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Abstract

We study the deterministic global optimization of the K-Medoids clustering prob-
lem. This work proposes a branch and bound (BB) scheme, in which a tailored
Lagrangian relaxation method proposed in the 1970s is used to provide a lower
bound at each BB node. The lower bounding method already guarantees the max-
imum gap at the root node. A closed-form solution to the lower bound can be
derived analytically without explicitly solving any optimization problems, and
its computation can be easily parallelized. Moreover, with this lower bounding
method, finite convergence to the global optimal solution can be guaranteed by
branching only on the regions of medoids. We also present several tailored bound
tightening techniques to reduce the search space and computational cost. Exten-
sive computational studies on 28 machine learning datasets demonstrate that our
algorithm can provide a provable global optimal solution with an optimality gap
of 0.1% within 4 hours on datasets with up to one million samples. Besides, our
algorithm can obtain better or equal objective values than the heuristic method. A
theoretical proof of global convergence for our algorithm is also presented.

1 Introduction

In this paper, we concentrate on the K-Medoids clustering problem: given a dataset, K-Medoids aims
to select K samples from the dataset as cluster medoids that minimize the sum of dissimilarities
from other samples to the closet medoids. Here, selecting from existing samples as medoids is called
the “medoids on samples” constraint. K-Medoids is similar to the K-Means problem except for the
arbitrary dissimilarity measurements and the “medoids on samples” constraint. Hence, K-Medoids
generally has better interpretability than K-Means [1]. K-Medoids problems are generally NP-hard to
solve exactly. So there are many heuristic methods, such as PAM [2], CLARA [3], K-means-like
method [4], and Fast-PAM [5]. However, none of them can guarantee reaching the global minimum.

To solve the K-Medoids problem deterministically, back in the 1970s, Cornuejols et al. [6] proposed a
Lagrangian relaxation method for obtaining a lower bound of the optimal value, which can guarantee
a relative optimal gap smaller than 1/e. Interestingly, to the best of our knowledge, this is the only
application in which the Lagrangian duality gap can be guaranteed within a certain threshold. Several
improvements to this method are proposed in the literature. One common direction is improving
the heuristic process of Lagrangian dual problems. [7] constructed a semi-Lagrangian relaxation,
then accelerated the heuristic process by a cutting plane method. It was further improved in [8] by
fixing variables in the heuristic process. Their works can deal with medium-scale datasets (e.g., 3000
samples). Another common direction is column generation [9, 10].

One limitation of these Lagrangian relaxation based methods is that there is no guarantee of con-
vergence to the global optimal solution, due to the existence of duality gap. To address the global
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optimum guarantee, a few works have utilized the branch and bound (BB) scheme in K-Medoids
[11, 12, 13]. Christofides and Beasley [11] proposed a prototype by branching on binary variables
and was capable of small-scale datasets (200 samples). This scheme was further improved by [12]
through branching on semi-assignment constraints, which obtained solutions faster on small-scale
datasets. [13] presented a tighter form of the K-Medoids problem and was capable of medium-scale
datasets (900 samples). Besides these specific works, several off-the-shelf solvers also contain
well-implemented BB schemes, such as CPLEX [14] and Gurobi [15]. These solvers can typically
address the K-Mediods problem with medium-scale datasets (e.g., 2000 samples).

The BB schemes used in the aforementioned works can only address medium-scale datasets because
they need to branch on all the binary variables to guarantee convergence, which leads to poor
scalability because the number of binary variables increases linearly as the number of samples.
Therefore, we focus on the reduced-space BB scheme proposed in the stochastic programming
community, which only needs to branch on the space of coupling variables (e.g., medoids). This idea
was first reported for stochastic mixed-integer linear programs in [16] and then extended to stochastic
mixed-integer nonlinear programs in [17]. The convergence for stochastic nonlinear programs was
proved in [18]. Recently, the authors in [19] adopted this method and reported the capacity of
solving the K-means clustering problem (a similar clustering task without the “medoids on samples”
constraint) with 210,000 samples in parallel to an optimal gap of 2.5%. However, the convergence
of the reduced-space BB scheme can only be guaranteed when it is combined with suitable lower
bounding methods. In previous works, lower bounds are constructed by the Lagrangian relaxation
[16] [17] [19] or removal [18] of the so-called non-anticipativity constraints (an implicit constraint
that all the samples share the same coupling variables, that is Constraint 10 in this paper). However,
these methods are unsuitable for the K-Medoids problem, since they cannot address the "medoids on
samples" constraint (a constraint that has a large dimension and connects all samples) and thus cannot
ensure the convergence of the reduced-space BB scheme. Moreover, these lower bounding methods
require the solution of many expensive mixed-integer nonlinear programs to global optimality at
each node. In contrast, the work of Cornuejols et al. [6] generates lower bounds for the K-Medoids
problem by the Lagrangian relaxation of the semi-assignment constraint (Constraint 2b in this paper),
and the formulation directly takes the "medoids on samples" constraint into consideration. This
method has a closed-form solution, and its computation can be easily parallelized.

Our Contributions: Firstly, we combine the method of reduced-space BB scheme and the work
of Cornuejols et al. [6], and adapt these methods for the K-Medoids problem. The Lagrangian
relaxation in [6] is used to generate a tight lower bound, which already guarantees a maximum
gap at the root node. With this lower bound, we can prove the finite convergence (detailed proofs
presented in the Appendix A) by branching only on the regions of medoids (the dimension of which
is independent of the number of samples). Secondly, several tailored bound tightening techniques,
including probing and feasibility based methods, are proposed to significantly reduce the search space
and computational cost of each node. Lastly, we propose an upper bounding method by heuristic
updates of the candidate solutions obtained in the lower bounding procedure. These contributions
enable our algorithm to be extremely scalable.

Capability For Million Scale Problems: we provide an open-source project in Julia and present
numerical experiments on 28 datasets. Specifically, for two datasets with one million samples (which
is 400 times larger than the state-of-art BB method), our algorithm can reach a small gap (0.1%)
within one hour. To the best of our knowledge, no other article has ever reported results on datasets
of this scale for K-Medoids problems with a global convergence guarantee.

2 Preliminaries

K-Medoids problem: we denote a dataset with S samples and A attributes as X =
{x1, ..., xs, ..., xS} ∈ RS×A, in which xs = [xs,1, ..., xs,A] ∈ RA is the sth sample, and xs,a

is the ath attribute of sth sample. The K-Medoids problem aims to select a subset from the dataset as
the cluster medoids with the following objective:

min
µ∈

◦
M∩X

∑
s∈S

min
k∈K
||xs − µk||22, (1)

where µk := [µk
1 , ..., µ

k
A] ∈ RA is the medoid of kth cluster, µ := {µ1, ..., µK} is the medoids set,

S := {1, ..., S} is the index set of samples in the dataset, K := {1, ...,K} is the index set of clusters,

2



A := {1, ..., A} is the index set of attributes. We use µ ∈ X to represent the “medoids on samples”
constraint in the K-Medoids problem. To facilitate the discussion of the BB scheme, we introduce
◦
M := {µ|◦µ ≤ µ ≤

◦
µ̄} as the initial regions of medoids. Here,

◦
µ and

◦
µ̄ are the lower and upper

bounds of medoids referred from data. Specifically,
◦
µa = min

s∈S
xs,a and

◦
µ̄a = max

s∈S
xs,a are the

bounds of the ath attribute. Note that the introduction of
◦
M does not affect the optimal solution.

Equivalently, the K-Medoids problem can also be expressed in an extensive form (EF) [20]:

(EF) z(
◦
M) = min

b,y

∑
s∈S

∑
j∈S

ds,jbs,j (2a)

s.t.
∑
j∈S

bs,j = 1 (2b)

∑
j∈S

yj = K (2c)

bs,j ≤ yj (2d)
bs,j , yj ∈ {0, 1} (2e)
s, j ∈ S, k ∈ K, (2f)

where ds,j=||xs − xj ||22 is the distance between samples xs and xj ; yj is equal to 1 if sample xj is a
medoid, and otherwise 0; bs,j is equal to 1 if sample xs belongs to the cluster whose medoid is xj ,
and otherwise 0. Note here ds,j is computed offline, so arbitrary dissimilarity measurements can be
used without affecting the solution process. Constraint 2b ensures that each sample xs must belong
to one cluster. Constraint 2c guarantees that a total of K samples are selected as medoids. Constraint
2d expresses that sample xs can be assigned to sample xj only if xj is the medoid of a cluster.

Lagrangian Relaxation of the K-Medoids problem: by the Lagrangian relaxation of the Constraint
2b, we can have a relaxed problem of the Extensive Form 2:

βLD(
◦
M,λ) = min

b,y
{
∑
s∈S

[
∑
j∈S

(ds,j − λs)bs,j + λs]}

s.t. Constraints in the Extensive Form 2 except 2b,

(3)

where λs is the Lagrangian multiplier for sth sample. We define the multiplier set as λ := {λ1, ..., λS}.
For a given λ, βLD(

◦
M,λ) can be solved analytically. Considering the objective function and

constraints of the Relaxed Problem 3, we note that the optimal values for bs,j are given by

bs,j =

{
yj , if ds,j − λs ≤ 0,

0, otherwise.
(4)

We define the contribution of jth sample to the objective function as:

ρj(λ) :=
∑
s∈S

min(0, ds,j − λs). (5)

The Lagrangian problem can be reduced to

βLD(
◦
M,λ) = min

yj∈{0,1},j∈S
{
∑
j∈S

ρj(λ)yj +
∑
s∈S

λs}

s.t.
∑
j∈S

yj = K
(6)

Its closed-form solution can be easily derived by selecting yj corresponding to the K smallest ρj .
Lagrangian dual: a proper selection of λ may generate a tighter lower bound. Hence, we need to
solve the Lagrangian dual problem to get the tightest lower bound:

βLD(
◦
M) = max

λ
βLD(

◦
M,λ). (7)

There are several off-the-shelf heuristic methods to update λ, such as Sub-gradient method [11],
Volume method [21] and Cutting-Plane method [22]. The solution to the Dual Problem 7 provides a

lower bound to the original problem, with βLD(
◦
M) ≤ z(

◦
M). Particularly, for this problem, there is

a unique guarantee of maximum gaps between the lower bounds and the global optimal value, which

is z(M)−βLD(
◦
M)

zr−βLD(
◦
M)

< 1
e , zr =

∑
s∈S

max
j∈S

ds,j . This guarantee is theoretically proved in [6, 23].
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3 Lagrangian Based Lower Bound

The aforementioned Lagrangian method cannot close the duality gap. To obtain a global optimal
solution, we propose to combine it with the spatial branch and bound (BB) scheme, in which
Lagrangian relaxation provides a lower bound for each BB node.

Tailored Lagrangian Relaxation in BB nodes: Since our BB scheme branches on the regions of

the medoids µ, at each BB node, we solve the problem with the partition set M ⊆
◦
M . That is, a

constraint µ ∈ M is added at each BB node. We further define Mk:={µk|µk ≤ µk ≤ µ̄k} as the
medoid region of the kth cluster, where µk and µ̄k are the lower and upper bounds of the kth medoids.
Since the possible region of each cluster’s medoid can be different, we need to know the assignment
of medoids to each cluster. Hence, we replace yj with ykj in EF 2: ykj is equal to 1 if sample xj is
selected as the medoid of the kth cluster, and otherwise 0. The Constraint 2d is replaced by

∑
j∈S

yj = K (2d) =⇒
∑
j∈S

ykj = 1 (2d.1),
∑
k∈K

ykj ≤ 1 (2d.2).

Notice that µk is not directly modelled in EF, we need to transform the medoid regions µk ∈ Mk

to the constraints of ykj . The regions of medoids implicitly control the selection of ykj because we
have ykj = 0, if xj ̸∈ Mk. Hence, we define the feasible index set of kth cluster’s medoid as
Sk+(M) := {j ∈ S | µk ≤ xj ≤ µ̄k}. In this way, we can reformulate the reduced Lagrangian
Problem 6 at the BB node with M as follow:

βLD(M,λ) = min
yk
j ∈{0,1},k∈K,j∈Sk+(M)

{
∑
k∈K

∑
j∈Sk+(M)

ρj(λ)y
k
j +

∑
s∈S

λs}

s.t. Constraint (2d.1), (2d.2).
(8)

with the Lagrangian dual problem defined as βLD(M) = max
λ

βLD(M,λ). The optimal value of ykj
in Problem 8 can be obtained by the following procedure: (1) initialize k = 0 and J∗ = ∅ (2) let
jk∗ be the index of smallest ρj(λ) subject to j ∈ Sk+(M) and j /∈ J∗; (3) set ykj = 1 if j = jk∗,
otherwise, 0; (4) add jk∗ to J∗; (5) update k=k + 1 and return to (2) until k = K.

Parallel implementation: we implement a parallel version of the tailored Lagrangian relaxation, in
which the computations of contributions, ρj(λ), are performed in each process. At the beginning of
the BB procedure, given P processes, the index set S of the whole dataset is evenly divided into P
subsets, Sp, p = 1, .., P . Then, each process computes and stores the distance assigned to it, which is
ds,j , s ∈ S, j ∈ Sp. At each BB node with M , denote the feasible index set of all the medoids as

S+(M) = S1+(M) ∪ S2+(M) ∪ ... ∪ SK+(M). (9)

Then, each process computes the assigned contributions using the stored ds,j , which is ρj(λ),∀j ∈
Sp ∩ S+(M). The remaining parts of the parallel implementation (e.g., update of λ) are identical to
the serial version.

4 Tailored Reduced-space Branch and Bound Scheme

This section introduces the tailored reduced-space branch and bound algorithm for the K-Medoids

problem, which is detailed in Algorithm 1. Specifically, starting from the root node with
◦
M , the BB

scheme recursively partitions the medoid regions. At each iteration, the algorithm first selects the
node with the lowest lower bound and denotes it as M . Then, bound tightening techniques are applied
to get a tightened medoid region M̂ . The lower and upper bounds of the tightened node are computed
and updated sequentially. If the gap is larger than the tolerance, we branch on the medoid variable µk

a
with the maximum range to get two sub-nodes M1 and M2 with relint(M1) ∩ relint(M2) = ∅,
where relint(M) is the relative interior of M . On the convergence of the algorithm, we have the
following theorem with detailed proofs in Appendix A:
Theorem 1. Algorithm 1 is convergent to the global optimal solution after a finite step L, with
βL = z = αL, by only branching on the space of µ.
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Algorithm 1 Tailored Reduced-space Branch and
Bound Scheme for K-Medoids clustering
1: Initialization
2: Load and store dataset as X .
3: Initialize the iteration index l = 0, the node set

M←
◦
M , and tolerance ϵ ≥ 0.

4: Compute initial lower, upper bounds: βl = β(
◦
M),

αl = α(
◦
M).

5: while M ̸= ∅ and |βl − αl| ≥ ϵ do
6: Node Selection
7: Select and delete from M a Node M ∈ M with

its parent node’s lower bound β(MP ) = βl (for
the root node, select and delete itself).

8: Update l← l + 1.
9: Bound Tightening

10: Probing // Alg. 2.
11: Cluster Assignment // Alg. 3.
12: Feasibility Based Bound Tightening // Alg. 4.
13: Tighten according to the “medoids on samples”

constraint.
14: Obtain the tightened node M̂ .
15: Bounding
16: Compute lower, upper bounds: β(M̂), α(M̂).
17: Update βl ← min{β(M ′) |M ′ ∈ M}.
18: Update αl ← min{αl−1, α(M̂)}.
19: Delete all M ′ from M if β(M ′) > αl.
20: Branching
21: if |M̂ ∩X| > 1 and |βl − αl| ≥ ϵ then
22: Partition M̂ into subsets M1 and M2 with

relint(M1) ∩ relint(M2) = ∅.
23: Add Mi to M if Mk

i ∩X ̸= ∅, ∀k ∈ K, i ∈
{1, 2}.

24: end if
25: end while

Algorithm 2 Probing
1: Select the region of the branched variable Mk

a .
2: Divide Mk

a into two sub-regions Msub.
3: Compute basic LB for each sub-region.
4: Delete the sub-region if βbasic(Msub) > αl.

Algorithm 3 Cluster Assignment
1: for Sample xs ∈ X ∩M, do
2: if xs is not assigned in the parent node then
3: if dk

+

s,max < dk
−

s,min,∀k− ∈ K \ k+ then
4: Assign xs to k+th cluster.
5: end if
6: end if
7: end for

Algorithm 4 Feasibility Based Bound Tightening
1: for Cluster k ∈ K do
2: Obtain the assigned set Sk

A according to Alg.3.
3: Compute RHS = αl − β(M)−.
4: for Attribute a ∈ A do
5: Obtain the tightened node, M̂k

a={µk
a|µ̂k

a ≤
µk
a ≤ ˆ̄µk

a}, by solving the inequation 13.
6: Update M̂k

a ← M̂k
a ∩Mk

a

7: end for
8: end for

Algorithm 5 Lagrangian Based Lower Bounding

1: Compute basic LB, βbasic(M̂).
2: if |βbasic(M̂)− αl| ≥ ϵ then
3: Compute Lagrange Dual LB, βLD(M̂).
4: β(M̂) = max{βbasic(M̂), βLD(M̂)}.
5: else
6: β(M̂) = βbasic(M̂).
7: end if

4.1 Lower Bounds

Basic lower bound: Besides the Lagrangian based lower bound, we also introduce a basic lower
bound βbasic. Although it is not as tight as the Lagrangian based lower bound βLD, its computational
cost is significantly lower. Thus it is useful when the BB tree is deep with small medoid regions. For
K-Medoids 1, there is an implicit constraint that all the samples share the same medoid set:

µk
s = µk

s+1,∀s ∈ {1, ..., S − 1}, k ∈ K, (10)

in which µk
s is the kth medoid for the sth sample. By removing the “medoids on samples” constraint

µ ∈ X and Constraint 10, we have the basic lower bound βbasic(M) with βbasic(M) ≤ z(M):

βbasic(M) = min
µs∈M

∑
s∈S

min
k∈K
||xs − µk

s ||22 =
∑
s∈S

min
k∈K

min
µk
s∈Mk

||xs − µk
s ||22. (11)

We define dks,min(M) := min
µk∈Mk

||xs − µk||22 and obviously βbasic(M) =
∑
s∈S

min
k∈K

dks,min(M). The

analytic solution to dks,min(M) can be easily derived: µk
s,a = mid{µk

a, xs,a, µ̄
k
a}, a ∈ A, in which

µk
a and µ̄k

a are the bounds of the ath attribute in kth medoid region.

Lagrangian based lower bound: as shown in Algorithm 5, by combining the basic and LD lower
bound methods, we give the final form of lower bounds: β(M) = max{βbasic(M), βLD(M)}. We
note that because βbasic(M) ≤ z(M) and βLD(M) ≤ z(M), we have β(M) ≤ z(M). Besides,
according to the guarantee of maximum gap between the Lagrangian based lower bound and the
global optimal value, we can also derive a guarantee of maximum gaps for β(M):

Proposition 2. z(M)−β(M)
zr−β(M) < 1

e , where zr=
∑
s∈S

max
j∈S

ds,j .
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4.2 Upper Bounds

Upper bounds of the K-Medoids problem can be obtained by selecting a feasible set of medoids
µ̃ ∈M ∩X . Given a feasible solution, we can obtain the assignments of samples and object value
through Equation 1, without solving any optimization problem explicitly. However, the selection of µ̃
will critically influence the efficiency of convergence. Hence, in our implementation, we introduce
two efficient upper bounding methods:

Root node: we use the K-Means-like method [4] as a backbone. Because the K-Means-like method
is sensitive to the initial seeds and apt to the local minimum [5], we run this method several times
with random seeds to get a candidate solution set. Then, we improve the quality of the upper bound
by feeding the candidate solution set as initial guesses to Evolutionary Centers Algorithm [24].

Child nodes: we utilize the candidate solution obtained in the lower bounding method to update
the upper bounds. Specifically, we first compute the corresponding assignments, then feed these
assignments as the initial solution to the K-Means-like method. It should be noted that this K-Means-
like method [4] gives a solution full-filling the "medoids on samples" constraint in K-Medoids.

5 Bound Tightening Techniques

Here, we introduce some bound tightening techniques tailored for the K-Medoids problem to reduce
the search regions M at each BB node while guaranteeing the optimal solution is not excluded. These
bound tightening techniques are deployed before lower and upper bounds calculation.

5.1 Probing

Probing is a technique to reduce bound regions by exploiting the inequalities in a mixed integer
programming problem [25]. This paper exploits the implicit inequality that the lower bound of a region
containing the optimal solution is smaller than the current best upper bound. As shown in Algorithm
2, it tentatively restricts the bounds of µ to a subinterval and then computes the corresponding
lower bound. If the lower bound is larger than the best upper bound, we can conclude that no
optimal solution exists within the subinterval, and tighten the bound on the variable accordingly. The
computation costs are trivial since we use the basic lower bounding method.

5.2 Feasibility Based Bound Tightening

This subsection introduces the Feasibility Based Bound Tightening (FBBT) technique. It is based on
the observation that the assignment of some samples to clusters can be predetermined.

𝑥𝑀

𝑀

𝑀

𝑑 ,

𝑑 ,

𝑑 ,

Figure 1: Cluster assignment with 3 clusters. In this example, we have d2s,max < d1s,min and
d2s,max < d3s,min. Therefore, we assign xs to the second cluster.

Cluster assignment: if we have ||xs − µk+ ||22 < ||xs − µk− ||22,∀k− ∈ K \ k+, then obviously
sample xs is in the k+th cluster. However, the value of µ here is not known before solving the
overall problem. Recall that we have dks,min(M):= min

µk∈Mk
||xs − µk||22. Similarly, we also define

dks,max(M):= max
µk∈Mk

||xs − µk||22 as the maximum distance between xs and µk with µk ∈Mk. At

a BB node with partition M , if we have dk
+

s,max(M) < dk
−

s,min(M),∀k− ∈ K \ k+, then sample xs

is guaranteed to be assigned to the k+th cluster. Based on this observation, we can check whether
the cluster of some samples can be determined in a BB node as shown in Algorithm 3. Recall that
dks,min(M) is already computed as a byproduct of the basic lower bound in Section 3. Similarly,
since the cluster regions for each node are rectangles, dks,max(M) can also be analytically computed.
Besides, since child nodes are subsets of the parent node, once a sample is assigned to a cluster in
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a parent node, it is also assigned to the same cluster in its child nodes. Figure 1 shows a simple
illustration of this cluster assignment scheme.

FBBT: In a node with M , we denote the index sets of samples assigned to cluster k as SkA. FBBT
infers the regions of µk from the following inequation:

β(M)− +
∑
s∈Sk

A

||xs − µk||22 ≤ αl,∀k ∈ K (12)

where αl is the current best upper bound, β(M)− represents the lower bound contributions of samples
unassigned to cluster k (either samples assigned to other clusters or samples whose assignments are
undetermined). Similar to the calculation of the basic lower bounding method, we have β(M)− =∑
s∈S\Sk

A

min
k∈K

dks,min(M).

As shown in Algorithm 4, FBBT is applied for each cluster. Specifically, for the kth medoid region,
1) obtain SkA according to the results of Algorithm 3; 2) compute the right-hand-side, RHS =

αl − β(M)−; 3) for each attribute a ∈ A, obtain the tightened region, M̂k
a={µk

a|µ̂
k
a ≤ µk

a ≤ ˆ̄µk
a},

by solving the following inequation:∑
s∈Sk

A

(xs,a − µk
a)

2 +
∑
s∈Sk

A

∑
i∈A\a

min
µk
i ∈Mk

(xs,i − µk
i )

2 ≤ RHS, ∀a ∈ A,∀k ∈ K. (13)

Since 13 is a simple quadratic inequation, we can analytically solve the problem to obtain the lower
and upper bound of µk

a as µ̂k
a and ˆ̄µk

a. Finally, update M̂k
a by M̂k

a ← M̂k
a ∩Mk

a .

5.3 Miscellaneous

Symmetric-breaking: we enforce a symmetric-breaking constraint on the first attribute, i.e., µk
1 ≤

µk+1
1 ,∀k = 1, ...,K − 1. It is used to tighten the regions of M at each BB node.

Bound tightening according to the “medoids on samples” constraint: since the K-Medoids
problem requires medoids to be selected from samples in the dataset, we can further tighten the
regions of M by M̂ = {µ|µ̂ ≤ µ ≤ ˆ̄µ}, µ̂k

a = min
s∈M∩X

xs,a, and ˆ̄µk
a = max

s∈M∩X
xs,a.

5.4 Effects on Computation

With a reduced search space, these bound tightening techniques can significantly reduce the number of
BB nodes to be explored. Moreover, they can also accelerate the calculation of bounds. For example,
for the Lagrangian Problem 8, we need to calculate the contributions, ρj , of samples belonging to the
overall feasible set of medoids, Ŝ+ = Ŝ1+ ∪ Ŝ2+ ∪ ... ∪ ŜK+. A reduced search space M̂ means a
reduced overall feasible selection set, which further leads to fewer calculations and faster speeds.

6 Experiments and Discussions

To evaluate the performance, we use 25 datasets from the UCI Machine Learning Repository [26],
one dataset called PR2392 from [27], one dataset called HEMI[28] and one synthetic dataset from
[19]. The datasets from UCI Repository are in the clustering category with multivariate numerical
attributes and range from 100 to 2,458,285 instances. We implement our branch and bound K-
Medoids algorithm with Lagrangian based lower bound method (BB+LD) in Julia 1.6.1. We also
implement four other methods to compare the performance, including the extensive form of K-
Medoids problem solved by the state-of-art global optimizer CPLEX 20.1.0 [14] (CPLEX), the
heuristic method in the root node (Heuristic), the pure Lagrangian relaxation method without branch
and bound (LD), and the state-of-art BB method for K-Means in [19] adapting to K-Medoids by
adding "medoids on samples" constraint (BB+Basic). We executed all the experiments on a high-
performance computing cluster, of which each node contains 40 Intel cores at 2.4 GHz and 202
GB RAM. We present the results of cluster number K = 3 in the main body with additional
results K = 5 and K = 10 in Appendix C. The complete code files can be found in https:
//github.com/YankaiGroup/global_kmedoids_clustering
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The numerical performances are compared using three indicators, including upper bound value (UB),
relative optimal gap, and the number of solved nodes. Here, UB is the best upper bound in all the
iterations. The relative optimal gap is the relative difference between the best lower and upper bounds,
which is calculated by Gap(%) := αl−βl

min{αl,βl} × 100%. This relative gap represents the worst gap
of the found solution from the global optimal solution. Notably, this gap is a particular property of
deterministic global optimization algorithms. Heuristic methods can not quantify the worst gap from
the global optimal solution. The number of solved nodes represents the total number of BB nodes.

All the deterministic methods CPLEX, LD, BB+Basics, and BB+LD, share the same terminal criteria,
including (1) Gap ≤ 0.1%, (2) the solving time reaches 4 hours, (3) the number of solved nodes
reaches 5 million. Both LD and BB+LD use the same sub-gradient method called the Volume method
[21]. Particularly, for BB+LD, the maximum iteration of Lagrangian multiplier updates in each node
is 10. For LD, the maximum iteration is 10,000. In the heuristic method, we execute the K-Means-like
method 20 times with a fixed seed set including 20 different seeds, then feed the solution set as initial
guesses to ECA to get the best solutions.

Table 1: Serial numerical results (K = 3)

DATA-
SET

SAM-
PLE

DIM-
ENSION

METHOD UB NODES
GAP
(%)

TIME
(S)

DATA-
SET

SAM-
PLE

DIM-
ENSION

METHOD UB NODES
GAP
(%)

TIME
(S)

IRIS 150 4

HEURISTIC 84.63 - - -

HEMI 1955 7

HEURISTIC 9.91E+06 - - -
CPLEX 83.91 1 ≤0.10 41 CPLEX 9.91E+06 1 ≤0.10 2044

LD 83.91 1 ≤0.10 19 LD 9.91E+06 1 12.45 3176
BB+BASIC 83.91 2.0E+5 ≤0.10 124 BB+BASIC 9.91E+06 1.9E+6 4.32 4H

BB+LD 83.91 25 ≤0.10 93 BB+LD 9.91E+06 63 ≤0.10 97

SEEDS 210 7

HEURISTIC 598.29 - - -

PR2392 2392 2

HEURISTIC 2.13E+10 - - -
CPLEX 598.29 1 ≤0.10 60 CPLEX 2.13E+10 1 ≤0.10 5339

LD 598.29 1 ≤0.10 19 LD 2.13E+10 1 ≤0.10 35
BB+BASIC 598.29 2.4E+5 ≤0.10 273 BB+BASIC 2.13E+10 3.0E+5 4.38 4H

BB+LD 598.29 9 ≤0.10 84 BB+LD 2.13E+10 37 ≤0.10 123

GLASS 214 9

HEURISTIC 629.02 - - -

TRR 5456 24

HEURISTIC 1.96E+05 - - -
CPLEX 629.02 1 ≤0.10 60 CPLEX - - - -

LD 629.02 1 ≤0.10 19 LD 1.96E+05 1 0.41 4H
BB+BASIC 629.02 2.2E+6 ≤0.10 2871 BB+BASIC 1.96E+05 7.4E+4 1644.88 4H

BB+LD 629.02 32 ≤0.10 107 BB+LD 1.96E+05 553 ≤0.10 325

BM 249 6

HEURISTIC 8.65E+05 - - -

AC 7195 22

HEURISTIC 2211.19 - - -
CPLEX 8.63E+05 1 ≤0.10 64 CPLEX - - - -

LD 8.63E+05 1 ≤0.10 19 LD 2199.12 1 ≤0.10 287
BB+BASIC 8.63E+05 5.0E+6 25.74 7698 BB+BASIC 2200.04 1.3E+5 573.92 4H

BB+LD 8.63E+05 53 ≤0.10 86 BB+LD 2199.10 67 ≤0.10 222

UK 258 5

HEURISTIC 50.77 - - -

RDS_
CNT

10000 4

HEURISTIC 1.49E+07 - - -
CPLEX 50.77 1 ≤0.10 74 CPLEX - - - -

LD 50.77 1 0.96 176 LD 1.49E+07 1 14.89 4H
BB+BASIC 50.77 9.5E+5 3.93 4H BB+BASIC 1.49E+07 2.6E+5 ≤0.10 5883

BB+LD 50.77 119 ≤0.10 89 BB+LD 1.49E+07 31 ≤0.10 203

HF 299 12

HEURISTIC 7.83E+11 - - -

HTRU2 17898 8

HEURISTIC 8.21E+07 - - -
CPLEX 7.83E+11 1 ≤0.10 74 CPLEX - - - -

LD 7.83E+11 1 19.73 28 LD 8.21E+07 1 22.97 4H
BB+BASIC 7.83E+11 9.6E+4 ≤0.10 173 BB+BASIC 8.21E+07 2.3E+5 25.48 4H

BB+LD 7.83E+11 99 ≤0.10 107 BB+LD 8.21E+07 465 ≤0.10 1555

WHO 440 8

HEURISTIC 8.34E+10 - - -

GT 36733 11

HEURISTIC 1.95E+07 - - -
CPLEX 8.33E+10 1 ≤0.10 124 CPLEX - - - -

LD 8.33E+10 1 11.10 37 LD 1.95E+07 1 1.43 4H
BB+BASIC 8.33E+10 5.0E+6 2.42 11943 BB+BASIC 1.95E+07 4.3E+4 298.13 4H

BB+LD 8.33E+10 193 ≤0.10 117 BB+LD 1.95E+07 101 ≤0.10 1936

HCV 572 12

HEURISTIC 2.75E+06 - - -

RDS 50000 3

HEURISTIC 486.75 - - -
CPLEX 2.75E+06 1 ≤0.10 121 CPLEX - - - -

LD 2.75E+06 1 0.34 536 LD 486.75 1 4.34 4H
BB+BASIC 2.75E+06 1.9E+6 ≤0.10 5587 BB+BASIC 476.79 2.0E+5 35.72 4H

BB+LD 2.75E+06 4818 ≤0.10 215 BB+LD 476.79 23 ≤0.10 811

ABS 740 21

HEURISTIC 2.62E+06 - - -

KEGG 53413 23

HEURISTIC 4.94E+08 - - -
CPLEX 2.62E+06 23 0.23 285 CPLEX - - - -

LD 2.62E+06 1 0.86 726 LD 4.94E+08 1 151.02 4H
BB+BASIC 2.62E+06 2.4E+6 57.45 4H BB+BASIC 4.94E+08 1.8E+4 11.72 4H

BB+LD 2.62E+06 125 ≤0.10 119 BB+LD 4.94E+08 177 ≤0.10 3901

TR 980 10

HEURISTIC 1136.93 - - -

URBAN
GB_10

100000 2

HEURISTIC 1.26E+05 - - -
CPLEX 1134.45 3 ≤0.10 855 CPLEX - - - -

LD 1136.93 1 0.80 130 LD 1.26E+05 1 26.5704 4H
BB+BASIC 1136.93 2.5E+6 209.23 4H BB+BASIC 1.15E+05 7.6E+4 17.86802 4H

BB+LD 1134.45 191 ≤0.10 126 BB+LD 1.15E+05 49 ≤0.10 6834

SGC 1000 21

HEURISTIC 1.28E+09 - - -
CPLEX 1.28E+09 1 ≤0.10 347

LD 1.28E+09 1 21.85 1248
BB+BASIC 1.28E+09 3.8E+5 ≤0.10 2739

BB+LD 1.28E+09 189 ≤0.10 140
* OUT-OF-MEMORY IN THE ROOT NODE WITH NO SOLUTION.
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6.1 Serial Results

Table 1 shows the serial numerical results for the datasets with less than 100,000 samples. In terms of
best found upper bound (UB), the deterministic global optimization methods (CPLEX, BB+Basic,
and BB+LD) can obtain better UB than the heuristic method in several datasets (e.g., IRIS, BM,
RDS). While we try to obtain the best heuristic results by multiple initializations, there is still no
guarantee for the heuristic method to reach the global optimum. Moreover, the heuristic method can
not provide an optimal gap to estimate the solution quality. Notably, our method and CPLEX provide
the same upper bounds and gaps for the datasets smaller than PR2392 (2392 samples).

As for the gaps and running times, CPLEX and LD can obtain a small gap (≤0.1%) with less time
when datasets are smaller than HCV (572 samples). However, when datasets are larger than HCV,
our method, BB+LD, can reach the small gap with much less time than CPLEX and LD. Remarkably,
our method can reach the small gap in all the datasets up to 100,000 samples within 4 hours. CPLEX
fails to give a solution because of the out-of-memory error in the root node when datasets are larger
than PR2392 (2392 samples). LD and BB+Basic methods may not reach the small gap within 4 hours
or maximum iteration limits when datasets are larger than BM (249 samples). Recall that LD has no
guarantee of reaching the global optimal solution because of the duality gap. All these results show
that our method is extremely scalable for K-Medoids problems even under serial mode.

Notably, we followed the tuning guide in the CPLEX documentation to improve its performance.
For example, we initiated the root node with the Heuristic solution and specified the node file and
memory parameters. Moreover, we tried different MIP strategies, including start, pre-solve, and
heuristic strategies. In Table 1, we present the best results obtained by CPLEX.

6.2 Parallel Results

For BB+LD, we executed parallel experiments utilizing MPI interfaces in the large and huge scale
datasets with K = 3. The results of large-scale datasets ranging from 10,000 to 100,000 samples are
presented in Appendix B. Table 2 shows the parallel numerical results for huge datasets with 100,000
to 2,458,285 samples. In this table, even for the dataset with 1,046,910 samples, BB+LD can still
converge to the global optimal solution (≤0.10 gaps) within one hour, which is 400 times larger
than the size of problem that the state-of-art global solver CPLEX can address. For USC1990 with
2,458,285 samples and 68 features, BB+LD can obtain a 6.33% gap within 4 hours. According to
Theorem 1, we can obtain a global ϵ-optimal solution for USC1990 given more calculation time.

Table 2: Parallel results of huge scale datasets (BB+LD, K = 3)

DATASET SAMPLE DIMENSION CORES UB NODES GAP(%) TIME(S)

RNG_AGR 199,843 7 1600 8.23E+14 99 ≤0.10 341.0
URBANGB 360,177 2 1600 4.14E+05 57 ≤0.10 327.0
SPNET3D 434,874 3 1600 2.28E+07 115 ≤0.10 865.0

RETAIL 541,909 2 1600 6.80E+09 1 ≤0.10 80.0
SYNTHETIC 1,000,000 2 6000 9.44E+06 3 ≤0.10 171.0
RETAIL-II 1,046,910 2 6000 2.31E+10 214 ≤0.10 2515.0

USC1990∗ 2,458,285 68 3000 6.91E+08 25 6.33 4H

* ds,j WAS COMPUTED ON-THE-FLY, NOT PRECOMPUTED AND STORED.

7 Complexity Analysis

7.1 Time Complexity

Denoting the number of samples as S, attributes as A, and clusters as K, our algorithm branches on
the medoid regions to guarantee convergence, which contains A×K variables and is independent
of the number of samples S. However, the number of BB nodes to converge is hard to predict since
the efficiency of bounding methods depends on datasets. Also, the number of Lagrangian Dual (LD)
iterations in each BB node is different because we set dynamic stopping criteria in case there is no
update of LB in several continuous LD iterations. The time complexity of one LD iteration is O(S2)
when ds,j are precomputed. If ds,j are not precomputed, the time complexity is O(AS2).

Table 3 compares computing time and nodes on synthetic datasets. In this table, the average run-
time of one LD iteration remains almost the same as the dimension changes and increases almost
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quadratically as the number of samples increases. As for the BB nodes, although the number of
branching variables is A×K, the actual number of explored BB nodes does not strictly follow the
growth of dimensions. These results are consistent with the complexity analysis mentioned above.

Table 3: Comparison of time and nodes on synthetic datasets with varies dimensions and samples

SAMPLES DIMENSION 2 5 10 20 30 40 50 60 70 80 90 100

1,000 NODES∗ 10 3 3 31 19 3 3 39 7 3 69 3
TIME (MS)† 4.28 4.28 4.06 3.57 3.62 4.02 4.11 3.78 4.32 3.8 3.21 3.79

10,000 NODES∗ 3 17 7 17 17 15 41 13 7 3 201 17
TIME (MS)† 423 363 387 357 390 361 373 366 369 363 211 358

100,000 NODES∗ 4 7 27 31 3 15 27 13 25 7 25 21
TIME (S)† 40.6 39.2 34.3 33.4 35.2 28.7 35.6 37.1 34.6 36.2 35.2 34.3

* THE NUMBER OF SOLVED NODES IN THE BB PROCEDURE UNTIL CONVERGENCE.
† TIME CONSUMED IN EACH LAGRANGIAN DUAL ITERATION.

7.2 Space Complexity of Distance

When distances ds,j are precomputed and stored, the space complexity of ds,j matrix is O(S2). In
our implementation, the datasets with no more than 100,000 samples were computed on one compute
node with 40 cores and 202GB RAM. For more than 100,000 samples, we executed the experiments
on multiple compute nodes. Each core precomputes and stores part of the ds,j matrix, as described in
Section 3. For example, we executed the one-million dataset RETAIL-II on 150 nodes with 6,000
cores. Each core only needs to store 1.25GB of ds,j matrix. For more than 1,000,000 samples, we
calculated ds,j on the fly, without precomputing and storing. In this case, the time complexity of one
LD iteration increases from O(S2) to O(AS2). Hence, we expect an acceptable slowdown when
the dimension of datasets is small. For example, in Table 2, the dataset USC1990 with two-million
samples and 68 features was executed without precomputing ds,j , and the result is acceptable. Table
4 compares the computing time of precomputed distance and on-the-fly computing. We can conclude
that although calculating ds,j on the fly is slower than precomputing ds,j , the slowdown is acceptable.

Table 4: Comparison of precomputed distance and on the fly computing

DATASET DIMENSION
TOTAL

RUN TIME (S)
TIME PER

LD ITERATION (MS)
ON-THE-FLY PRECOMPUTED ON-THE-FLY PRECOMPUTED

ABS 21 34 12 1.42 0.70
HEMI 7 17 13 9.91 2.02

RDS_CNT 4 47 30 175 37.80
TR 10 58 15 2.54 0.73

TRR 24 365 74 110 10.80

8 Conclusion

We presented a scalable global optimization algorithm of the K-Medoids problem by applying a
tailored reduced-space spatial branch and bound scheme. This algorithm includes a Lagrangian based
lower bounding method and a basic lower bounding method. Bound tightening techniques are also
proposed to accelerate the solution process. We demonstrate our algorithm’s scalability by extensive
numerical experiments and prove the convergence by theoretical analysis. Besides, one interesting
finding is that our algorithm can reduce the objective values for some datasets while remaining the
same as the heuristic method for most datasets. We also compared other clustering evaluation metrics
in Appendix D, such as Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). A
similar conclusion with objective values holds for these metrics. However, it should be noted that
only with the global optimal solution obtained in our work can we give a fair comparison of the
heuristic methods and, in turn, contribute to developing a more efficient heuristic method.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section ??
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our

work is about a global solver of the K-Medoids problem. The problem itself may have
societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6 and the supplemental material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] Our method is a deterministic method.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We compare our

method with some existing methods and we cite the creators in the main body.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our project codes in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use the datasets from UCI Machine Learning Repository
and three open-source datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The meaning of datasets are described in UCI
Machine Learning Repository.

5. If you used crowdsourcing or conducted research with human subjects... [No] Our work
does not use crowdsourcing or conducted research with human subjects
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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