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Figure 1: Graphical representation of DMFAL. The low dimensional latent output in each fidelity
hm(x) (1 ≤ m ≤ M ) is generated by a (deep) neural network.

We now formally prove our main theoretical results on the approximate optimization
properties of the Weighted-Greedy algorithm that we have proposed. In particular, these
bounds are relative to the optimal algorithm with a budget B, we denote its mutual
information as OPT(B). We note that the optimal is with respect to the measurement of
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l)|D) on the A Monte Carlo samples, and only over the space of
inputs Ω and fidelitiesM we consider. If more Monte Carlo samples are considered,
or somehow mutual information is computed precisely, or more fidelities are searched
over, then the OPT(B) considered will increase, and the near-optimality of the greedy
algorithm will continue to be approximately proportional to that optimal potential value.
Since DMFAL can actively choose an optimal x ∈ Ω for a fixed fidelity m, which is
already optimized over a continuous space, the optimal bound we consider OPT(B) is
relative to this method.

We now restate and prove the main results.

Theorem 0.1 (Theorem ??). At any step of Weighted-Greedy (Algorithm ??) before
any choice of fidelity would exceed the budget, and the total budget used to that point
is B′ < B, then the mutual information of the current solution is within (1− 1/e) of
OPT(B′).

Proof. Given a set of elements Ω̃ and a submodular objective function φ, it is well
known that if one greedily selects items from Ω̃ that most increase φ at each step, then
after t steps, the selected set achieves an objective value in φ within a (1− 1/e)-factor
of the optimal set of t elements from Ω̃ (Krause and Golovin, 2014). Our objective
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l)|D), where the mutual information is a classic submodular func-
tion (Krause and Guestrin, 2005). However, in our setting each item (an input-fidelity
pair (x,m)) has a cost λm that counts against a total budget B. Our proof will con-
vert this setting back to the classic unweighted setting so we can invoke the standard
(1− 1/e)-result.

Our Weighted-Greedy algorithm instead chooses an (x,m) ∈ Ω×M to optimize
âk+1 = ∆x,m/λm where ∆x,m = I (Yk ∪ {ym(x)},yM (x′

l)|D)− I (Yk,yM (x′
l)|D)

is the increase in mutual information by adding (x,m). By scaling this ∆x,m value
by 1/λm we can imagine splitting the effect of (x,m) into λm copies of itself, and
considering each of these copies as unit-weight elements. We next argue that our
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Weighted-Greedy algorithm will achieve the same result as if we split each item into
λm copies, and that the process on these copies aligns with the standard setting.

First lets observe Weighted-Greedy will achieve the same result as if each (x,m)
was split into λm copies. When we split each (x,m) into copies, each maintains the
same scaled contribution of ∆x,m/λm to our objective function. And we greedily add
the item with largest contribution. So if some (x,m) has the largest contribution âk+1

in the weighted setting, then so will its unit weight copy in the unweighted setting.
In the unit weight setting, after we add the first copy, this may effect the ∆x′,m′/λm′

contribution of some items (x′,m′) ∈ Qk. By submodularity, all such items have
diminishing returns and their contribution cannot increase. However, the unit weight
copies of (x,m) are essentially independent, and so their ∆x,m/λm score does not
decrease (if we add all λm we increase mutual information by a total of ∆x,m). Since
no other item can increase its score, and the copies scores do not decrease, if they were
selected for having the maximal score, they will continue to have the maximal score
until they are exhausted. Hence, if we select one unit weight copy, we will add all of
them consecutively, simulating the effect of adding the single weighted (x,m) at total
cost λm. Note that by our assumption in the theorem statement, we can always add all
of them.

Finally, we need to argue that this unit-weight setting can invoke the submodular
optimization approximation result. For integer λm and B values, then this unit-weight
version runs a submodular optimization with B′ < B steps. The acquisition function
used to determine the greedy step is âk+1 = ∆x,m/λm, but since we have divided each
item (x,m) into unit weight components with independent contribution to the mutual
information 1
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l)|D) they satisfy submodularity. Then the weight is
the same among all items so it can be ignored, and it maps to the standard submodular
optimization with B′ steps, and achieves within (1− 1/e) of OPT(B′) as desired.

Corollary 0.1 (Corollary ??). If Weighted-Greedy (Algorithm ??) is run until input-
fidelity pair (x,m) that corresponds with the maximal acquisition function âk+1(x,m)
would exceed the budget, it selects that input-fidelity pair anyways (the solution exceeds
the budget B) and then terminates, the solution obtained is within (1− 1/e) of OPT(B).

Proof. Consider that the extended Weighted-Greedy algorithm terminates using total
B+ ≥ B total budget. By Theorem ??, if we had B+ budget, then this would achieve
within (1 − 1/e) of OPT(B+). And since OPT(B+) ≥ OPT(B), then this is within
(1− 1/e) of OPT(B) as well.

These results imply that the Weight-Greedy algorithm achieves the desired (1−1/e)-
approximation until we are near the budget, or we slightly exceed it. If the maximal
weight item λM is close to the full budget, then we are always in this unbounded case –
or may need to greatly exceed the budget to obtain a guarantee. However, on the other
hand, if λM is fixed and the budget B increases, then our bounds become more accurate.
In either case we can obtain a score within (1− λM

B )(1− 1/e) of the OPT at a budget B
– by excluding the part where the greedy choice may exceed the budget. So as λM/B
goes to 0, then the approximation goes to (1− 1/e).

While we have proven these results in the context of the specific approximated
mutual information and parameter space Ω×M these nearly (1− 1/e)-optimal results
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will apply to any submodular optimization function, scaled by its optomal cost with a
budget B.

Note that Leskovec et al. (2007) proposed another approach to dealing with this
budgeted submodular optimization. They proposed to run two optimization schemes,
one the method we analyze, and one that simply chooses the items that maximize ∆x,m

at each step while ignoring the difference in their cost λm. They show that while the
first one may not achieve (1− 1/e)-approximation, one of these schemes must achieve
that optimality. The cost of running both of them, however, is twice the budget, so in the
worst case this combined scheme only achieves within (1/2)(1− 1/e) of the optimal.
This run-twice approach is also wasteful in practice, so we focused on showing what
could be proven (near (1− 1/e)-approximation) of just Weighted-Greedy. In fact, as
long as λM/B ≤ 1/2, we already match their worst case bound.
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