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Abstract

We study the problem of learning generalized linear models under adversarial
corruptions. We analyze a classical heuristic called the iterative trimmed maximum
likelihood estimator which is known to be effective against label corruptions in
practice. Under label corruptions, we prove that this simple estimator achieves
minimax near-optimal risk on a wide range of generalized linear models, includ-
ing Gaussian regression, Poisson regression and Binomial regression. Finally,
we extend the estimator to the more challenging setting of label and covariate
corruptions and demonstrate its robustness and optimality in that setting as well.

1 Introduction

Generalized linear models (GLMs) are an elegant framework for statistical modeling of data and
are widely used in many applications [NW72, DB18, MN19]. A generalized linear model captures
the relationship of labels (or observations) y to covariates x via the conditional density f(y|β>x) ∝
exp(y ·β>x−b(β>x)). Here β is the parameter of the model. Parameter estimation in GLMs is done
via the standard maximum likelihood estimation (MLE) paradigm and has been extensively studied
[NW72]. While GLMs offer a mathematically tractable formulation for statistical modeling, real data
rarely satisfies the generative process of a GLM and as a result there has been considerable interest in
developing robust learning algorithms for GLMs [LW11, NRWY12, PSBR18]. The predominant way
to model misspecification or adversarial corruptions in the data is Huber’s ε-contamination model
[Hub11] and its recent extensions that allow for stronger adversaries [DKK+19]. These models
assume that a small ε fraction of the data is corrupted by an adversary. Furthermore, the adversary
can be restricted to either only corrupting the labels y, or be allowed to corrupt both the covariates x
and the labels y for an ε fraction of the data.

Various algorithms have been proposed for robust estimation in generalized linear models. One
line of work proposed computationally intractable algorithms that are based on non-convex M
estimators [Hub11, LW11] or by running tournaments over an exponentially large search space
[Yat85]. Another line of work proposes polynomial time algorithms that either achieve sub-optimal
error rates [PSBR18] or only apply to restricted settings such as the noise being heavy tailed [ZZ21].
In practical settings a simple heuristic namely the iterative trimmed estimator has been shown to
work well under settings where only the labels are corrupted [SS19b]. However, from a theoretical
perspective the iterative trimmed MLE estimator has only been analyzed under restrictive settings
such as when the underlying GLM is a Gaussian regression model.
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Our key theoretical contribution in this work is a general analysis of the trimmed MLE estimator.
In particular, we show that for a broad family of GLMs, and under adversarial corruptions of only
the labels, not only does the iterative trimmed MLE estimator enjoy theoretical guarantees, it in
fact nearly achieves the minimax error rate! Next, we also consider the more challenging setting
of corruptions to both covariates and labels. In the setting where the covariance of the covariate is
known, we leverage the same approach in [PJL20] by running the filtering algorithm [DHL19] as a
prepossessing step to trim away the abnormal covariates before applying the iterative trimmed MLE
estimator. This can simultaneously handle both covariate and label corruptions and nearly achieve
minimax error rates. Below we state our main results.
Theorem 1.1 (Informal Theorem). Let Sε = {(x1, y1), . . . , (xn, yn)} be independent and identically
distributed samples generated by a generalized linear model with sub-Gaussian xi. Let an ε fraction
of the labels be adversarially corrupted. Then, with high probability, the iterative trimmed MLE
estimator when given as input Sε provides the following guarantees:

• O(σε log(1/ε)) parameter estimation error for the Gaussian regression model where σ2 is
the variance of Gaussian noise on y.

• O(ε exp(
√

log(1/ε))) parameter estimation error for Poisson regression model.

• O( 1√
m
ε
√

log(m/ε) log(1/ε)) parameter estimation error for the Binomial regression
model with m trials.

• O(ε log(1/ε)) parameter estimation error for a general class of smooth and continuous
GLMs (includes the Gaussian regression model).

Previous work [SS19b] analyze the iterative trimmed maximum likelihood estimator under the
Gaussian regression settings (least square) where only the labels are corrupted, and proved an O(σ)
`2-error bound for parameter estimation. Other iterative trimming approach such as [BJK15] also
achieves only achieve O(σ) error in this setting. Our error bound of O(σε log(1/ε)) significantly
improved the dependency on the corruption level ε and nearly matched the minimax lower bound
of σε [Gao20]. In all the generalized linear models studied in this work, we show that the iterative
trimmed maximum likelihood estimator achieves O(ε1−δ) error for any δ > 0, which matches the
minimax lower bound Ω(ε) up to a sub-polynomial factor.

Next, we present our second main result that can simultaneously handle both covariate and label
corruptions and nearly achieve minimax error rate.
Theorem 1.2 (Informal Theorem). Let Sε = {(x1, y1), . . . , (xn, yn)} be independent and iden-
tically distributed samples generated by a generalized linear model with sub-Gaussian xi whose
covariance is known. Let an ε fraction of the labels and covariates be adversarially corrupted. After
a preprocessing step, the iterative trimmed MLE with high probability achieves the same parameter
estimation recovery bounds as in Theorem 1.1 above.

Our algorithm requires the covariance matrix of the covariate distribution being identity or known.
Thus the error rate we get is incomparable to the results in the general covariance settings.

Outline of the paper. In Section 2 we discuss related work. We define preliminaries in Section 3
followed by the iterative trimmed MLE algorithm, formal results, and proof sketches for the label
corruption case in Section 4. In Section 5, we introduce our algorithm, results and proof sketches for
the sample corruption case. We defer proofs to the Appendix.

2 Related Work

There is a vast amount of literature in statistics, machine learning and theoretical computer science
on algorithms that are robust to adversarial corruptions and outliers. Classical works in the Huber’s
contamination model present algorithms for general robust estimation that obtain near optimal
error rates [Hub11, Yat85]. Minimax optimal but computationally inefficient robust estimators have
been established in the works of [Tuk75, Yat85, CGR15, Gao20] for a variety of problems such as
mean and covariance estimation. In recent years there has also been a line of work in designing
computationally efficient algorithms for handling adversarial corruptions [LRV16, DKK+19, CSV17,
BJK15, CKMY22, CAT+20, DKSS21].
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Several special cases of generalized linear model has been studied extensively from the robustness
perspective. There is a long line of work on designing robust algorithms for the linear least squares
problem. This corresponds to the special case of the GLM being a Gaussian regression model
[SBRJ19, BJK15, BJKK17, KKM18, CCM13, BP21, PJL20, DKS19]. When the covariate follows
from a sub-Gaussian distribution, previous best result [PJL20] achieves `2 error σε

√
log(1/ε) using

Huber regression while we show iterative thresholding achieves σεlog(1/ε) error. Another special
case of GLMs that has been studied from a robustness perspective is the logistic regression model
[FXMY14, PSBR18, CKMY20]. Our analysis of the iterative trimmed MLE estimator on binomial
regression matches the best known error guarantees for this setting.

The work of [PSBR18] proposes a general procedure for robust gradient descent and shows that one
can use this to design robust estimation algorithms for a abroad class of GLMs. Building upon these
works, the authors in [JLST21] present a nearly linear time algorithm for GLMs. Compared to our
work, [PSBR18] assumes x has bounded 8th moment, [JLST21] assumes x is 2-4 hypercontractive,
and both papers achieve an O(

√
ε) error guarantee with ε-fraction of corruptions while our algorithm

achieves a better O(ε) guarantee under the stronger sub-Gaussian assumptions. In addition, for
GLMs, both papers assume a uniform upper bound (and lower bound) on the second order derivative
of function b(·), which is not satisfied by the widely used Poisson and Binomial regression studied
in this paper. In a similar setting, [ZZ21] proposed a reweighted MLE estimator for dealing with
settings where the covariates are heavy tailed but not corrupted by an adversary.

Iterative thresholding is a longstanding heuristic for robust linear regression that dates back to
Legendre [LS59]. It’s theoretical property in the non-asymptotic regime is first studied in [BJK15],
which shows a O(σ) error bound for sufficiently small label corruption level when the label noise
is N(0, σ2). The iterative thresholding algorithm is later extended and analyzed in the oblivious
label corruption setting [BJKK17, SBRJ19], and is shown to provide consistent estimate even
when the corruption level goes to 1. [PJL20] extended the iterative thresholding algorithm to the
heavy-tailed covariate setting and can simultaneously handle both labels and covariate corruptions.
In addition, [PJL20] adapted the implicit result in [BJKK17] to show that iterative thresholding
algorithm achieves O(σ

√
ε) error rate for sub-Gaussian covariate. [SS19b] empirically demonstrated

the effectiveness of the trimmed loss estimator under labels corruptions, and also proved theoretical
guarantees in a special class of GLMs, which, however, also has O(σ) error when specialized to the
Gaussian noise setting. [SS19a] studied the trimmed loss estimator in the mixed linear regression
setting. Finally, [CKMY22] proposed an alternating minimization algorithm for the fixed design
linear regression setting with Huber contamination on the labels, which is different from our strong
contamination model (with adaptive replacement) for generalized linear model. Their algorithm
incorporates a semidefinite programming in the set selection step, and achieves a near-optimal Õ(σε)
error. On a very high level, our proof follows from a similar framework as in [CKMY22].

[PJL20] first proposed a generic approach to modify an estimator which is robust against label
corruption into one that is robust against simultaneous label and covariate corruptions by running
a covariate filter algorithm [DKP20, DK19] as a preprocessing step. In the Gaussian regression
setting, our Algorithm 2 is identical to Algorithm 3 of [PJL20] and the difference is in the improved
error rate. In particular, Lemma 4.1 in [PJL20] implies a O(σ

√
ε) error bound while we proved a

O(σε log(1/ε)) error bound.

3 Preliminaries

In this section, we formally introduce the robust generalized linear model studied in this paper. First
we define the classical generalized linear model as follows.
Definition 3.1 (Generalized linear model). We say that (x, y) follows from a generalized linear
model if there exist function b(·), and function c(·) such that the probability density function of y
equals

f(y|β>x) = c(y) exp(y · β>x− b(β>x)).

The derivative b′(·) is called mean function as E[y|β>x] = b′(β>x). The second order derivative
b′′(·) is called variance function as Var[y|β>x] = b′′(β>x)

Here we provide three commonly used examples of generalized linear models studied in this paper.
Definition 3.2. Commonly used examples of generalized linear model
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• Gaussian regression: b(θ) = 1
2θ

2, c(y) = exp(−y2/2)√
2π

• Poisson regression: b(θ) = exp(θ), c(y) = 1
y!

• Binomial regression: Let m be the number of trials of the binomial distribution. b(θ) =
m log(1 + exp(θ)), c(y) =

(
m
y

)
We consider the sub-Gaussian random design setting in this work, i.e., each covariate xi is drawn
i.i.d. from a sub-Gaussian distribution with zero mean and covariance Σ.

Definition 3.3 (Sub-Gaussian design). We assume that each covariate xi is drawn independently
from a zero mean, covariance Σ sub-Gaussian distribution with sub-Guassian norm 1, namely,
E[xi] = 0, E[xix

>
i ] = Σ and for all v ∈ Rd,

Pr(v>xi ≥ t) ≤ exp(−t2).

Having introduced the generation model of the good data, now we describe the corruption model
where the adversary is allowed to corrupt a small fraction of the data points.

Definition 3.4 (Corruption model). We consider two different data generation model with ε fraction
of adversarial corruptions:

• Label corruption model: Given n i.i.d. sample {(xi, yi)}ni=1 generated by a generalized
linear model. The adversary is allowed to inspect the sample, and replace a total of ε · n
labels yi with arbitrary values.

• Sample corruption model: Given n i.i.d. sample {(xi, yi)}ni=1 generated by a generalized
linear model. The adversary is allowed to inspect the sample, and replace a total of ε · n
data points (xi, yi) with arbitrary values.

We call the corrupted dataset S = T ∪ E where T contains the set of remaining uncorrupted data
points, and E contains the set of data points that is controlled by the adversary.

The goal of our algorithm is recovering the underlying regression coefficient β∗ from a set of examples
with ε fraction corrupted under `2 error metric, i.e., ‖β̂ − β∗‖. We assume ‖β∗‖ ≤ R for a constant
R, and ε <= c for a sufficiently small constant c. For simplicity of the presentation, throughout this
paper, we assume Σ = Id. We remark that our algorithm for label corruption model applies to the
general covariance setting and is able to achieve small estimation error in terms of ‖Σ1/2(β̂ − β∗)‖2
since we can always (implicitly) whiten the data to apply our analysis (see Section C for more details).
On the other hand, the algorithm for sample corruption model only works with the knowledge of Σ.

4 Label Corruption

In this section, we formally describe our algorithm and proof-sketch for the label corruption setting.

4.1 Algorithm

We start with defining the trimmed maximum likelihood estimator, which is a simple and natural
heuristic for robustly learning generalized linear model.

Definition 4.1 (Trimmed maximum likelihood estimator). Given a set of data points S =
{(xi, yi)}ni=1, define the trimmed maximum likelihood estimator as

β̂(S) = min
β

min
Ŝ⊂S,|Ŝ|=(1−ε)n

∑
(xi,yi)∈Ŝ

− log f(yi|β>xi)

In the setting of generalized linear model, the objective of trimmed maximum likelihood estimator
is a biconvex problem in Ŝ and β but not jointly convex. The following alternating minimization
algorithm is a simple heuristic to approximate the trimmed maximum likelihood estimator whose
similar form has been studied in [BJK15, BJKK17, SS19b, CKMY22].
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Algorithm 1: Alternating minimization of trimmed maximum likelihood estimator
Input: Set of examples S = {(x1, y1), . . . , (xn, yn)}, ε, η, R
Output: β̂

1 S(0) ← arg minT⊂[n]:|T |=(1−ε)n
∑
i∈T |yi|;

2 β̂(1) ← 0;
3 for t = 1 to∞ do do
4 Choose Ŝ(t) = arg minT⊂S(0):|T |=(1−2ε)n

∑
i∈T − log f(yi|〈β̂(t),xi〉);

5 Compute β̂(t+1) = arg minβ,‖β‖≤R
∑
i∈Ŝ(t) − log f(yi|〈β,xi〉);

6 if 1
n

∑
i∈Ŝ(t) − log f(yi|〈β̂(t+1),xi〉) > 1

n

∑
i∈Ŝ(t) − log f(yi|〈β̂(t),xi〉)− η then

7 Return β(t)

The algorithm starts by naively pruning out ε · n data points whose labels have the largest magnitude.
Then each round of the alternating minimization algorithm has two steps. In optimizing over set S,
we find the set Ŝ(t) of size (1− ε)n with the best likelihood. In optimizing over β, we find regression
coefficient β(t) which maximizes the likelihood on the current set of data Ŝ(t). The algorithm
terminates and outputs β when the likelihood no longer improves by more than η. It is clear that
the algorithm terminates in O(1/η) rounds when the log-likelihood is bounded. Since the original
trimmed maximum likelihood estimator is a biconvex optimization problem in S, β which is not
jointly convex, our algorithm does not guarantee to return a global optimal solution. Nonetheless, as
we showed, it does return a first order stationary point which will be close to the true coefficient β∗. It
is worth noting that some recent papers on robust statistics [CDK+21, CDGS20, ZJS22] show similar
nice statistical properties of an approximate first order stationary point for non-convex optimization
problems.

We present the guarantee of our algorithm for Gaussian, Poisson, Binomial regression, and a broad
class of generalized linear models.

Theorem 4.2 (Gaussian regression with label corruption). Let S = {xi, yi}ni=1 be a set of data
points generated by a Gaussian regression model with yi = 〈xi, β∗〉 + ηi, ηi ∼ N(0, σ2), sub-
Gaussian design, with εc-fraction of label corruption and n = Ω(d+log(1/δ)

ε2 ). With probability 1− δ,
Algorithm 1 with parameters ε = εc, η = ε2

c , R = ∞ terminate within O( 1
min(1,σ2)ε2c

) iterations,

and output an estimate β̂ such that

‖β̂ − β∗‖ = O(σεc log(1/εc))

Theorem 4.3 (Poisson regression with label corruption). Let S = {xi, yi}ni=1 be a set of data
points generated by a Poisson regression model with sub-Gaussian design, with εc-fraction of label
corruption and n = Ω( dε2 ). With probability 0.99, Algorithm 1 with parameters ε = 2εc, η =

ε2
c/(dn), contant R ≥ ‖β∗‖ terminate within dn/ε2

c iterations, and output an estimate β̂ such that

‖β̂ − β∗‖ = O(εc exp(
√

log(1/εc)))

Theorem 4.4 (Binomial regression with label corruption). Let S = {xi, yi}ni=1 be generated by
a Binomial regression model with sub-Gaussian Design, with εc-fraction of label corruption and
n = Ω(d+log(1/δ)

ε2 ). With probability 1− δ, Algorithm 1 with parameters ε = εc, η = ε2
c/m, constant

R ≥ ‖β∗‖ terminate within m2/ε2
c iterations, and output an estimate β̂ such that

‖β̂ − β∗‖ = O

(
εc

√
log(m/εc) log(1/εc)

m

)
Theorem 4.5 (A class of generalized linear model with label corruption). Let S = {xi, yi}ni=1
be generated by a generalized linear model with sub-Gaussian Design, with εc-fraction of label
corruption and n = Ω(d+log(1/δ)

ε2 ). Assuming that C0 ≤ b′′(·) ≤ C for non-zero constants C0, C,
b(0) = 0, b′(0) = 0, and log(c(y)) = O(log(1/εc)),∀y ≤ Θ(

√
log(1/εc)), then with probability
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1−δ, Algorithm 1 with parameters ε = εc, η = ε2
c , R =∞ terminates within log(1/εc)/ε

2
c iterations,

and output an estimate β̂ such that

‖β̂ − β∗‖ = O(εc log(1/εc))

4.2 Proof Sketch

We provide an intuitive proof sketch for the above theorems (the full proofs are deferred to Section A
in the Appendix). The high level proof framework is similar to [CKMY22], although the details are
drastically different since the focus of our paper is on random design with strong contamination for a
wide range of generalized linear model while [CKMY22] focuses on linear (least square) regression
with Huber corruption on the labels.

The guarantee of our alternating minimization algorithm relies on two claims: First, the algorithm
returns an approximate stationary point β̂. Second, any approximate stationary point will be close to
the true coefficient β∗. In this section, we will present high level intuition of the proof of the two
claims.

Alternating minimization algorithm returns an approximate stationary point. First we define
the first order approximate stationary point as follows. Let β̂ ∈ Rd be a regression coefficient vector
and Ŝ contains the set of datapoints of size (1− ε)n with the largest log-likelihood under β̂. We call
β̂ a γ-approximate stationary point if

1

n

∑
i∈Ŝ

∇β log f(yi|〈β̂,xi〉)>
(β∗ − β̂)

‖β∗ − β̂‖
≤ γ

i.e., the gradient of the log-likelihood projected along the β∗ − β̂ direction is small. Our goal is
to show when the algorithm terminates, that is when β̂ can not be improved by more than η, the
gradient along the β∗ − β̂ must be small. This is clear where the empirical log-likelihood function is
smooth, simply because if the gradient is large, one can improve the log-likelihood by more than η
which will result in a contradiction. The smoothness (norm of the Hessian matrix) of the empirical
log-likelihood in generalized linear model is directly related to the range of b′′(θ). In particular, b′′(θ)
is bounded for Gaussian regression and Binomial regression.

However, a problem arises for Poisson regression where b′′(θ) = exp(θ) becomes extremely large
for large θ, which results in non-smooth curvature for empirical log-likelihood. We overcome this
difficulty by leveraging the special property of function b(θ) = exp(θ) in the Poisson regression
setting. Observing that the derivative b′(θ) is equal to second order derivative b′′(θ) for Poisson
regression, the gradient along the β∗ − β̂ direction can not be small when the second order derivative
along the β∗ − β̂ direction gets large, which will result in a more than η improvement of the log-
likelihood by moving toward β∗ and therefore a contradiction. Hence, the second order derivative
along the β∗ − β̂ direction must be small, and we blue have the same argument as in the smooth
objective function setting.

Any approximate stationary point will be close to the true coefficient. Let us first write down the
γ-approximate stationary condition for generalized linear model as

1

n

∑
i∈Ŝ

∇β log f(yi|〈β̂,xi〉)>(β∗ − β̂) =
1

n

∑
i∈Ŝ

(yi − b′(β̂>xi))(β∗ − β̂)>xi ≤ γ‖β∗ − β̂‖

Recall that T contains the set of uncorrupted data points, and E contains the set of data points that is
controlled by the adversary. Split Ŝ into Ŝ ∩ T and Ŝ ∩ E, and rearrange the terms we get

1

n

∑
i∈Ŝ∩T

(yi − b′(β̂>xi))(β∗ − β̂)>xi ≤ −
1

n

∑
i∈Ŝ∩E

(yi − b′(β̂>xi))(β∗ − β̂)>xi + γ‖β∗ − β̂‖.

To obtain an upper bound on ‖β∗ − β̂‖, we will prove a lower bound in terms of ‖β∗ − β̂‖ on the left
hand side, and an upper bound in terms of ‖β∗ − β̂‖ on the right hand side. Finally we will combine
the upper and lower bound into an upper bound on ‖β∗ − β̂‖.
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Lower bound on the LHS. Note that Ŝ∩T contains uncorrupted data points. The high level intuition
is that since mean of yi is b′(β∗>xi) and b′(·) is monotone,

(
yi − b′(β∗>xi)

)
(β∗ − β̂)>xi should

be roughly O
((

(β∗ − β̂)>xi

)2
)

, and
(

(β∗ − β̂)>xi

)2

should be proportional to ‖β∗− β̂‖2 given

enough samples. More formally, we will decompose the LHS as

1

n

∑
i∈Ŝ∩T

(yi − b′(β̂>xi))(β∗ − β̂)xi

=
1

n

∑
i∈Ŝ∩T

(
yi − b′(β∗>xi)

)
(β∗ − β̂)>xi +

1

n

∑
i∈Ŝ∩T

(
b′(β∗>xi)− b′(β̂>xi)

)
(β∗ − β̂)>xi.

The first term contains a (1− ε) fraction of uncorrupted random examples sampled from a zero mean
distribution with certain tail bound, e.g. sub-exponential for Gaussian and Binomial regression, k-th
moment bound for Poisson regression.

Therefore, we can apply resilience property to bound the first term. Overall, we heavily utilize the
resilience property of the sample set that is drawn from “nice” distributions. Take sample mean as
an example, resilience [SCV17, ZJS19] (also known as stability [DK19]) dictates that given a large
enough sample set S = {xi}ni=1, the sample mean of any large enough subset of S will be close to
each other. We define mean resilience formally here:
Definition 4.6 (Resilience). Given a sample set S = {xi}ni=1, suppose for any T ⊂ S, |T | ≥ (1−ε)n,
it holds that ‖ 1

|T |
∑
i∈T xi − 1

|S|
∑
i∈S xi‖ ≤ τ , then we call the set S satisifes (ε, τ)-resilience.

Specifically, under sub-Gaussian distribution, a set S of i.i.d. samples with size n = Ω(d/ε2) satisfies
(ε, ε

√
log(1/ε)) resilience with high probability. Resilience property applies to sub-exponential and

k-th moment bounded distribution as well, and this gives us a way to control the behavior of any
subset of good data.

For the second term, we prove that 1
n

∑
i∈Ŝ∩T b(β

>xi) is a strongly convex function again using the

resilience property, which implies 1
n

∑
i∈Ŝ∩T

(
b′(β∗>xi)− b′(β̂>xi)

)
(β∗ − β̂)>xi = Ω(‖β∗ −

β̂‖2).

Upper bound on the RHS. To upper bound − 1
n

∑
i∈Ŝ∩E(yi − b′(β̂>xi))(β

∗ − β̂)>xi, we

will prove an upper bound on
√

1
n

∑
i∈Ŝ∩E(yi − b′(β̂>xi))2 and

√
1
n

∑
i∈Ŝ∩E((β∗ − β̂)>xi)2

separately, then apply Cauchy-Schwarz inequality. The key difficulty is bounding√
1
n

∑
i∈Ŝ∩E(yi − b′(β̂>xi))2, as it contains corrupted data points controlled by an adversary,

which does not follow any good property possessed by the good stochastic data. However, since Ŝ
contains (1− ε)n datapoints with the largest log-likelihood under β̂, we can argue that∑

i∈Ŝ∩E

− log f(yi|〈β̂,xi〉)≤
∑
i∈T\Ŝ

− log f(yi|〈β̂,xi〉)

or even
max
i∈Ŝ∩E

− log f(yi|〈β̂,xi〉)≤ min
i∈T\Ŝ

− log f(yi|〈β̂,xi〉)

since otherwise one can replace the data points in Ŝ ∩ E by the ones in T \ Ŝ to form a new set
with better likelihood than Ŝ. This gives us an upper bound on the negative log-likelihood of yi in

Ŝ ∩E. Therefore we adopt a two step approach to upper bound the
√

1
n

∑
i∈Ŝ∩E((β∗ − β̂)>xi)2.

First we prove an upper bound on the negative log-likelihood on T \ Ŝ, which becomes a negative
log-likelihood bound on Ŝ ∩E immediately. Second we turn the negative log-likelihood bound into
a square error bound.

The two steps vary drastically for different regression models. For the first step of upper bounding
the negative log-likelihood, in Gaussian regression we use the resilience property of the quadratic
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form of sub-Gaussian random variable. In Poisson regression, we leverage the resilience property of
yixi which is heavy tailed. In Binomial regression, since the distribution only has support size m, we
directly analyze the resilience of the negative log-likelihood. In general GLMs, due to the generality
of the likelihood function, we have to again analyze the resilience of the negative log-likelihood
directly. For the second step of turning the log-likelihood bound to a quadratic bound, we get the
bound trivially in Gaussian regression since Gaussian likelihood is indeed quadratic. For Poisson and
Binomial setting, we have to build a proxy function which lower bound the negative log-likelihood
function − log f(yi|〈β̂,xi〉) to connect it to quadratic function. For the general class of GLMs, we
leverage the bounds on the b′′(·) and log(c(y)) to obtain a quadratic bound.

4.3 Proof for Poisson Regression

As an illustrative example, we show how the above proof sketch can be used for Poisson regression to
formally prove Theorem 4.3. (Proofs for the other GLMs are deferred to Section A in the Appendix)
Lemma 4.7 (Approximate stationary point close to β∗ for Poisson regression). Given a set of
datapoints S = {xi, yi}ni=1 generated by a Poisson regression model with ε-fraction of label
corruption, and the largest εn labels removed. Let β̂ be a max(ε, ε2/‖β∗− β̂‖)-stationary point and
‖β̂‖ ≤ R. Given that n = Ω( dε2 ), with probability 0.99, it holds that

‖β̂ − β∗‖ = O(ε exp(Θ(
√

log(1/ε))))

Since b′′(θ) = exp(θ) is unbounded for Poisson regression, the following lemma (proved in the
appendix) shows that alternating minimization algorithm still return an approximate stationary point
Lemma 4.8 (Algorithm 1 finds an approximate stationary point for Poisson regression). Given a
set of datapoints S = {xi, yi}ni=1 generated by a Poisson model with εc-fraction of corruption.
Assuming that n = Ω(d+log(1/δ)

ε2 ), then with probability 1− δ, the output of Algorithm 1 with input
parameters ε = 2εc, R ≥ ‖β∗‖, η = ε2/(dn), is a max(ε, 2ε2

‖β∗−β̂‖
)-approximate stationary point.

Proof of Theorem 4.3. Lemma 4.8 implies the output of Algorithm 1 is a max(ε, ε2

‖β∗−β̂‖
) approxi-

mate stationary point. Lemma 4.7 then implies that ‖β̂−β∗‖ = O(ε exp(
√

log(1/ε))). To bound the
number of iterations, we need an upper bound on the negative log-likelihood on β = 0, and a uniform
lower bound on the negative log-likelihood. The initial negative log-likelihood is upper bounded by
1
n

∑
i∈Ŝ(1) log(yi!) + 1 ≤ O(E[y2

i ] + 1) = O(1) where S(1) contains the smallest (1− ε)n labels.
Trivially, there is a 0 lower bound on the negative log-likelihood for Poisson distribution. Therefore,
the algorithm will terminate in dn/ε2

c iterations.

5 Result for Sample Corruption Model

The learning problem becomes much harder in the presence of label and covariate corruption, since
it is hard to tell whether a data point is corrupted by simply looking at the likelihood of yi. From
a technical level, the resilience condition we leveraged on covariate xi in set E breaks down when
there is covariate corruption. Luckily, we are able to restore the resilience property by first running
the filtering algorithm for robust mean estimation [DHL19]. Specifically, if the covariate distribution
has identity (or known) covariance and sub-Gaussian tail, one can apply the filtering algorithm to the
ε corrupted data set, and the resulting data set {wixi}ni=1 will have close to identity covariance and
the same resilient condition as an uncorrupted data set. This prepossessing step only takes nearly
linear time. This approach is firstly proposed in [PJL20] as a general method to make an algorithm
robust against covariate-corruptions.

5.1 Algorithm

The guarantee of Algorithm 2 is formalized in the following theorems.
Theorem 5.1 (Gaussian regression with sample corruption). Given a set of datapoints S =
{xi, yi}ni=1 generated by a Gaussian regression model with yi = 〈xi, β∗〉 + ηi, ηi ∼ N(0, σ2),
sub-Gaussian design, εc-fraction of sample corruption and n = Ω(d+log(1/δ)

ε2 ). With probability

8



Algorithm 2: Alternating minimization of trimmed maximum likelihood estimator in sample
corruption model
Input: Set of examples S = {(x1, y1), . . . , (xn, yn)}, Σ, ε, η, R
Output: β̂

1 S0 ← {(Σ−1/2x1, y1), . . . , (Σ−1/2xn, yn)} // Whiten the covariates.
2 S′ ← Filtering(S, ε) // Algorithm 4 in [DHL19]
3 β̂ ← Algorithm 1(S′, ε, η, R);
4 Return β̂;

1 − δ, Algorithm 2 with parameters ε = εc, η = ε2
c , R = ∞ terminate within O( 1

min(1,σ2)ε2c
)

iterations, and output an estimate β̂ such that

‖β̂ − β∗‖ = O(σεc log(1/εc))

Theorem 5.2 (Poisson regression with sample corruption). Given a set of datapoints S = {xi, yi}ni=1

generated by a Poisson regression model with εc-fraction of label corruption and n = Ω( dε2 ). With
probability 0.99, Algorithm 2 with parameters ε = 2εc, η = ε2

c/(dn), R ≥ ‖β∗‖ terminate within
dn/ε2

c iterations, and output an estimate β̂ such that

‖β̂ − β∗‖ = O(εc exp(
√

log(1/εc)))

Theorem 5.3 (Binomial regression with sample corruption). Given a set of datapoints S =
{xi, yi}ni=1 generated by a Binomial regression model with εc-fraction of sample corruption and
n = Ω(d+log(1/δ)

ε2 ). With probability 1− δ, Algorithm 2 with parameters ε = εc, η = ε2
c , R ≥ ‖β∗‖

terminate within m/ε2
c iterations, and output an estimate β̂ such that

‖β̂ − β∗‖ = O(εc

√
log(m/εc) log(1/εc)

m
)

Theorem 5.4 (A class of generalized linear model with sample corruption). Let S = {xi, yi}ni=1
be generated by a generalized linear model with sub-Gaussian Design, with εc-fraction of sample
corruption and n = Ω(d+log(1/δ)

ε2 ). Assuming that C0 ≤ b′′(·) ≤ C for non-zero constants C0, C,
b(0) = 0, b′(0) = 0, and log(c(y)) = O(log(1/εc)),∀y ≤ Θ(

√
log(1/εc)) With probability 1− δ,

Algorithm 2 with parameters ε = εc, η = ε2
c , R =∞ terminate within log(1/εc)/ε

2
c iterations, and

output an estimate β̂ such that

‖β̂ − β∗‖ = O(εc log(1/εc))

The proof is the same compared to the label corruption setting except that since xi, i ∈ E is now

controlled by the adversary, we can no longer bound
√

1
n

∑
i∈Ŝ∩E((β∗ − β̂)>xi)2 by the resilience

property of (uncorrupted) sub-Gaussian samples. Instead, we will leverage the fact that corrupted
sample with small covariance is also resilient.

6 Conclusion

In this paper, we provided a general theoretical analysis showing that a simple and practical heuristic
namely the iterative trimmed MLE estimator achieves minimax optimal error rates upto a logarithmic
factor under adversarial corruptions for a wide class of generalized linear models (GLMs). It would
also be interesting to study whether our techniques can be extended to design robust algorithms for
more general exponential families beyond GLMs.
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