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Abstract

Detecting out-of-distribution (OOD) samples is essential for reliably deploying
deep learning classifiers in open-world applications. However, existing detectors
relying on discriminative probability suffer from the overconfident posterior es-
timate for OOD data. Other reported approaches either impose strong unproven
parametric assumptions to estimate OOD sample density or develop empirical
detectors lacking clear theoretical motivations. To address these issues, we propose
a theoretical probabilistic framework for OOD detection in deep classification net-
works, in which two regularization constraints are constructed to reliably calibrate
and estimate sample density to identify OOD. Specifically, the density consistency
regularization enforces the agreement between analytical and empirical densities of
observable low-dimensional categorical labels. The contrastive distribution regular-
ization separates the densities between in distribution (ID) and distribution-deviated
samples. A simple and robust implementation algorithm is also provided, which can
be used for any pre-trained neural network classifiers. To the best of our knowledge,
we have conducted the most extensive evaluations and comparisons on computer
vision benchmarks. The results show that our method significantly outperforms
state-of-the-art detectors, and even achieves comparable or better performance than
methods utilizing additional large-scale outlier exposure datasets.

1 Introduction

Deep networks have achieved impressive accuracy on many classification tasks when evaluated in a
static and closed environment, where the test samples are sampled from the same distribution as the
training data. However, when deployed in real-world applications, deep learning (DL) models often
encounter anomalous samples different from the training data. Detecting such unexplored samples
is referred to as out-of-distribution (OOD) detection [1–13], which is crucial for reliable decision
making, especially in safety-critical applications such as autonomous driving, medical diagnosis and
secure authentication[1, 3, 8, 9]. This topic is particularly important for deep classifiers because it
has been well documented that it can be easily fooled by OOD samples to produce high confidence
predictions [14, 15, 7, 8, 11, 9, 16, 4]. In recent years, most reported and favored strategies for
DL-based OOD detection are to design the detectors by inspecting the distribution of high-level
features extracted by the relevant target task network. The studies are briefly reviewed below.
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As a pilot study, Hendrycks et al. proposed to detect OOD samples based on maximal softmax
probability (Msp) [16], i.e., maxy p(y|x), which has become a common baseline for OOD detection
[10, 4–7, 12, 9, 17, 13, 18]. Subsequently, Liang et al. proposed the Odin method, which provided
temperature scaling and input perturbation strategies, to push the Msp score further apart for ID
and OOD data [17]. Hsu et al. generalized the Odin method to avoid access to OOD samples for
parameter tuning [5]. Another similar technique, which uses softmax probability for OOD detection,
is pNML [3]. In pNML, Bibas et al. detected OOD samples using their proposed regret score
log
∑

y p(y|x), where p(y|x) denotes online fine-tuned softmax probability by adding the test sample
x to the training set with an arbitrary label y. However, these methods relying on softmax probability
score p(y|x) can suffer from overconfidence problem since many studies have shown that neural
networks can produce arbitrarily high softmax probability for OOD inputs [4, 19, 1, 10, 8, 12, 20].

Another line of research utilizes the distribution of extracted high-level features f(x) to estimate
ID data density p(x) for OOD detection as modeling p(x) directly with high-dimensional input x
is prohibitive in most cases. For example, Lee et al. [9] proposed using the Mahalanobis distance
between the test sample’s feature representations and the class-conditional gaussian distributions in
the intermediate layers to train a logistic regression OOD detector. Essentially, this Mah method
constructed the OOD score using maxy p(f(x)|y), in which p(f(x)|y) was assumed to obey Gaussian
distribution for the ID training data. Afterward, Sehwag et al. [21] and Zhou et al. [19] further
extended the Mah model for unsupervised learning (no training labels available) and semi-supervised
learning settings (small set of training labels available), respectively. However, the strong parametric
assumption for these studies that class-conditional feature representation follows Gaussian distribution
often fails in practical applications. Liu et al. [4] interpreted the softmax function from an energy
perspective which assumed that log(p(x)) ∝ log(

∑
y exp(f

y(x)/T )) where T was temperature
coefficient and fy(x) denoted the classification logit for input x and class y. The energy method
proposed to use Helmholtz free energy −T log(

∑
y exp(f

y(x)/T )) as the OOD score. Nevertheless,
we will explain in the method section that the underlying assumption of the energy model does not
necessarily hold, which can lead to poor estimation of p(x) for OOD detection.

Some other studies reported different empirical methods for OOD detection. For example, Sastry et
al. [8] detected OOD samples by defining the deviation of test samples from training data based on a
layer-wise Gram matrix that encoded pairwise feature correlations between channels. Inspired by
the contrastive learning strategy, Tack et al. [22] contrasted different types of augmented training
samples and proposed an empirical OOD score by measuring the distance between the test sample
and nearest training samples in contrastive representation. Additionally, Sun et al. [1] observed that
OOD data tend to trigger unit activation with larger variations and positive skewness. In light of this,
the proposed ReAct model [1] directly truncated high activations in the penultimate layer, which was
experimentally confirmed to be helpful in improving the performance of common OOD scores.

In summary, the existing methods have one or more of the following limitations: (1) Due to lack of
clear probabilistic definition of OOD detection, some studies identify OOD samples using estimated
discriminative probability p(y|x) instead of data distribution p(x), which can be susceptible to the
influence of overconfident posterior; (2) Some researchers estimate p(x) by imposing strong explicit
parametric or implicit assumptions of high-level extracted features f(x), which however are not
necessarily justified and can impair the OOD detection performance; (3) Several empirical methods
lack a clear theoretical motivation.

To overcome these limitations, we will explore how to reliably estimate ID data distribution p(x) for
OOD detection using the high-level representation features. First, we consider it is inappropriate to
estimate the sample distribution p(x) directly from the distribution of latent feature representation
learned by the discriminative network since it only concerns the conditional probability p(y|x) without
any constraints to guarantee the reliability of the estimated p(x). To address this issue, we propose
a novel density-consistency regularization strategy: given that the distribution of low dimensional
variable Y can be estimated with high accuracy, this study enforces the consistency between empirical
density p̂(y) and the estimated density p(y)=

∫
p(x, y)dx=

∫
p(x)p(y|x)dx derived from latent feature

representation in deep layers, e.g., the last logit layer, on a batch-by-batch basis. Theoretically, with
sufficient training samples (batch numbers), combining this consistency regularization with common
supervised loss can reliably calibrate and estimate both p(y|x) and p(x), thus enabling effective OOD
detection. Secondly, to ensure OOD samples highly deviated from the ID distribution can also be
identified, we further propose contrastive distribution regularization to produce low-density estimates
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for the distribution deviated samples. These two regularizations are properly combined to further
improve the detection accuracy.

The following methods section will investigate how to achieve the above density regularizations. It
includes building the consistency criterion with the law of large numbers, analyzing asymptotic prop-
erties for the deviation from consistency with the central limit theorem, developing asymptotic-test
based regularization for the consistency hypothesis, and finally incorporating density regularization
with contrastive distributions. Our contribution can be summarized as follows: (1) We propose a
unified probabilistic framework for OOD detection in discriminative networks, which reveals that
direct estimation of ID data distribution p(x) via latent feature representations can be biased and
introduces density-consistent and contrastive criteria to address this issue. Unlike previous studies,
our method does not rely on any unproven assumptions. (2) We derive analytical regularization terms
by analyzing the asymptotic properties of the density-consistent and contrastive criteria, and provide
a simple yet surprisingly effective computational algorithm for OOD detection applicable to any deep
networks with a softmax classifier. (3) Extensive experiments on various standard OOD detection
benchmarks demonstrate that the proposed density-driven OOD detector achieves state-of-the-art
performance compared with many other existing methods.

2 Related work

In general, OOD detectors can be broadly categorized into generative and discriminative approaches.

OOD detection with generative models Deep generative models have been explored for OOD
detection [6, 7, 23, 11, 24, 2, 25–28] as an intuitive strategy since they enable modeling likelihoods
pθ(x) for high dimensional input. One contributing aspect of this approach is that it directly models
the input distribution without using labeled data[11]. However, it requires additional generative
networks for classification tasks, which can be prohibitively challenging to optimize [4, 29, 1].
Moreover, significant issues have been highlighted that deep generative models can frequently assign
spuriously higher likelihoods to OOD than ID samples [2, 7, 4, 25, 11, 24, 30, 10, 23, 6, 5, 1, 8, 31, 27],
and the performance can often lag behind the discriminative approaches [7, 1, 29]. Recent studies
revealed that it might be because deep generative models can be confounded by background statistics
[11], or because of the discordance between the model’s typical set and high-density region [23].

Discriminative model-based OOD detection The discriminative model-based approach, which
derives OOD score by using representations from a predefined classification task, has advantages over
generative-based approaches by circumventing the difficult optimization process and obtaining better
detection performance [1, 9, 4, 6], especially for complex datasets [22]. This can be because super-
vised learning effectively learns discriminative representations useful in identifying in-distribution
samples by exploiting label information [8, 6, 19]. A brief overview of the baseline Msp model [16]
and state-of-the-art discriminative OOD detection methods, including Odin [17], Mah [9], Gram [8],
Energy [4], pNML [3] and ReAct [1], is presented in the introduction section.

Discriminative model-based OOD detection with outlier exposure Some researchers have
explored using auxiliary datasets of outliers, which allow the model to be explicitly regularized
through fine-tuning, to increase the margin between the OOD scores of the ID and OOD data. Such
an outlier exposure strategy has been reported by Oe [10], Oecc [32] and Energy [4] to be helpful in
OOD detection. However, OOD samples are different and infinite. To avoid specific exposure OODs
inducing biases, researchers typically used a large-scale diverse dataset as the outlier exposure dataset
[10, 32, 4], e.g., 80 Million Tiny Images. Yet it is often not possible to have such a large amount of
external data in many real-world tasks, especially those with large ID datasets.

3 Methods

3.1 Probabilistic framework for OOD detection

The goal of a machine learning classifier is to learn the mapping fromX to Y , where inputX is usually
a high-dimensional random vector and Y is a discrete random variable. Let g(x, y) be the probability
density function (p.d.f.) of (X,Y ) with respect to measure νX ×πY , where νX is Lebesgue measure
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in Euclidean space Rm and πY is discrete measure with πY (Y = y) = 1, 1 ≤ y ≤ L. L is the
number of classification categories. The classification probabilities for discriminant model P (Y |X)
can be represented

P (Y = y | X) =
g (X, y)∫

g (X,Y ) dπY
. (1)

For deep learning models, researchers generally considered the following softmax values as P (Y |X).

P (Y = y | X) =
exp (hy (X))∑

1≤y′≤L exp (hy′ (X))
(2)

where hy(X) is the classification logits produced by the deep neural networks. By connecting
Eq.(1) and Eq.(2), exp(hy(x)) can be considered as the Boltzmann-Gibbs form for g(x, y) from an
energy-based perspective [33, 34], i.e.,

g (x, y) ∝ exp (hy (x)) . (3)

Alternatively, g (x, y) = 1
Z exp (hy (x)) and denominator Z ≜

∑
1≤y≤L

∫
exp (hy (X)) dνX .

For OOD detection, we first argue that OOD score can be more appropriately constructed from P (X)
rather than P (Y |X), where the latter is commonly used in previous studies [16, 17, 5, 3], since the
estimated P (Y = y|X = x) can create over-confidence probability [9, 4] even when P (X = x)
is relatively small. In terms of P (X), we can obtain the following estimated p.d.f. k(x) based on
Eq.(3):

k (x) =

∫
g (x, Y ) dπY =

1

Z

∑
1≤y≤L

exp (hy (x)) . (4)

k(x) appears to be a reasonable OOD detection score. Similarly, Liu et al. proposed to use Helmholtz
free energy−T log(

∑
1≤y≤L exp(hy(x)/T )) as OOD score with temperature T [4], which is similar

to k (x) from a computational perspective, and demonstrated its advantage over OOD scores based
on discriminative probability P (Y |X) [16, 17].

However, directly calculating k (x) as the OOD score can lead to poor density estimation since the
prerequisite Eq.(3) is not clearly satisfied, which has been overlooked in previous studies. Particularly,
classification models generally focus on improving the accuracy of P (Y |X) by classification loss
Lcls without explicitly enforcing the validity of Eq.(3). Therefore, this study firstly aims to develop an
explicit regularization for density calibration to satisfy the constraint in Eq.(3) based on the empirical
density estimation of the ID training data. Specifically, since the empirical density function (EDF)
of a low-dimensional random variable (r.v.) can be estimated with high accuracy, we start with
estimating the EDF of discrete r.v. Y and enforce the consistency between its EDF and its analytical
parametric p.d.f. of the following form based on Eq.(3).

v (y) =

∫
g (X, y) dνX =

1

Z

∫
exp (hy (X)) dνX (5)

In the following sections, we will construct the analytical consistency regularization and implementa-
tion algorithm for ensuring the constraints of Eq.(3), thereby improving OOD detection performance,
using the law of large numbers (LLN), central limit theorem (CLT) and asymptotic test statistics.

3.2 Consistency criterion for low-dimensional density estimation

As noted above, density function k(x), estimated by high layer features, can be a useful OOD score if
the underlying assumption Eq.(3) holds. To realize this assumption, we now enforce the consistency
between analytical p.d.f v (y) derived by Eq.(3) and the empirical density function (EDF) for low-
dimensional variable Y , which can be reliably estimated by v̂ (y) = ny/N . ny =

∑
1≤i≤N 1{Yi=y}

represents the number of samples in class y and N =
∑L

y=1 ny is the sample size. Namely, with
Eq.(3), we derive the following property:

1 ≈ v (y)

v̂ (y)
=

1

Z

∫
exp (hy (X)) dνX

v̂ (y)
=

1

Z

∫
exp (hy (X)))

v̂ (y)
dνX ;∀1 ≤ y ≤ L (6)
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By the law of large numbers, v̂ (y) converges to v (y) almost surely (a.s.) and in probability as
N →∞. Thus, the pivotal variable

∫ exp(hy(X)))
v̂(y) dνX converges to Z a.s. and in probability. By the

Monte Carlo method, Z can be approximated by:

Z ≈
∫

exp (hy (X)))

v̂ (y)
dνX ≈

∑
1≤i≤N exp (hy (Xi)) /N

ny/N
;∀1 ≤ y ≤ L (7)

Obviously, the right-hand side (RHS) of Eq.(7) also converges to Z a.s. and in probability asN →∞.
Thus, we arrive at the proposition that for each class 1 ≤ y ≤ L, the exponential of classification
logit has a mean value proportional to the class ratio.

Since deep learning models are trained in a batch mode, in which random batch sampling with
replacement allows bootstrap estimates, we now proceed to construct batch-wise statistics and
analytical regularization for Eq.(7). We first give the following lemma. The proof is in Appendix A.1
of the supplementary material.

Lemma 1. If Eq.(3) holds, then∑
1≤i≤N exp (hy (Xi))∑

1≤i≤N

∑
1≤l≤L exp (hl (Xi))

− ny
N
→a.s. 0;∀1 ≤ y ≤ L (8)

Lemma 1 gives a theoretical batch-wise constraint for the classification logit. However, the conver-
gence rate is not specified here, making it challenging to design an adaptive regularization subjected
to varying class sample ny and batch size N . To address this issue, in the next section, we will
specify the convergence rate of O(1/

√
N) for Eq.(8) using the central limit theorem and accordingly

propose the adaptive consistency regularization by our asymptotic test statistics.

3.3 Adaptive density-consistency regularization by asymptotic test

To construct the density-consistency regularization adaptive to different class size ny and batch size
N , we now consider the convergence rate with respect to sample size for Eq.(8) by the following
lemma 2. The proof is provided in Appendix A.2.

Lemma 2. If Eq.(3) holds, then

Υy
N =

√
N

( ∑
1≤i≤N exp (hy (Xi))∑

1≤i≤N

∑
1≤l≤L exp (hl (Xi))

− ny
N

)
→d N (0,∆y) (9)

where ∆y = [∇g (µy)]
⊤
Σy [∇g (µy)] and g([x, y, z]⊤) = y/x− z. µy and Σy represent the mean

and covariance matrix for random vector uy =
[∑

1≤l≤L exp
(
hl (X)

)
, exp (hy (X)) , 1{Y=y}

]⊤
.

Lemma 1 and lemma 2, in fact, show that if implicit assumption Eq.(3) holds, i.e., 1
Z exp(hy(x)) can

accurately approximate density g(x, y), we can then construct batch-wise statistics Υy
N , in which

1√
N
Υy

N converges to zero at the rate of O(N−1/2) by analyzing the distribution of low-dimensional
Y . More specifically, Υy

N converges to a particular Gaussian distribution whose parameter can be
reliably estimated.

Thus to satisfy assumption Eq.(3), which is deemed to provide a more accurate estimation of P (x) for
OOD detection, we propose to construct the asymptotic-test statistics using Υy

N from the perspective
of hypothesis testing, and creatively transform the hypothesis reject criteria into a penalty term to
support the assumption Eq.(3) can be accepted at any specific level of significance.

Specifically, we consider the following hypotheses:

H0 : θy = 0 versus H1 : θy ̸= 0 (10)

where

θy =
E [exp (hy (X))]

E
[∑

1≤l≤L exp (hl (X))
] − E1{Y=y} (11)
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First, assumption Eq.(3) implies null hypothesis H0, and accordingly leads to the following conver-
gence in distribution by lemma 2:

[∆y
N ]

−1/2
Υy

N →d N (0, 1) and [∆y
N ]

−1
[Υy

N ]
2 →d χ

2 (1) (12)

where ∆y
N ≜ [∇g (µy

N )]
⊤
Σy

N [∇g (µy
N )] approximates and converges to ∆y in probability. µy

N and
Σy

N denote sample mean and sample covariance for µy and Σy , respectively. From the perspective of
asymptotic test theory [35], we can construct a χ2-test with the following reject region which has
asymptotic significance level α.

[∆y
N ]

−1
[Υy

N ]
2
> χ2

1,α (13)
where χ2

1,α is the (1− α)th quantile of chi-squared distribution χ2 (1). When Eq.(13) is observed,
the asymptotic test rejects H0, as well as assumption Eq.(3). Hence, to ensure the assumption Eq.(3)
is rightly accepted, we propose to transform the hypothesis test rejection criteria into the following
regularization term:

λ ≜ γ
1

L

∑
1≤y≤L

max
(
log
(
[∆y

N ]
−1

[Υy
N ]

2
/χ2

1,α

)
, 0
)
. (14)

The regularization term λwill be added to the classification lossLcls, where hyperparameterα ∈ [0, 1]
controls the significance level and γ is the loss weight balancing the regularization term λ and
classification loss Lcls.

3.4 Density regularization with contrastive distribution

The above density-consistency regularization (DCR) can calibrate classification logit based on
observable low-dimensional density P (Y ), which offers a more reliable P (X,Y ) estimate for ID-
like samples. Nevertheless, the real test OOD samples can come from distribution deviating far
from the ID distribution. To ensure these samples with large distribution deviations can also be
accurately identified, we further propose the density-contrasting scheme, which enforces that random
distribution-deviated (DD) samples produce low-density estimates.

We first define the distribution-deviating operator S, which can be applied to ID data X to generate
DD samples X̃ = S(X). An ideal density estimator should yield the likelihood ratio P (X̃)

P (X) ≪ 1 and

[P (X̃)
P (X) ]

r

≈ 0 for large constant r, i.e.,

ψS (X) ≜ log

[
P (X̃)

P (X)

]r
= r · log

∑
1≤l≤L exp

(
hl (S (X))

)∑
1≤l≤L exp (hl (X))

→ −∞. (15)

We incorporate this constraint into the above DCR by defining Υ̃y
N :

Υ̃y
N ≜ |Υy

N |+ exp

(
1

N |S|
∑

S∈S,1≤i≤N
ψS (Xi) + q

)
(16)

where S denotes the distribution-deviating operator set. Here a constant q is added to ensure numerical
stability. Since the second term in RHS is considered close to zero, we can obtain that [∆y

N ]
−1

[Υ̃y
N ]2

also converges to χ2(1) approximately. Thus, our final generalized density regularization with
contrastive distribution can be defined:

λ̃ ≜ γ
1

L

∑
1≤y≤L

max
(
log
(
[∆y

N ]
−1

[Υ̃y
N ]2/χ2

1,α

)
, 0
)

(17)

Figure 1 shows the overview of the proposed density driven regularization (DDR) for OOD detection
and Algorithm 1 presents the pseudo-code for the training of our DDR method3. It is worth noting
that to increase numerical stability, we normalize the classification logit by subtracting the maximal
logit before calculating λ̃ in Algorithm 1. This normalization procedure is also widely used to
avoid overflow when calculating softmax probability [36]. We will show, in Appendix A.3, that the
normalized logit essentially yields the same results as the original logit. Finally, after fine-tuning, a
monotonic transformation log(Z · k(x)) = log(

∑
1≤y≤L exp(hy(x))) of the sample density k(x) is

used as the OOD score in this study for any testing sample x, which is theoretically equivalent to
directly adopting k(x) as the OOD score.

3Code for the proposed DDR is available at http://WenjianHuang93.github.io/files/OOD_DDR.zip
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Figure 1: (a) Illustration of the proposed method. (b~c) The analytical class distributions p(yl)
computed from classification logits for the overall test set (CIFAR-10, WideResNet) w/o and w/
density consistency regularization (DCR) loss, respectively. The summarized mean absolute error
of the analytical class distribution w.r.t the actual empirical class distribution (red dotted lines) is
reduced from 0.50 to 0.24 by DCR loss. (d~e) The normalized histograms for the sample density
(test set of CIFAR-10, WideResNet) w/o and w/ contrastive distribution regularization (CDR) loss,
respectively. The distributions of in-distribution (ID) sample density and distribution-deviated sample
density can be well separated by the CDR loss.

4 Experiments

We demonstrate the effectiveness of the proposed method using diverse deep convolutional neural
network architectures on multiple OOD detection benchmark datasets, and compare it against various
state-of-the-art methods.

Datasets and experimental setup Following existing literature [1, 3, 19, 32, 4, 8, 10, 9, 17, 16],
we train OOD models on the training set of CIFAR-10 [37], CIFAR-100 [37] and ImageNet [38],
respectively, and evaluate OOD detectors in identifying OOD test samples from other datasets,
including iSUN [39], iNaturalist [40], LSUN(R) [17], LSUN(C) [17], Gaussian [17], Places365 [41],
Textures [42] and SVHN [43]. ImageNet(R) [3] and Imagenet(C) [3] are also used as OOD sets for
the CIFAR experiment. For the ImageNet experiment, CIFAR datasets are considered as OOD sets.
These datasets are described and provided in previous studies [17, 4, 1].

For fair comparison and to aid reproducibility, we use the pretrained model for standard ResNet-34
[44], WideResNet-40 [45] and DenseNet-BC-100 [46] as the backbone network for the CIFAR
experiment since they are widely used in previous OOD detection studies [1, 3, 32, 4, 8, 10, 9,
17]. Following [1], we adopt the lightweight MobileNet-v2 [47] for the ImageNet experiment. It
is noteworthy that since some of the following compared models, e.g., Gram [8] and Mah [9],
require prohibitively large memory for large networks with high input dimensions, we only conduct
experiments on lightweight MobileNet-v2 for the ImageNet dataset. The pretrained weights for the
above ResNet, WideResNet, DenseNet and MobileNet are provided by [17, 9, 1]. When training
our OOD detector, we use the same normalization, augmentation and training setting as in [10, 4],
where the learning rate was adjusted by cosine decay schedule [48] and the fine-tuning epoch is
10. The initial learning rates are set 10−3 and 10−4 for CIFAR and ImageNet experiments. Other
hyperparameters are set as follows: batch size of 256, regularization weight γ=10−2, constan r=10,
and fixed statistical significance level α=0.05. Constant q is a detached tensor dynamically determined
to linearly map the exponent from [−200r, 0] to [−5, 5] for ensuring numerical stability. It is worth
noting that unlike many previous studies [4, 8, 10, 17, 9, 32], which adjusted hyperparameters
for different datasets or networks, our method can achieve state-of-the-art performance across
various experiments with fixed values of introduced hyperparameters. Moreover, we will also
demonstrate the robustness of our approach to hyperparameter changes in our ablation studies. Our
distribution-deviating operators S include random resized crop and random affine transforms realized
by TorchVision library [49], and uniform noise generator (see Appendix A.4 for details).

The proposed approach is compared to the state-of-the-art methods, including Msp [16], Odin [17],
Mah [9], Energy [4], Gram [8], ReAct [1] and pNML [3] for OOD detection without outlier exposure,
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Algorithm 1: Training density-driven regularization (DDR) model for OOD detection
Input: ID training set Din, batch size N , initialized/pre-trained network fθ0 , significance level

α, loss weight γ, constant r, deviating operator set S, learning rate η and
training/fine-tuning iteration T .

Output: classification network fθT
for t = 0, 1, ..., T − 1 do

sample a batch of N training samples {(Xi, Yi)}Ni=1 from Din

generate distribution-deviated samples X̃S
i = S (Xi) for S ∈ S

initialize regularized loss λ̃ = 0

calculate logit vector h (Xi) := fθt(Xi) and h(X̃S
i ) := fθt(X̃

S
i )

h (Xi)← h (Xi)− C and h(X̃S
i )← h(X̃S

i )− C where C is the maximal value in all logit
vectors // ensuring numerical stability

define Ω = {y |
∑

1≤i≤N 1{Yi=y} > 0, 1 ≤ y ≤ L}
for y ∈ Ω do

define ny =
∑

1≤i≤N

1{Yi=y} and uyi = [
∑

1≤l≤L

exp
(
hl(Xi)

)
, exp (hy(Xi)) , 1{Yi=y}]

⊤

define ψ̄ := r
N |S|

∑
S∈S,1≤i≤N

log

∑
1≤l≤L

exp(hl(X̃S
i ))∑

1≤l≤L

exp(hl(Xi))

calculate detached tensor q by which ψ̄ + q linearly map the original exponent value ψ̄ in
[−200r, 0] to [−5, 5] // ensuring numerical stability

calculate Υ̃y
N =

√
N

∣∣∣∣∣
∑

1≤i≤N

exp(hy(Xi))∑
1≤i≤N,1≤l≤L

exp(hl(Xi))
− ny

N

∣∣∣∣∣+ exp
(
ψ̄ + q

)
// Eq.(16)

calculate ∆y
N = [∇g (µy

N )]
⊤
Σy

N [∇g (µy
N )] // µy

N and Σy
N are the sample mean

and covariance matrix for µy and Σy computed by uyi (lemma 2)

λ̃← λ̃+ γ 1
|Ω| max

(
log
(
[∆y

N ]
−1

[Υ̃y
N ]

2
/χ2

1,α

)
, 0
)
// asymptotic test based

regularization by Eq.(17)
calculate supervised classification loss Lcls using {(softmax (fθt (Xi)) , Yi)}Ni=1

combine loss value Lcls + λ̃

update network parameter θt+1 ← θt − η∇θt(Lcls + λ̃) by SGD based optimizer
return fθT

as well as Energy [4] and Oecc [32] for OOD detection with outlier exposure. 300K Random
Images[10] is used as the outlier exposure dataset to reproduce the Energy method. All compared
methods are evaluated with their open-source codes and trained weights. Following existing studies
[1, 3, 32, 4, 8, 10, 9, 17, 16], commonly used metrics including AUROC, AURP and FPR (at 95%
TPR) are used to evaluate different OOD detectors. The evaluation code is adopted from [4]. All
experiments run on the PyTorch framework [50] with Nvidia A100 and GeForce RTX 3090 GPUs,
with a maximum RAM of 512GB.

Experimental results The experimental results on CIFAR-100 in terms of FPR95% are shown
in Table 1. See Appendix A.5 for the variance of the results over ten runs with different subsets
of OOD data. Compared to other state-of-the-art detectors without outlier exposure, our method
achieves the best detection accuracy for diverse OOD datasets under different network architectures.
The averaged FPR95% of the proposed method is significantly lower than that of other detectors
without outlier exposure, and even lower than the four state-of-the-art detectors that use an external
large-scale outlier exposure dataset with 80 million images. Other evaluation results in terms of
AUROC and AUPR also reveal a consistent performance trend, which can be found in Appendix
A.5. It is worth noting that the proposed method only utilizes classification logits for OOD detection.
In contrast, the best-performed existing method, i.e., Gram, uses features across all layers to detect
OODs and requires calculating huge gram matrices dynamically using all latent features of training
samples, preventing end-to-end real-time prediction and becoming intractable for deep networks
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Table 1: Performance comparison (in terms of FPR95%) of various methods in CIFAR-100 (ID
dataset) under three commonly-used networks. The best and second-best models without accessing
external outlier datasets are coloured red and blue, respectively.

OOD
dataset

w/o outlier exposure
(FPR95% ↓)

w/ outlier exposure
(FPR95% ↓)

Msp/Odin/Mah/Energy/Gram/
Energy+ReAct/pNML/Odin+pNML/Ours

Oecc/Energy/
Oecc+pNML

C
IF

A
R

-1
00

(R
es

N
et

34
)

iSUN 83.10 / 55.65 / 67.20 / 80.91 / 5.01 / 80.00 / 73.70 / 55.10 / 4.93 2.70 / 54.76 / 2.14
LSUN(R) 80.75 / 53.15 / 68.15 / 77.44 / 2.92 / 77.75 / 70.75 / 54.90 / 3.19 1.72 / 54.07 / 1.01
LSUN(C) 81.30 / 55.35 / 47.21 / 82.93 / 33.76 / 80.25 / 70.60 / 47.75 / 7.99 19.46 / 37.20 / 10.36
CIFAR-10 80.95 / 85.65 / 81.57 / 81.50 / 88.12 / 83.05 / 80.00 / 81.15 / 85.08 85.06 / 83.31 / 79.05
ImageNet(R) 79.00 / 52.55 / 63.96 / 75.70 / 5.17 / 75.95 / 67.95 / 53.75 / 4.47 4.60 / 62.30 / 4.12
ImageNet(C) 77.40 / 57.90 / 58.55 / 73.43 / 11.68 / 72.85 / 67.00 / 53.15 / 4.07 9.32 / 59.27 / 8.53
Gaussian 100.0 / 95.35 / 27.90 / 100.0 / 0.00 / 100.0 / 85.25 / 32.50 / 0.00 0.00 / 0.01 / 0.00
Places365 84.55 / 84.10 / 59.75 / 85.68 / 46.89 / 85.00 / 71.25 / 61.80 / 21.12 31.76 / 41.05 / 19.74
Textures 80.80 / 80.15 / 56.85 / 79.96 / 33.43 / 78.50 / 61.35 / 53.80 / 18.50 24.66 / 43.64 / 16.38
iNaturalist 73.00 / 71.50 / 58.36 / 73.34 / 44.68 / 71.75 / 57.85 / 57.85 / 31.66 46.22 / 68.57 / 47.49
SVHN 79.70 / 38.60 / 31.42 / 82.13 / 19.99 / 78.75 / 48.40 / 26.30 / 1.61 13.09 / 40.57 / 10.23
average 81.87 / 66.36 / 56.45 / 81.18 / 26.51 / 80.35 / 68.55 / 52.55 / 16.60 21.69 / 49.52 / 18.10

C
IF

A
R

-1
00

(W
id

eR
es

N
et

) iSUN 86.75 / 63.60 / 36.73 / 78.80 / 5.23 / 82.70 / 73.45 / 73.45 / 2.34 7.93 / 55.97 / 3.01
LSUN(R) 85.75 / 60.50 / 34.66 / 79.40 / 2.97 / 82.95 / 77.55 / 77.55 / 1.08 5.41 / 53.28 / 1.90
LSUN(C) 80.85 / 52.10 / 45.19 / 71.85 / 37.29 / 57.85 / 86.95 / 61.85 / 5.67 18.20 / 29.25 / 6.70
CIFAR-10 81.85 / 85.90 / 90.45 / 77.85 / 90.41 / 87.90 / 98.45 / 97.60 / 88.49 88.52 / 84.75 / 90.36
ImageNet(R) 84.90 / 63.95 / 34.06 / 78.95 / 6.01 / 83.60 / 71.55 / 71.55 / 3.34 12.04 / 66.33 / 7.72
ImageNet(C) 82.55 / 65.30 / 46.77 / 71.05 / 12.98 / 76.80 / 79.40 / 79.90 / 3.48 15.84 / 56.36 / 7.81
Gaussian 99.60 / 0.05 / 0.00 / 67.25 / 0.00 / 47.55 / 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00
Places365 83.80 / 78.80 / 52.73 / 81.05 / 46.27 / 72.50 / 82.45 / 62.60 / 11.27 23.26 / 36.49 / 9.68
Textures 81.60 / 74.05 / 39.05 / 78.45 / 35.98 / 66.00 / 75.40 / 58.75 / 12.40 19.62 / 38.03 / 8.10
iNaturalist 76.15 / 70.35 / 59.72 / 71.40 / 47.86 / 70.75 / 85.40 / 73.40 / 17.10 38.38 / 62.70 / 24.92
SVHN 77.30 / 42.45 / 33.27 / 85.40 / 19.26 / 76.00 / 74.85 / 57.05 / 1.68 9.43 / 37.50 / 3.64
average 83.74 / 59.73 / 42.97 / 76.50 / 27.66 / 73.15 / 73.22 / 64.88 / 13.35 21.69 / 47.33 / 14.89

C
IF

A
R

-1
00

(D
en

se
N

et
)

iSUN 83.85 / 62.10 / 16.48 / 82.45 / 3.99 / 40.35 / 18.40 / 16.20 / 5.66 3.21 / 76.09 / 0.92
LSUN(R) 82.75 / 58.55 / 13.48 / 77.45 / 2.38 / 34.45 / 16.40 / 14.40 / 4.20 1.98 / 73.39 / 0.57
LSUN(C) 73.40 / 42.25 / 74.92 / 47.05 / 34.70 / 45.80 / 35.10 / 35.10 / 8.35 26.35 / 33.94 / 16.89
CIFAR-10 80.90 / 84.20 / 98.86 / 82.05 / 87.70 / 81.90 / 97.70 / 97.60 / 92.46 89.58 / 86.30 / 91.82
ImageNet(R) 81.90 / 56.95 / 16.56 / 76.85 / 4.15 / 39.70 / 13.55 / 11.95 / 2.83 3.85 / 75.50 / 1.19
ImageNet(C) 75.45 / 46.75 / 35.92 / 58.65 / 10.92 / 33.30 / 22.75 / 21.90 / 3.53 8.09 / 60.05 / 3.40
Gaussian 100.0 / 100.0 / 0.00 / 100.0 / 0.00 / 100.0 / 0.00 / 0.00 / 0.00 0.00 / 100.0 / 0.00
Places365 76.15 / 51.80 / 81.42 / 58.20 / 45.56 / 53.00 / 36.35 / 36.35 / 15.18 41.32 / 46.77 / 32.74
Textures 75.15 / 56.50 / 59.34 / 58.85 / 36.38 / 47.25 / 25.90 / 25.90 / 14.07 31.87 / 48.95 / 23.20
iNaturalist 70.30 / 51.80 / 79.96 / 48.90 / 48.61 / 43.05 / 45.25 / 44.85 / 22.50 48.27 / 64.23 / 44.94
SVHN 73.75 / 44.30 / 49.71 / 65.95 / 10.52 / 48.55 / 20.50 / 20.50 / 3.16 11.63 / 69.06 / 9.72
average 79.42 / 59.56 / 47.88 / 68.76 / 25.90 / 51.58 / 30.17 / 29.52 / 15.63 24.20 / 66.75 / 20.49

trained on large datasets (See Appendix A.10 for computational cost comparision with our approach).
Due to the page limit, the reader is referred to Appendix A.6 for detailed results of the CIFAR-10
experiment, in which our method also achieves the best detection accuracy in both FPR95%, AUROC
and AUPR compared to other existing methods without outlier exposure. The performance of the
proposed method is also comparable to the state-of-the-art OOD detectors that require large-scale
additional outlier exposure datasets. Tables in Appendix A.7 also provide the experimental results of
FPR95%, AUROC and AUPR values on ImageNet. Due to the lack of large-scale high-resolution
outlier exposure datasets, which should theoretically be much larger than the ID dataset, none of
the outlier-exposure OOD detectors had been evaluated on the ImageNet benchmark in literature.
Therefore, only OOD detectors without requiring outlier exposure datasets are evaluated. It can be
observed that the proposed method also achieves the highest averaged detection accuracy on the
ImageNet benchmark. It is noteworthy that our method performs relatively poorly on the iNaturalists
and Places365 compared to other OOD datasets, as is also the case for other traditional methods.
It can be because the ImageNet includes semantically overlapping objects as the iNaturalists and
Places365, as is shown in Appendix A.9, even though we have used the conceptually disjoint subsets
of Textures and iNaturalists provided by the previous study [1] for model evaluation.

Ablation studies We conduct ablation experiments on CIFAR-100 using the WideResNet network.
Table 2 verifies the effectiveness of each component, i.e., density consistency regularization and
contrastive distribution regularization. We remark that the baseline model without regularization
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Table 2: Contribution of the proposed regularization terms to OOD detection performance. DCR:
density consistency regularization. CDR: contrastive distribution regularization. The result is the
average value across all OOD datasets.

in-dist
(model) DCR CDR mean

AUROC (↑)
mean

AUPR (↑)
mean

FPR95% (↓)

CIFAR-100
(WideResNet)

- - 80.05 95.11 77.04
✓ - 90.84 97.88 41.59
✓ ✓ 96.09 98.94 13.35

Table 3: Ablation studies on CIFAR-100 (ID dataset) with WideResNet demonstrating the proposed
method’s robustness to hyperparameters. The result is the average value across all OOD datasets.

ablation studies parameters mean AUROC (↑) mean AUPR (↑) mean FPR95% (↓)

batch size
128 96.14 98.94 13.43
256 96.09 98.94 13.35
512 96.08 98.93 13.63

regularization weight γ
0.005 96.02 98.94 14.08
0.01 96.09 98.94 13.35
0.02 96.15 98.91 12.92

constant r
5 96.02 98.94 14.03

10 96.09 98.94 13.29
20 96.12 98.91 12.87

corresponds theoretically to the Energy model with no outlier exposure and temperature coefficient
of T = 1. Table 3 verifies the robustness of the proposed method to hyperparameters, including
batch size, regularization weight γ and constant r. The model performance is quite consistent when
increasing or decreasing the default values by 100% and 50%, respectively. More detailed results
on different OOD datasets and more hyperparamter choices can be found in Appendix A.8. Please
note that unlike many previous approaches involving hyperparameter tuning [4, 8, 10, 17, 9, 32], our
method uses fixed hyperparameters for OOD detection across different ID datasets, OOD datasets
and networks. It further confirms the robustness of the proposed method.

5 Conclusion

In this paper, we propose a theoretical probabilistic framework for OOD detection, which derives
analytical density regularization by investigating the inherent consistent and contrastive characteristics
of the ID sample density to calibrate and build an accurate sample density estimator. Unlike
many previous studies, our method neither relies on unproven assumptions about the latent feature
distribution nor requires additional outlier exposure datasets to calibrate ID density estimates or
tune hyperparameters. A simple yet effective computational algorithm is also developed, which
can be used for any pretrained classification network. Extensive evaluations on benchmark datasets
show that the proposed approach significantly outperforms existing state-of-the-art OOD detectors.
Furthermore, our method even achieves comparable or better performance than the approaches
requiring external large-scale outlier exposure datasets. A limitation of our approach is that the fixed
hyperparameters may not be optimal for a specific task, although it enables our fairly robust model to
achieve state-of-the-art performances across benchmarks. We leave it for future work to investigate
adaptively setting hyperparameters with the ID dataset. Additionally, since our approach requires
fine-tuning, this can lead to the problem that there exists a discrepancy in classification probabilities
between the original network and the fine-tuned network. This problem can be avoided using the
original and the fine-tuned networks for the classification and OOD detection tasks, respectively.
However, it can double the inference time and computation load. Finally, we believe our accurate
sample density estimator can also guide future studies in related machine learning fields, such as
active learning, open-world classification, semi-supervised learning, etc.
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