the color factors of floor, wall, and object
and the pair of “object color - azimuth”. But the MI co-occurrence of “wall color - object size” and
“object color - object size;” are higher than we expected as we did not recognize their high dependence.
This result might relate to our model’s relatively poor performance on Shapes3D.

dSprites We omit the factor orientation in the visualization at main text for clarity. Here we show
the results including all factors. For dSprites dataset, the value of orientation is highly correlated
with shape. This is because that different shape has different symmetry properties for rotation. As
a result, dimensions that encode information of shape tend to capture information of orientation
simultaneously. This explains that, in Figure 8c, some dimensions have two brighter entries at “shape”
and “orientation” rows. Thus, it is not surprising that the “shape - orientation” cell is brighter than
other off-diagonal elements in Figure 9d.

B.4 Manipulating Factors

a b ca b

Figure 12: Representation variation when manipulating one factor only in the dimension-reduced version. In
(a) and (b), position_x and position_y are manipulated respectively and only cause one dimension significantly
variate. While, in (c), when manipulating the ill-defined factor orientation, two dimensions variate.

In the main paper, we studied the influence on the generated representation by manipulating the
factors, where the representation is reduced by selecting dimensions as in calculating Top-k MED.
Here, we do the qualitative study of the influence on representation by manipulating factors in another
way but still on dSprites. To make the original high-dimensional representation space more compact,
we use the unsupervised dimension reduction by PCA instead, which is more general when the data
factor pattern is unknown. Here, we reduce the representation dimension by PCA to 10. Note that
since the PCA operation mixes the original latent space with a linear combination, it might destroy
the existing disentanglement property in the high dimensional space, or enhance the disentanglement
if the original high dimensional space is a linear combination of the ground truth factors. But such
influence is usually considered secondary to the disentanglement learned by a model. No matter
which case, if the dimension-reduced representation shows disentangled properties, the original space
at least captures linearly transformed ground truth factors, and the dimension reduction techniques
such as PCA can make the representation more compact in a qualitative study.

Figure 12 shows the result of representation vector variation when changing only one factor at once.
Given three images with only one factor’s value being different, we generate the 10-dim representation
vectors from them. Then, we compute the variance across the three vectors, leading to 10 scalars.
The larger the variance is, the more that dimension responds to the factor change. Figure 12(a) and
(b) show how reduced representation vector changes when manipulating position_x and position_y
factor respectively. It shows good disentanglement that only one representation dimension has high
variation. However, in Figure 12(c) we show a failure mode of the ill-defined factor orientation that
change of factor causes both the 6th and the 9th dimensions of reduced representation to have large

19

variations. From the results, we observe that manipulating one well-defined independent factor causes
evident variance in only one dimension. And it shows that we could make the learned representation
vector more compact by unsupervised dimension reduction.

C More Quantitative Results

C.1 Full Disentanglement Benchmark
In the main text, we evaluate the disentanglement under our proposed MED metric for full space and
top-k subspace on multiple datasets. In this section, to provide a more complete understanding of
the disentanglement property of contrastive learning without negatives, we report the disentangle-
ment scores with other metrics, including FactorVAE score, BetaVAE score, MIG, SAP, and DCI
Disentanglement.

For the results of VAE-based methods, as the large-scale benchmark of Locatello et al. (34) provides
the original logs on dSprites, Cars3D, and SmallNORB datasets, we simply report the performance
of the best configuration. The original logs on Shapes3D are not available, so we train and evaluate
on Shapes3D by ourselves for the MED scores. For scores under other metrics, we report the median
disentanglement scores. Some results are from Locatello et al. (35) but the std error is not available.
The median performance of SlowVAE is from its original paper (26). For the results of CelebA,
the result of InfoGAN-CR is from its officially released checkpoint without availability to the std
error. For other methods, we report the mean value of our trained weights over three random seeds as
default. Because the evaluation of DCI is extremely time-consuming, around 14 hours for a 1000-d
model, we only take BYOL as an example here for negative-free contrastive learning methods. All
results are combined and shown in Table 4. We also include traditional metrics results on their
selected top-k subspace for contrastive learning methods.

Aligned with the analysis we provide in the main text, the results show significant disagreement
among the existing metrics. To be precise, for those metrics (BetaVAE score, FactorVAE score, DCI
Disentanglement) using a learnable model such as a regressor or a classifier, the high-dimensional
BYOL model achieves a significant advantage. However, for the metrics relying on only one or
two dimensions to reveal the connection between a latent dimension and a factor (MIG and SAP),
BYOL’s performance is not that impressive anymore.

Finally, the result on CelebA shows the great robustness of BYOL’s learned representations to be
disentangled on real-world datasets. Yet, the large gap between the score of CelebA and those on
synthetic datasets emphasizes the difficulty of learning disentangled factors on real-world images. It
is hard to empirically study whether it is the high dimension that gives BYOL advantages on some
metrics because the nature of BYOL makes it hard to be trained with a small latent dimension to
make a comparison.

In the last rows for each dataset, we show previous disentanglement metrics scores on the top-k
subspaces of BYOL. We find that BYOL (top-k) has performed better than or on par with unsupervised
methods with low latent dimensions. Note that Ada-GVAE, SlowVAE, and EBM are (weakly)
supervised methods. The SOTA performance justifies our claim of the well-disentangled subspaces.
MIG and SAP require a large gap between the two most vital representation dimension-factor
responses, measured by mutual information and classification accuracy. But out of 1000 dimensions,
we choose the k most relative ones. Hence, the gap ought to be minimal. Consequently, BYOL
(top-k) receives lower MIG and SAP scores. Except for dSprites and CelebA, BYOL (top-k) have
lower DCI scores. The primary cause of this is the massive information loss during the selection of
the top-k dimensions, which completely obliterates the original encoding pattern. As a result, the
gradient boosting tree (GBT) developed throughout the DCI process tends to “borrow" information
from latent dimensions that emphasize additional relative factors to classify some complex factors.
The “information-lending" dimensions then become less disentangled since they are also important
for predicting those complex factors. Taking the Cars3D dataset as an example, we set k = 3 for
top-k MED. To predict the factor object type, the GBT needs to classify 183 types of cars from
only 9 dimensions with only 3 emphasizing object type. This forces GBT to utilize information
from elevation since these two attributes are correlated (see Appendix B.3). However, we keep all
they have learned from training for other low-dimensional methods. Therefore, the information loss
problem does not apply to them.

20

Table 4: Evaluation results on multiple datasets with different disentanglement metrics. The best results of all
models are bolded. The best results on low-dimensional space are underlined.

Model BetaVAE FactorVAE MIG SAP DCI MED
dS

pr
ite

s
β-VAE 82.3 (7.6) 65.8 (9.2) 26.3 (11.0) 5.2 (2.7) 39.3 (13.2) 32.6 (10.0)
β-TCVAE 86.7 (2.4) 76.6 (7.8) 23.8 (6.8) 6.9 (0.9) 36.3 (7.1) 31.8 (7.4)
FactorVAE 84.9 (2.8) 75.3 (7.4) 18.4 (9.0) 6.8 (0.8) 28.8 (10.6) 32.5 (10.1)
DIP-VAE-I 82.7 (3.3) 59.1 (4.8) 9.6 (5.1) 5.2 (2.6) 14.4 (4.6) 18.8 (5.6)
DIP-VAE-II 81.5 (4.9) 58.6 (7.6) 7.4 (3.4) 3.6 (2.2) 12.3 (5.2) 14.7 (5.5)
AnnealedVAE 86.5 (0.1) 60.1 (0.0) 35.2 (1.3) 7.6 (0.5) 37.9 (2.1) 35.8 (0.8)
Ada-GVAE 88.0 (2.7) 73.1 (3.9) 17.3 (4.7) 6.6 (2.0) 32.3 (4.6) –
SlowVAE 87.0 (5.1) 75.2 (11.1) 28.3 (11.5) 4.4 (2.0) 47.7 (8.5) –
EBM 82.3 (2.0) 65.7 (12.5) 1.7 (0.5) 3.0 (1.2) 19.1 (1.8) 6.8 (4.0)
InfoGAN-CR 85.5 (1.0) 88.0 (1.0) 19.8 (3.2) 6.0 (1.0) 14.0 (5.2) –
BYOL 93.2 (0.4) 91.6 (0.8) 29.3 (0.4) 8.0 (0.4) 66.9 (0.2) 31.3 (0.4)
BYOL (top-2) 90.0 (0.9) 79.2 (2.3) 3.3 (0.9) 0.8 (0.2) 45.0(0.1) 53.7 (0.7)

C
ar

s3
D

β-VAE 100.0 (0.0) 89.3 (1.2) 11.7 (1.1) 1.4 (0.9) 38.7 (4.6) 29.0 (2.2)
β-TCVAE 100.0 (0.0) 92.2 (2.7) 15.5 (2.9) 1.7 (0.3) 42.7 (3.5) 33.0 (3.8)
FactorVAE 100.0 (0.0) 91.7 (4.1) 10.6 (2.2) 2.0 (0.5) 29.0 (6.7) 29.1 (3.0)
DIP-VAE-I 100.0 (0.0) 90.5 (5.0) 5.9 (2.8) 1.9 (1.4) 22.6 (5.6) 19.4 (3.3)
DIP-VAE-II 100.0 (0.0) 85.0 (6.1) 5.1 (2.7) 1.3 (0.8) 20.8 (5.4) 16.7 (4.1)
AnnealedVAE 100.0 (0.0) 85.0 (4.3) 7.6 (1.0) 1.5 (0.5) 18.5 (4.3) 15.5 (2.5)
SlowVAE 100.0 (0.0) 90.4 (0.5) 15.4 (2.2) 1.6 (0.5) 48.0 (2.4) –
BYOL 100.0 (0.0) 95.8 (1.2) 7.6 (0.9) 1.8 (0.7) 48.5 (2.3) 9.7 (0.5)
BYOL (top-3) 100.0 (0.0) 95.2 (0.8) 3.8 (0.5) 1.1 (0.8) 15.8 (3.6) 31.8 (1.3)

Sm
al

lN
O

R
B

β-VAE 84.1 (2.7) 60.1 (2.4) 25.0 (1.1) 11.4 (1.1) 32.6 (0.6) 24.4 (0.7)
β-TCVAE 84.5 (2.7) 60.3 (2.3) 25.4 (0.9) 11.7 (1.1) 35.2 (0.7) 25.0 (0.9)
FactorVAE 80.8 (3.8) 62.5 (3.6) 23.9 (2.0) 10.2 (0.9) 33.4 (1.1) 25.9 (1.2)
DIP-VAE-I 84.2 (3.2) 69.8 (4.6) 24.3 (2.7) 10.2 (1.4) 30.0 (2.1) 24.5 (2.1)
DIP-VAE-II 85.2 (1.3) 58.4 (2.1) 25.5 (1.5) 14.4 (0.4) 32.3 (0.7) 24.4 (0.7)
AnnealedVAE 60.8 (6.2) 50.0 (9.9) 9.1 (2.2) 6.8 (0.8) 15.7 (6.4) 5.5 (3.7)
SlowVAE 78.2 (3.8) 47.0 (2.9) 23.8 (1.8) 7.8 (1.1) 28.7 (0.7) 21.8 (1.3)
EBM 79.0 (4.4) 57.9 (3.5) 1.7 (0.5) 1.9 (0.1) 13.9 (2.2) 2.3 (1.7)
BYOL 97.0 (0.8) 81.0 (0.5) 3.3 (0.9) 2.2 (0.3) 51.0 (1.0) 7.7 (0.2)
BYOL (top-2) 86.7 (0.4) 65.6 (3.7) 3.3 (1.4) 1.5 (0.2) 13.6 (0.3) 25.7 (0.3)

Sh
ap

es
3D

β-VAE 100.0 (0.0) 92.4 (4.5) 37.8 (16.0) 11.3 (3.2) 77.3 (3.2) 52.4 (9.4)
β-TCVAE 100.0 (0.0) 90.5 (5.5) 46.4 (15.4) 12.4 (6.1) 78.4 (5.2) 53.2 (4.9)
FactorVAE 98.1 (3.2) 90.6 (6.4) 48.2 (15.2) 11.1 (4.3) 71.8 (8.6) 55.9 (8.0)
DIP-VAE-I 98.3 (3.3) 84.2 (11.3) 20.1 (8.4) 6.0 (1.1) 69.0 (3.6) 43.5 (3.7)
DIP-VAE-II 99.6 (0.04) 94.9 (4.1) 22.1 (3.54) 8.2 (1.8) 49.8 (10.6) 52.6 (5.2)
AnneledVAE 95.1 (4.4) 88.8 (4.6) 46.2(5.4) 8.5(1.6) 56.2(4.7) 56.1 (1.5)
Ada-ML-VAE 100.0 100.0 50.9 12.7 94.0 –
Ada-GVAE 100.0 100.0 56.2 15.3 94.6 –
SlowVAE 100.0 (0.1) 97.3 (4.0) 64.4 (8.4) 5.8 (0.9) 82.6 (4.4) –
EBM 75.9 (11.2) 53.2 (8.7) 5.2 (2.2) 2.8 (1.1) 21.8 (11.0) 2.1 (2.6)
BYOL 91.5 (3.9) 82.5 (2.4) 5.2 (1.7) 2.8 (0.3) 53.1 (1.5) 6.0 (0.5)
BYOL (top-2) 95.5 (1.1) 83.0 (3.6) 2.8 (0.8) 1.4 (0.5) 27.2 (3.8) 19.7 (1.3)

C
el

eb
A

VAE 21.5 (3.2) 6.1 (3.8) 0.8 (0.1) 0.9 (0.2) 11.2 (2.3) 3.8 (0.2)
β-VAE 19.1 (1.9) 5.8 (1.8) 0.1 (0.1) 0.6 (0.2) 8.7 (1.9) 3.3 (0.1)
β-TCVAE 19.9 (2.3) 9.8 (2.4) 0.6 (0.2) 1.2 (0.3) 3.5 (1.1) 4.7 (0.1)
FactorVAE 25.3 (3.0) 12.0 (2.1) 0.4 (0.1) 0.6 (0.2) 7.1 (0.7) 0.6 (0.6)
DIP-VAE-I 21.0 (1.9) 9.3 (1.1) 0.2 (0.1) 0.9 (0.3) 13.8 (2.2) 3.6 (0.2)
InfoGAN-CR 16.8 11.3 1.6 2.8 22.0 –
BYOL 35.7 (2.1) 11.5 (1.1) 2.6 (0.7) 8.2 (0.9) 41.0 (1.3) 4.8 (0.4)
BYOL (top-3) 25.8 (0.8) 9.7 (0.5) 0.7 (0.2) 0.2(0.02) 15.8(0.3) 6.8 (0.7)

21

D Ablation Study about the Normalization Choice
In this section, we put ablation studies here about the choice of normalization layers in the model
architecture.

Table 5: Results of using different normalization strategies on dSprites.

normalization w/o norm BN GN LN IN

MED 23.8 (0.6) 29.4 (0.5) 31.3 (0.4) 31.3 (0.8) 0.0 (0.0)

We experiment with five types of normalization layers in the encoder network on the dSprites
dataset. The results are shown in Table 5. For the group normalization, we set the group number
to 4. On the dSprites dataset, we find the commonly used BN decreases the disentanglement
performance. By keeping the batch norm in the projector and the predictor, removing the batch
norm in the encoder will not cause the model to collapse, which agrees with the observation in
previous works (40). On the contrary, replacing batch norm in the encoder with group norm or
layer norm will increase the representation disentanglement while achieving similar accuracy in
downstream factor prediction. We notice that a similar phenomenon has been discovered before in
supervised representation disentanglement. For example, Bau et al. (2) discovered that a network
trained with batch normalization layers has less interpretable (disentangled) neurons. On the other
hand, the instance norm (48) completely breaks the contrastive learning process. We still do not fully
understand this behavior, but we hypothesize that it may be caused by the shared batch statistics that
make it hard for a feature to be aligned with the ground truth factor.

E Disagreement of Existing Metrics
Without a uniformly recognized definition of “disentanglement”, the validity of existing metrics is
backed up with their shared expectation of “disentanglement” and consistency of experimental results,
as suggested in DisLib (34). However, the results in Figure 4 break the belief. The disagreement
arises when the high-dimensional representation model joins the comparison. We provide an in-depth
view of the disagreement by ranking different methods. The results are shown in Figure 13. If all
metrics agree perfectly, there should be no relative ranking switch. However, the frequent switch,
especially with BYOL being taken into comparison, strongly suggests their disagreement. Results in
Table 4 further show that different metrics may make completely different rankings with large value
gaps. We also provide logistic analysis in Appendix F and quantitative results in Appendix C. Given
the fact that self-supervised representation learning always requires a high dimension to train, MED
is necessary to extend the study of disentangled representation learning to complicated real-world
datasets and self-supervised representation learning methods.

F The Superiority of MED
Here, we provide both experimental observations and theoretical analysis in synthetic scenarios to
show the superiority of MED: in what cases other metrics outputs meaningless or even opposite
results but MED can still perform a meaningful evaluation.

F.1 Experimental Observations
As we discuss throughout the paper, the five existing metrics we investigate, i.e. BetaVAE score,
FactorVAE score, SAP, MIG, and DCI Disentanglement, are unfair to models of different dimensions.
So we extend the results mentioned in Section 3.2 to show the superiority of MED by confirming its
stability under different dimensions. We conduct a sanity check on randomly initialized models. For
a good disentanglement metric, we do not expect a high score whatever the representation dimension
is. The following results reveal the malfunction of these metrics.

• MED vs MIG/SAP: First of all, we emphasize that SAP/MIG is designed not just for
disentanglement but also completeness. They encourage a strict one-to-one mapping between
latent dimensions and factors. So they tend to reward models whose dimension is close to
the factor number. On the popular synthetic datasets with only a limited number of factors,
low-dimensional models have an unfair advantage with MIG/SAP metrics. We compare a
well-trained 1000-d BYOL model and a 10-d randomly initialized encoder in Table 6. The
results show that the 10-d randomly initialized model can achieve higher scores than the

22

BVAE FVAE MIG SAP DCI
MED

BYOL

DIP VAE II

Beta TC VAE

DIP VAE I

Factor VAE

Beta VAE

Slow VAE

Annealed VAE

Ranking flow under different disentanglement metrics

Figure 13: The flow chart of rankings of disentanglements scores. From top to down, the ranking decreases,
indicating high to low disentanglement properties. If all metrics agree perfectly, there should be NO switch of
relative ranking among these methods with different metrics. However, we notice obvious ranking variance,
especially regarding the ranking of BYOL. With the analyses of the bias of existing metrics when the representa-
tion dimension varies, this figure emphasizes the necessity of proposing a new disentanglement metric that is
fair to compare models of different dimensions.

1000-d BYOL model by SAP and MIG. But MED keeps a reasonable comparison that the
trained high-dimensional model can still enjoy higher scores than low-dimensional random
weights.

Table 6: The mean scores of different metrics on Shapes3D.

MIG SAP MED

10-d randomly initialized 6.7 3.0 2.9
1000-d BYOL 5.2 2.8 6.0

• MED vs BetaVAE/FactorVAE score: BetaVAE and FactorVAE prefer high-dimensional
models as they have more parameters to trick the learnable classifier. In Table 7, we
find even randomly initialized high-dimensional (1000-d) model can achieve higher Be-
taVAE/FactorVAE score than a well-trained 10-d model (DIP-VAE-II). In contrast, MED
provides results in line with our expectations.

Table 7: The mean scores of different metrics on dSprites.

BetaVAE score FactorVAE score DCI MED

10-d DIP-VAE-II 81.5 58.6 12.3 14.7
1000-d randomly initialized 82.7 61.4 19.8 3.8

• MED vs DCI: Similar to BetaVAE/FactorVAE scores, DCI also overestimate high-
dimensional models as they have a higher chance to get lottery dimensions, especially
with the sparsity encouraged by GBT. Also, another huge drawback of DCI is the compu-
tation efficiency: for a 1000-d model, DCI takes more than 14 hours for evaluation while
MED only takes less than 20 seconds. The computation of MED is more than 2000 times
faster than DCI.

Through the experimental observations, we find the abnormals from existing metrics when comparing
models of different dimensions. Compared to them, the results of MED are consistent with human
knowledge.

23

0 20 40 60 80 100
latent dimension

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sc
or

e MED score
E[DCI] score

Figure 14: How MED score and DCI score change along the latent dimension of the model in our constructed
linear scenarios.

F.2 Theoretical Analysis
In this part, we construct synthetic scenarios to investigate the validity of MED and existing metrics.
We will show that in such situations, existing metrics will fail to reflect the real disentanglement
quality but MED can show superiority to maintain reasonable evaluations. For the following cases,
we assume there are two data factors F0, F1 on the data. We note their value as v0, v1 ∈ {0, 1}.
And they are sampled independently and uniformly, i.e., p(vj = 1) = p(vj = 0) = 0.5. Then we
construct linear cases to simplify the analysis that the value of latent dimensions is the combination
of factor values.

F.2.1 MED vs MIG/SAP.
As mentioned, MIG and SAP require not just disentanglement but also completeness. So, for a 1000-d
model whose latent code value is ci = vimod2, 1 ≤ i ≤ D,D = 1000. I.e. half of the latent code is
the true first factor, and the other half latent code is the second factor. It is clear that each dimension
perfectly correlates to a single factor. But its MIG/SAP scores turn out to be 0, which is significantly
opposite to our intuition. But in this case, for MED we have

Si = 1, ρi =
1

D
. (6)

So MED(c) = 1, indicating that every dimension is perfectly disentangled to a single factor and fully
responsive to it. Also, this conclusion applies to different values of D, showing the robustness of
MED with models of different dimensions.

F.2.2 MED vs DCI.
With a constructed latent code as

ci =


v0 , i = 0

v1 , i = 1
1
2 (v0 + v1) , i > 1

. (7)

To simplify, we assume the importance matrix output by GBT in DCI metric is the absolute of
first-order derivative, namely | ∂ci∂vj

| of the dimension i with respect to the factor Fj . GBT encourages
sparsity in the output importance matrix. To reflect this, we assume the desired sparsity of the GBT
is 2. Thus, we have the dimensions beyond the sparsity limit are given 0 importance. Then the
importance matrix value Rij is

Rij =


1 , i = j, i ≤ 1
1
2 , i = dj
0 , otherwise

. (8)

dj is a randomly selected dimension between [2, D− 1]. For the two factors F0 and F1, dj is selected
independently. So that chance that d0 = d1 is p(d0 = d1) =

1
D−2 .

24

(1) If d0 = d1 = k, we have

ρi =

{
1
3 , i = 0, 1, k

0 , otherwise
, Si =


1 , i = 0, 1

1− log2 , i = k

0 , otherwise

(9)

(2) If d0 ̸= d1, we have

ρi =


1
3 , i = 0, 1
1
6 , i = d0, d1
0 , otherwise

, Si =

{
1 , i = 0, 1, d0, d1
0 , otherwise

. (10)

And DCI Disentanglement score is DCI(c) =
∑D−1

i=0 ρiSi. We have DCI(c) = 1− log2 = 30.7% in
situation (1) and DCI(c) = 1 in situation (2). So, in such a simplified version, the expectation of DCI
Disentanglement score is

E[DCI(c)] =
1

D − 2
(1− log2) + (1− 1

D − 2
) = 1− log2

D − 2
. (11)

On the other hand, similarly we can derive the MED score is

MED(c) = 1− D − 2

D
log2. (12)

which is quite consistent along the change of D. Note that the drastic difference between MED
and DCI is caused by the GBT used in DCI. The GBT leads to a sparse importance matrix M ,
while the mutual information in MED won’t. This difference doesn’t make much difference in
low-dimension latent codes, but DCI will be high even if the latent code doesn’t disentangle at all in
the high-dimensional case.
We plot the curves of MED score and the expectation of DCI score in Figure 14. It shows that
when the latent dimension D increases, the expectation of the DCI score increases and approaches 1.
For instance, if D = 3, we have E[DCI(c)] = 30.7%; if D = 1000, we have E[DCI(c)] = 99.9%.
Such an abnormality from DCI Disentanglement alerts us that it can not give a meaningful and fair
comparison between methods of different dimensions. However, MED is much more robust with the
change of model dimension. For instance, if D = 3, we have MED(c) = 76.9% and if D = 1000,
we have MED(c) = 30.8%.

F.2.3 MED vs BetaVAE/FactorVAE score.
Situation 1 We construct a situation where the first two dimensions are a weighted combination of
the factors and the value of all following dimensions are the average of the factor values. Thus we
have the latent code as

ci =


1
3v0 +

2
3v1 , i = 0

1
3v1 +

2
3v0 , i = 1

1
2 (v0 + v1) , i > 1

. (13)

We can justify it as a very entangled representation. But the latent code value change with respect to
the factor value is what BetaVAE and FactorVAE scores care about.

FactorVAE calculates the variance of latent code, i.e. V ar(c), when changing the factors to represent
the factor-dimension response degree. During calculating the FactorVAE score, one factor is always
fixed. So we have

V arfixv0(ci) =


1
9 , i = 0
1
36 , i = 1
1
16 , i > 1

, V arfixv1(ci) =


1
36 , i = 0
1
9 , i = 1
1
16 , i > 1

, (14)

so for each factor, we have a single dimension that gives the minimum variance. In this case, the
FactorVAE score uses a majority vote to determine the dimension with the smallest variance with
respect to the value change of a factor as the “most disentangled” dimension to it. And the vote
accuracy is regarded as the FactorVAE score. So, it is clear that because of the existence of the
lucky dimension j = i, the FactorVAE score can be expected to approach 100, indicating “perfectly
disentangled”! With the increase of model dimension, the chance of having such a lucky dimension
increases as well in real cases. The bias is that FactorVAE only needs one dimension which has a low
response to all other factors except for one factor to get high scores.

25

Table 8: Logistic Regression accuracy results of the full representation space and top-k subspace. Methods in
gray are contrastive self-supervised learning methods.The best results of all models are bolded. The best results
on low-dimensional space are underlined.

Space Model dSprites Shapes3D Cars3D SmallNORB CelebA

Full Space

β-VAE 34.5 (3.0) 35.6 (2.6) 65.0 (1.6) 48.6 (0.5) 82.1 (0.1)
β-TCVAE 32.1 (3.4) 40.3 (2.1) 68.3 (1.4) 47.4 (0.7) 85.2 (0.1)
FactorVAE 30.4 (2.5) 20.7 (2.3) 56.1 (1.3) 42.6 (1.3) 80.4 (0.2)
DIP-VAE-I 30.3 (0.9) 37.6 (1.5) 68.5 (1.2) 49.6 (0.5) 85.2 (0.1)
DIP-VAE-II 30.9 (1.9) – 67.2 (1.7) 48.5 (0.5) –
MoCo 46.3 (1.3) 78.3 (2.1) 61.8 (1.4) 56.3 (0.7) 85.2 (0.3)
MoCov2 52.0 (0.3) 76.5 (0.3) 63.1 (1.2) 53.8 (0.5) 84.9 (0.1)
BarlowTwins 41.7 (0.2) 74.5 (0.8) 79.0 (0.2) 62.0 (0.1) 83.1 (0.2)
SimSiam 40.3 (0.1) 80.9 (3.4) 45.3 (4.6) 54.5 (0.5) 84.0 (0.2)
BYOL 54.6 (0.2) 71.5 (1.3) 81.2 (0.4) 57.2 (1.1) 81.9 (0.2)

Top-k Subspace

MoCo 22.7 (1.4) 43.7 (1.1) 38.1 (1.2) 34.5 (0.2) 85.1 (0.2)
MoCov2 26.0 (1.0) 33.4 (0.2) 32.6 (0.8) 31.4 (1.1) 84.9 (0.1)
BarlowTwins 29.1 (0.7) 44.4 (1.3) 43.1 (1.4) 34.5 (0.4) 82.9 (0.2)
SimSiam 38.0 (0.6) 61.8 (1.0) 29.4 (3.6) 37.7 (2.5) 83.8 (0.2)
BYOL 37.9 (0.6) 46.3 (0.5) 43.3 (0.9) 40.2 (0.8) 81.9 (0.2)

On the other hand, the BetaVAE score calculates the latent code value change to represent the
response between factors and dimensions. This is represented by the absolute value of the first-order
derivative. So for the i-th dimension with respect to the j-th factor as Rij , we have

Rij =


1
3 , i = j, i ≤ 1
2
3 , i ̸= j, i ≤ 1
1
2 , otherwise

. (15)

BetaVAE score uses a learnable linear classifier to determine the dimension. In this case, prediction
j from R·j can achieves 100% accuracy. So similarly, it also requires one “lucky” dimension to
make the prediction, offering an advantage to high-dimensional models. Moreover, because of the
powerful capacity of a learnable linear classifier, the BetaVAE score is close to 100 for many cases as
in Table 4. It thus has another flaw of low distinguishability of methods’ disentanglement properties.

On the other hand, we could now calculate the MED score for this situation. The results turns out to
be MED(c) = 1− log2 = 30.7% for any value of D. This is a relatively low score and we think it
makes better sense in such entangled cases compared to the falsely high score from BetaVAE and
FactorVAE scores.

Situation 2 Let us build another case as in the discussion of DCI above

ci =


v0 , i = 0

v1 , i = 1
1
2 (v0 + v1) , i > 1

. (16)

FactorVAE and BetaVAE scores can still give a “perfect” score over such a representation. However,
when the dimension D is very large, only a small subset of the representation dimensions is disentan-
gled while most are highly entangled. As a higher-dimensional model has a better chance to get a
lucky dimension, maintaining the perfect scoring with increasing dimensions is not aligned with our
intuition and expectation. From this sense, Top-K MED has its special use. When D = 1000, we
know MED(c) = 30.8%, but we can still get a subset of the 1000 dimensions to get a high Top-K
MED score. Such a subset of representations is more compact and has better explainability to the
factor variance.

With all the situations constructed and analyzed above, we could notice the failure of existing
metrics to achieve evaluation results (1) meaningful, (2) fair, and (3) aligned with the human sense
to disentanglement in some scenarios. On the other hand, our proposed MED always keeps the
evaluation and comparison reasonable and aligned with the expectation from the human high-level
institution.

26

G Properties of the Top-k Subspace
We propose the top-k selection process to study the partial disentangle properties. Here we provide
more details. We first visualize the top-k selection process based on the heatmap of the importance
matrix. Then we will discuss the effects of k and the downstream performance comparison of the
top-k subspace and full space.

Visualization of the top-k Process We describe the top-k process in the Section 3.3. Correspond-
ingly, here we colored the picked dimensions yellow in the Figure 15. It shows that most picked
dimensions only have one entry much brighter than the others, indicating they are well-disentangled.
Since orientation is ill-defined in dSprites, BYOL tends to encode it with shape. Hence the most
disentangled dimensions for shape also capture information of orientation.

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
Latent Dimension Index

Sh
ap

e
Sc

al
e

O
rie

nt
at

io
n

Po
si

tio
n_

X
Po

si
tio

n_
Y

Fa
ct

or

0.000

0.002

0.004

0.006

0.008

0.010

Figure 15: The visualization of the top-k process. Based on Figure 8c, the selected dimensions are highlighted
with yellow boxes. For dSprites we set k = 2. The indices picked are 103, 109, 404, 417, 547, 549, 777, 778,
1020, and 1023.

Ablation on k The parameter k is designed as an evaluation choice. For analytical purposes, we
choose the value of k to match the dimension of VAE methods in the main text. To investigate the
influence of k, we set k = 1, 2, 10, 50, 100 and evaluate the top-k MED scores of 1000-d VAEs and
BYOL on dSprites. The results are shown in Figure 16. We find that with different values of k,
the ranks of top-k MED scores remain unchanged. Since the top-k process is a supervised greedy
selection, as k grows the scores decrease. In conclusion, top-k MED can measure the subspace
disentangle properties with a wide range of k. Therefore we can choose k according to actual needs.

100 101 102

k

0

10

20

30

40

50

To
p-

k
M

ED

BYOL -VAE FactorVAE DIP-VAE-I

Figure 16: The influence of k in top-k MED on dSprites dataset. The evaluation results are consistent with
multiple choices of k.

Downstream performance of top-k subspace We study the disentangle properties of the full space
and top-k subspace in 5.3. Here we analyze the downstream performance of these spaces. We train a
Logistic Regressor to predict each factor from the full representation or the top-k picked representation.
Then we take the mean prediction accuracy of all factors as the measure of downstream performance.
We compare the downstream performance of the full space of VAEs and BYOL, and top-k subspace
of BYOL on multiple datasets. Here we set k = 2 for dSprites, Shape3D, and SmallNORB, and
k = 3 for Cars3D and CelebA to match the dimension of VAEs. The results are in Table 8. We
note that, except on CelebA, performance drops non-negligibly when completing downstream tasks
with the top-k representations. This suggests that the top-k subspace is well-disentangled but other

27

dimensions also contain factor-related information. It is unsurprising because we cut down the
dimension drastically (from 1000 to 10 on synthetic datasets and from 1000 to 100 on CelebA).
However, we find that the top-k spaces learned by contrastive methods achieve better or compatible
performance compared with the full spaces of VAEs on 3 out of 5 datasets (dSprites, Shapes3D,
and CelebA). It is reasonable that a high-dimensional model can be better for downstream tasks
as the downstream model can be trained to leverage each little piece of information from the input
representations. But we get a message from the results that by drawing a subspace from the powerful
CL-trained model, its performance on downstream tasks can be comparable to or superior to the
low-dimensional models. And the selected low-dimensional model can have much better compactness
and interpretability.

H Limitations
Our work still has some limitations. Firstly, the design of contrastive learning methods still depends
on empirical practice. Therefore there lacks a widely accepted theoretical framework to analyze its
disentanglement properties. As for the experiment setups, the inductive biases of different methods
may potentially affect the results (such as normalization in Section D). Instead of an exhaustive
search, we inherit the available best settings, i.e., the settings from DisLib (34) and the public official
implementations of other methods. All hyperparameters and details have been indicated in Section A.

28

