
Appendix

A Convergence Analysis

As stated in Algorithm 1, the branch and bound scheme is a rooted tree, where the search space of

the level 0 root node is
◦
M . We denote Mlq as a sub-node at iteration lq and level q. Its child node

is denoted as Mlq+1
satisfying Mlq+1

⊂Mlq . A decreasing sequence from the root node
◦
M to the

node Mlq is denoted as {Mlq}. It is obvious that the sequences {αl} and {βl} are monotonically
non-increasing and non-decreasing correspondingly. In the following convergence analysis, we adapt
the fundamental results from [29] to our work. Different from the BB procedure in [19], which is
infinite, our algorithm has a finite BB procedure. Hence, we prove the convergence in a finite manner.

Definition 3. (Definition IV.3 [29]) A bounding operation is called finitely consistent if, at every
step, any unfathomed partition element can be further refined, and if any decreasing sequence {Mlq}
successively refined partition elements is finite.

Lemma 4. The bounding operation in Algorithm 1 is finitely consistent.

Proof. We first prove any unfathomed partition element Mlq can be further refined. Any unfathomed
Mlq satisfies ∃|Mlq ∩X| > 1, k ∈ K and αl > β(Mlq ) + ϵ, ϵ > 0. It is obvious that there exists at
least one partition to be further refined.

We then prove any decreasing sequence {Mlq} successively refined partition elements is finite.
Assuming by contradiction that there exists a sequence {Mlq} that is infinite. In our algorithm, since
we branch on the first-stage variable µk corresponding to the diameter of M , this subdivision is
exhaustive, we have lim

q→∞
δ(Mlq ) = 0 and {Mlq} converge to one point µ̄. If µ̄ ∈ X , there is a ball

around µ̄, denoted as Br(µ̄) = {µ | ||µ − µ̄|| ≤ r}, satisfying |Br(µ̄) ∩ X| = 1. There exists a
q0 that Mlq ⊂ Br(µ̄),∀q ≤ q0. At this q0 iteration, Mlq0

will not be branched anymore. Because
X is finite, we have the sequence {Mlq} is finite in this case. If µ̄ ̸⊂ X , there is a ball around
µ̄, denoted as Br(µ̄) = {µ | ||µ − µ̄|| ≤ r}, satisfying |Br(µ̄) ∩ X| = 0. There exists a q0 that
Mlq ⊂ Br(µ̄),∀q ≤ q0. At this q0 iteration, Mlq0

will be deleted. Consequently, in this case, the
sequence {Mlq} is finite. Hence, it is impossible to exists a sequence {Mlq} that is infinite.

Theorem 5. (Theorem IV.1 [29]) In a BB procedure, suppose that the bounding operation is finitely
consistent. Then the procedure terminates after finitely many steps.

Lemma 6. Algorithm 1 terminates after finitely many steps

Proof. From Lemma 4, we have the bounding operation in Algorithm 1 is finitely consistent. From
Theorem 5, Algorithm 1 terminates after finitely many steps

Finally, we prove that the BB scheme is convergent, as shown in Theorem 1:

Theorem 1. Algorithm 1 is convergent to the global optimal solution after a finite step L, with
βL = z = αL, by only branching on the space of µ.

Proof. From Lemma 6, we have Algorithm 1 terminates after finite steps. The algorithm terminates
with two situations. The first situations is |βl − αl| ≤ ϵ. When ϵ = 0, we have βl = z = αl.

The second situations is M = ∅. A node M is deleted from M and not further partitioned either
because β(M) > αl or |Mk ∩ X| = 1,∀k ∈ K. The first case obviously does not contain the
global optimal solution µ∗. Therefore, the node M ′ containing µ∗, is not further partitioned because
|M ′k ∩X| = 1,∀k ∈ K. After bound tightening according to the “medoids on samples” constraint,
the tightened node M ′ = {µ∗}. Obviously for this node, we have βl = β(M ′) = z = α(M ′) = αl.
Consequently, we have proved Theorem 1.
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B Parallel results of large scale datasets

Table 5 shows the parallel numerical results for large scale datasets with 10,000 to 2,458,285 samples.
For the large-scale datasets ranging from 10,000 to 100,000 samples, we obtain an average of 13.80x
speedup in time with 40 cores. Here, speedup ratio is defined as T̄1

T̄c
, in which T̄c is the overall

calculation time with c cores. The average efficiency is low since the time ratio of the parallel part is
relatively low in the small datasets. Consequently, we can expect a higher speedup in the big datasets.
For example, we obtain a 25.89x Speedup for URBANGB_10 with 100,000 samples compared to
7.57x for HTRU2 with 17,898 samples.

Table 5: Parallel results of large scale datasets (BB+LD, k = 3)

DATASET SAMPLE DIMENSION CORES UB NODES GAP(%) TIME(S)

HTRU2 17,898 8 40 8.21E+07 465 ≤0.10 205
GT 36,733 11 40 1.95E+07 101 ≤0.10 161
RDS 50,000 3 40 476.792 23 ≤0.10 71

KEGG 53,413 23 40 4.94E+08 177 ≤0.10 322
URBANGB_10 100,000 2 40 1.15E+05 49 ≤0.10 264

C Additional results of K-Medoids problems with K = 5 and K = 10

In this section, we perform several additional experiments with more clusters on the datasets ranging
from 100 to 100,000 samples. All these experiments use the same setup in Section 6. Table 6 and 7
are the results of the BB+LD method with cluster number K = 5 and K = 10 respectively. When
the cluster number is bigger, our BB+LD are more likely to obtain an upper bound smaller than
the Heuristic UB. However, the difference in UB between BB+LD and Heuristic becomes smaller.
Moreover, the search space of medoids increases as the cluster number, making it harder to obtain the
global optimum. Nevertheless, our BB+LD method can still obtain a relative gap smaller than 0.1%
within 4 hours for most datasets when K = 5 and a reasonable relative gap within 4 hours when
K = 10.

Table 6: Additional results of K-Medoids problems with BB+LD and K = 5

DATASET
SAM-

PLE

DIM-

ENSION

HEURISTIC

UB

SERIAL RESULTS (CORE=1) PARALLEL RESULTS (CORE=40)

UB NODES
GAP

(%)

TIME

(S)
UB NODES

GAP

(%)

TIME

(S)

IRIS 150 4 5.1000E+01 5.0920E+01 88 ≤0.10 355 - - - -

SEEDS 210 7 4.0372E+02 4.0121E+02 43 ≤0.10 376 - - - -

GLASS 214 9 4.3789E+02 4.3773E+02 6,846 ≤0.10 592 - - - -

BM 249 6 6.0249E+05 6.0249E+05 281 ≤0.10 389 - - - -

UK 258 5 4.0166E+01 4.0166E+01 1,869 ≤0.10 457 - - - -

HF 299 12 3.0998E+11 3.0998E+11 43,827 ≤0.10 1723 - - - -

WHO 440 8 5.5914E+10 5.5914E+10 32,832 ≤0.10 1840 - - - -

HCV 572 12 1.9716E+06 1.9716E+06 1,011,564 ≤0.10 12768 - - - -

ABS 740 21 1.7476E+06 1.7472E+06 329 ≤0.10 410 - - - -

TR 980 10 9.6555E+02 9.5339E+02 3,975 ≤0.10 824 - - - -

SGC 1,000 21 4.6969E+08 4.6919E+08 23,827 ≤0.10 3290 4.6919E+08 23,827 ≤0.10 880

HEMI 1,955 7 5.3864E+06 5.3811E+06 1,782 ≤0.10 930 5.3811E+06 1,782 ≤0.10 66

PR2392 2,392 2 1.1620E+10 1.1619E+10 405 ≤0.10 625 1.1619E+10 405 ≤0.10 41

TRR 5,456 24 1.6991E+05 1.6870E+05 3,029 ≤0.10 3094 1.6870E+05 3,029 ≤0.10 499

AC 7,195 22 1.6377E+03 1.6361E+03 1,473 ≤0.10 3552 1.6361E+03 1,473 ≤0.10 356

RDS_CNT 10,000 4 5.3725E+06 5.3725E+06 4,051 ≤0.10 7171 5.3725E+06 4,051 ≤0.10 450

HTRU2 17,898 8 4.2154E+07 4.2154E+07 3,453 10.85 4H 4.2154E+07 33,682 2.34 4H

GT 36,733 11 1.3358E+07 1.3351E+07 669 0.97 4H 1.3351E+07 4,095 ≤0.10 4776

RDS 50,000 3 2.8452E+02 2.8265E+02 499 0.94 4H 2.8265E+02 893 ≤0.10 1338

KEGG 53,413 23 1.9201E+08 1.9201E+08 503 24.54 4H 1.9200E+08 8,667 1.75 4H

URBANGB_10 100,000 2 5.6232E+04 5.6232E+04 104 3.63 4H 5.6232E+04 543 ≤0.10 2266
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Table 7: Additional results of K-Medoids problems with BB+LD and K = 10

DATASET
SAM-

PLE

DIM-

ENSION

HEURISTIC

UB

SERIAL RESULTS (CORE=1) PARALLEL RESULTS (CORE=40)

UB NODES
GAP

(%)

TIME

(S)
UB NODES

GAP

(%)

TIME

(S)

IRIS 150 4 3.0380E+01 2.9790E+01 6,219 ≤0.10 735 - - - -

SEEDS 210 7 2.1849E+02 2.1452E+02 919 ≤0.10 448 - - - -

GLASS 214 9 2.5325E+02 2.5186E+02 31,983 ≤0.10 2566 - - - -

BM 249 6 3.8181E+05 3.7597E+05 10,965 ≤0.10 1204 - - - -

UK 258 5 2.9785E+01 2.9280E+01 176,103 1.70 4H - - - -

HF 299 12 6.9604E+10 6.9604E+10 132,742 21.96 4H - - - -

WHO 440 8 3.4614E+10 3.4020E+10 107,430 11.13 4H - - - -

HCV 572 12 1.1592E+06 1.1315E+06 77,009 7.20 4H - - - -

ABS 740 21 1.1083E+06 1.0786E+06 56,090 0.19 4H - - - -

TR 980 10 7.7370E+02 7.7247E+02 41,752 3.17 4H - - - -

SGC 1,000 21 1.1742E+08 1.1742E+08 33,388 20.70 4H 1.1742E+08 254,583 16.33 4H

HEMI 1,955 7 2.7421E+06 2.7421E+06 16,711 9.69 4H 2.7068E+06 351,441 0.15 4H

PR2392 2,392 2 5.3578E+09 5.3578E+09 8,706 4.97 4H 5.3578E+09 195,660 0.52 4H

TRR 5,456 24 1.3933E+05 1.3796E+05 2,487 0.18 4H 1.3796E+05 22,527 ≤0.10 4H

AC 7,195 22 1.1817E+03 1.1817E+03 1,341 3.16 4H 1.1637E+03 32,530 0.63 4H

RDS_CNT 10,000 4 1.6119E+06 1.6119E+06 1,020 26.13 4H 1.6119E+06 33,615 13.15 4H

HTRU2 17,898 8 1.8273E+07 1.8273E+07 350 24.39 4H 1.8273E+07 16,083 16.86 4H

GT 36,733 11 8.9909E+06 8.9909E+06 65 4.89 4H 8.9909E+06 5,380 1.13 4H

RDS 50,000 3 1.3273E+02 1.3273E+02 40 7.89 4H 1.3273E+02 4,756 3.79 4H

KEGG 53,413 23 6.1564E+07 6.1564E+07 51 67.53 4H 6.1564E+07 919 30.11 4H

URBANGB_10 100,000 2 2.5123E+04 2.5123E+04 14 23.54 4H 2.5123E+04 1,427 9.04 4H

D Comparison of heuristic methods for K-Medoids problems

To illustrate the effectiveness of our upper bound method (Heuristic UB), we compares its performance
with several popular heuristic methods in the literature, including Kmeans, Kmeans++, and PAM.
Here, we run all the methods several times with random seeds and select the best result. The centers
of K-Means and K-Means++ are projected to the nearest samples to fulfill the "Medoids on Samples"
constraint in the KMedoids problem. This table shows that the Heuristic UB can always obtain the
same or better objective value than Kmeans, Kmeans++, and PAM.

Table 8: Additional results of heuristic methods for K-Medoids problems

DATASET KMEANS KMEANS++ PAM HEURISTIC BB+LD

IRIS 84.63 84.63 90.99 84.63 83.91
SEEDS 598.29 598.29 608.72 598.29 598.29
GLASS 629.02 629.02 652.15 629.02 629.02

BM 8.65E+05 8.65E+05 9.17E+05 8.65E+05 8.63E+05
UK 50.77 51.19 51.06 50.77 50.77
HF 7.83E+11 7.83E+11 7.83E+11 7.83E+11 7.83E+11

WHO 8.34E+10 8.34E+10 8.44E+10 8.34E+10 8.33E+10
HCV 2.85E+06 2.82E+06 2.76E+06 2.75E+06 2.75E+06
ABS 2.62E+06 2.62E+06 2.66E+06 2.62E+06 2.62E+06
TR 1.14E+03 1.14E+03 1.16E+03 1.14E+03 1.13E+03

SGC 1.28E+09 1.28E+09 1.49E+09 1.28E+09 1.28E+09
HEMI 9.92E+06 9.91E+06 1.18E+07 9.91E+06 9.91E+06

PR2392 2.13E+10 2.13E+10 2.53E+10 2.13E+10 2.13E+10
TRR 1.97E+05 1.96E+05 1.97E+05 1.96E+05 1.96E+05
AC 2.21E+03 2.21E+03 2.34E+03 2.21E+03 2.20E+03

RDS_CNT 1.49E+07 1.49E+07 1.50E+07 1.49E+07 1.49E+07
HTRU2 8.21E+07 8.21E+07 8.61E+07 8.21E+07 8.21E+07

GT 1.95E+07 1.95E+07 1.96E+07 1.95E+07 1.95E+07
RDS 476.88 476.88 486.75 476.88 476.79

KEGG 4.94E+08 4.94E+08 4.95E+08 4.94E+08 4.94E+08
URBANGB_10 1.15E+05 1.15E+05 1.26E+05 1.15E+05 1.15E+05

RNG_AGR 8.23E+14 8.23E+14 -∗ 8.23E+14 8.23E+14
URBANGB 4.14E+05 4.14E+05 -∗ 4.14E+05 4.14E+05
SPNET3D 2.28E+07 2.28E+07 -∗ 2.28E+07 2.28E+07

RETAIL 6.80E+09 6.80E+09 -∗ 6.80E+09 6.80E+09
SYNTHETIC 9.44E+06 9.44E+06 -∗ 9.44E+06 9.44E+06
RETAIL-II 2.90E+10 2.31E+10 -∗ 2.31E+10 2.31E+10
USC1990 6.91E+08 6.91E+08 -∗ 6.91E+08 6.91E+08

* OUT-OF-MEMORY ON ONE COMPUTER NODE

16



We also compared other clustering evaluation metrics, such as Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI). Since these clustering evaluation metrics need to compare the
predicted cluster with ground truth, we can only compare the datasets with ground truth, such as
IRIS, HCV, HF, HRTU2 and UK. Comparing Table 8 and Table 9, one interesting finding is that our
algorithm can reduce the objective values for some datasets while remaining the same as the heuristic
method for most datasets. A similar conclusion with objective values also holds for ARI and NMI.
However, it should be noted that only by comparing the heuristic solution with the global optimal
solution as we did in the table, we can confidently claim that the heuristic method can do a fairly nice
job in finding near-optimal solutions.

Table 9: ARI and NMI of heuristic methods for K-Medoids problems

DATASET SAMPLE DIMENSION
CLUSTER NUMBER
(GROUND TRUTH) METHOD

UB
(OBJECT VALUE) ARI NMI

IRIS 150 4 3

KMEANS 8.4680E+01 0.7302 0.7582
KMEANS++ 8.4680E+01 0.7302 0.7582

PAM 9.1040E+01 0.7060 0.7561
HEURISTIC 8.4680E+01 0.7302 0.7582

BB+LD 8.3960E+01 0.7455 0.7980

HCV 572 12 4

KMEANS 2.2873E+06 0.4417 0.2454
KMEANS++ 2.2873E+06 0.4417 0.2454

PAM 2.3168E+06 0.5941 0.3363
HEURISTIC 2.2873E+06 0.4417 0.2454

BB+LD 2.2873E+06 0.4417 0.2454

HF 299 12 2

KMEANS 1.3512E+12 0.0175 0.0025
KMEANS++ 1.3512E+12 0.0175 0.0025

PAM 1.3917E+12 0.0122 0.0013
HEURISTIC 1.3512E+12 0.0175 0.0025

BB+LD 1.3512E+12 0.0175 0.0025

HRTU2 17898 8 2

KMEANS 1.2536E+08 -0.0780 0.0267
KMEANS++ 1.2536E+08 -0.0780 0.0267

PAM 1.2800E+08 -0.0738 0.0221
HEURISTIC 1.2536E+08 -0.0780 0.0267

BB+LD 1.2535E+08 -0.0779 0.0271

UK 258 5 4

KMEANS 4.5044E+01 0.2378 0.3253
KMEANS++ 4.5044E+01 0.2378 0.3253

PAM 4.5420E+01 0.1539 0.2210
HEURISTIC 4.5040E+01 0.2378 0.3253

BB+LD 4.5040E+01 0.2378 0.3253
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